
ElectroGraph: Advancements and Philosophies for
Plotting Relational Data in R

Andrew C. Thomas

June 27, 2009

ElectroGraph: Advancements and Philosophies for Plotting Relational Data in R

The ElectroGraph package for R has been assembled as a means for analyzing and present-

ing large relational data sets according to the properties of their graphs. While this includes

standard measures for distances based on geodesic path lengths, there is also a great deal to

be gained from the inclusion of alternative measures of distance such as social conductance

, and the possible extension of this method to considering antagonistic relationships.

This guide contains installation instructions as well as directions for the use of the package

to compare, analyze and display relational data of various types, primarily data that are more

complicated than simple binary relations.

1 Installation Instructions

ElectroGraph will soon be available on the Comprehensive R Archive Network (or CRAN),

so that the installation of ElectroGraph will be as simple as running the command

> install.packages("ElectroGraph")

For the time being, the source code can be downloaded from this location, and installed

on UNIX-type systems from the command line:

% R CMD INSTALL ElectroGraph_0.1.tar.gz

2 Initializing an ElectroGraph object

To process a relational data set into an object that ElectroGraph can analyze, the electrograph

function/constructor is used. The object to load can either be an n-by-n sociomatrix, or an

n-by-k edge list, where k can take one of three values:
1

http://cran.r-project.org/
http://www.people.fas.harvard.edu/~acthomas/sourcecode/ElectroGraph_0.1.tar.gz

• k = 2: The two columns represent arcs of value 1 to enter into the system. The resulting

system will have as many nodes as there are unique identifiers in the two columns. By

default, the edges produced will be undirected. For example, the command sequence

sources <- c("Bob","Ted","Bob")

sinks <- c("Carol","Alice","Alice")

e.graph <- electrograph(cbind(sources,sinks))

will create a four-node social network with three arcs.

• k = 3: The two columns represent source-sink pairs, and the third equals the value

of this arc, which can be any real number (though caution is advised with negative

values.) By default, the edges produced will be undirected. For example, the command

sequence

sources <- c("Bob","Ted","Bob")

sinks <- c("Carol","Alice","Alice")

vals <- c(3,2,1)

e.graph <- electrograph(cbind(sources,sinks,vals))

creates a four-node social network with three undirected edges of varying value.

• k = 4: The two columns represent source-sink pairs, and the third and fourth columns

are the values for each arc in the dyad, for forward and reverse respectively. For

example,

sources <- c("Bob","Ted","Bob")

sinks <- c("Carol","Alice","Alice")

val1 <- c(1,2,5)

val2 <- c(3,2,0)

e.graph <- electrograph(cbind(sources,sinks,val1,val2))

creates an asymmetric directed sociomatrix, where among other relations, Bob pines

for Alice but is not reciprocated.

2

2.1 Included Data Sets

There are two data sets included for demonstration purposes in the ElectroGraph package,

both included in the data set electro.frats. They are the fraternities studied by ? and

Newcomb [1961] respectively.

The data set bernard.killworth.b is a weighted edgelist that indicates the number of

times an observer noticed two people communicating with one another during a short period

of time. The data set can be prepared as an electrograph object with the command

bk.graph <- electrograph(bernard.killworth.b)

The data set newcomb is a three-dimensional array, where each slice indicates a rank-

order of each member’s preferences towards the others during one week. The total period of

observation is 15 weeks.

Because this encompasses 15 separate social interaction periods, it is recommended to

load each week’s observations into its own ElectroGraph object in this fashion:

newcomb.e <- list(NA)

for (kk in 1:15) newcomb.e[[kk]] <- electrograph(newcomb[,,kk])

Separate analyses are then conducted on each year’s results.

2.2 Analyses

When an ElectroGraph object is initialized, several analyses are conducted automatically:

• The system is divided into disconnected components. The placement of each node into

each component is given in the ElectroGraph element component.vector.

• The equivalent social conductance is calculated between each pair of nodes.

• Distance matrices are calculated from geodesics and social conductances.

• The distribution of geodesics is calculated, and centrality measures determined within.

• Betweenness centrality is calculated for each node and edge in the system to determine

their relative importances.

The electro-social analyses are conducted if the option perform.exam is set as TRUE in

electrograph, as it is by default. In the case of a large social network, say over 500 nodes

with 2 edges per node, this may take a large amount of time to execute. In this case, it may

be preferred to initialize the object without the extra analyses:
3

bk.graph <- electrograph(bernard.killworth.b, perform.exam=FALSE)

bk.graph <- electrograph.exam(bk.graph,sample.edges=TRUE)

3 Graph Plots

By default, an ElectroGraph object can be automatically plotted by the command

plot(bk.graph)

though depending on the object being plotted, this may not prove to be the most aesthetically

pleasing presentation of the data.

There are several important features to consider when plotting graphs:

• Relative node position and distance. Are the geometric distances on the plot meant to

reflect topological distance along a graph?

• Node shape, size and color. Are these indicative of isolated properties of the node, or

perhaps other characteristics that only have meaning within a network ensemble?

• Edge color, thickness and presence. Which edges do we wish to show and which to

omit for the sake of illumination?

There are several options available to be customized to suit these needs. Among them:

• distance.mode: By default, the distances between nodes are set to be "shortest.path",

the geodesic distances. Setting this option to be "electro.social" sets the plotting

algorithm to use the inverse of social conductance for the ideal distance between points

on a plot.

• plot.mode: ElectroGraph makes use of two force-energy direction algorithms to put

an n-dimensional object into two-dimensional space: "kamada.kawai" (default) and

"fruchterman.reingold". The algorithms, with subsequent modifications for im-

proved convergence, are given in the appendix.

• ego.focus: If specified, this lists a selection of nodes whose placement on the graph

with respect to its neighbours takes priority over others. The energies and forces of

these points in the placement algorithm are increased dramatically so as to give their

relative placements preferential treatment.

• source.sink.pair: If selected, the electro-social current flow between these points will

form the basis for the thickness of the edges and the inclusion of arrowheads.
4

• previous.electrograph.plot.object: If included, the points in the active plot will

be placed close to those in the “previous” plot. Useful for animation purposes.

4 Dynamic Graph Plots

ElectroGraph contains two built-in methods for producing useful animations for display pur-

poses.

4.1 Wedding Cake Plots of Valued Graphs

Because a single plot can be extremely dense with ties, the “wedding cake” method for plot-

ting valued-edge graphs is presented to demonstrate various layers of network connectivity.

The method is to take various lower and upper bounds for edges that should be displayed,

plot the system with each set of bounds in sequence, then display the plots in order through

static views or by using a movie-making program. The coordinates for these points are fixed

at the outset according to whichever distance and plot methods are selected to operate on

the raw data.

By entering a valued ElectroGraph object directly, we can produce a series of plots through

plot.wedding.cake(bk.graph)

that will produce a series of plots where the lower bound varies through the range of edges

up to the maximum, and no upper bound is present; this is as if we continually remove the

bottom layers from a tower structural representation of the model.

If we wish to take a tomographic scan of a 2-dimensional network projection, one possibil-

ity is to calculate the desired quantiles directly. For example, to take only 10% of a graph’s

edges at a time:

edge.vals <- bk.graph$grand.sociomatrix; edge.vals <- edge.vals[edge.vals>0]

lower.bound <- quantile(edge.vals,(1:90)/100)

upper.bound <- quantile(edge.vals,(11:100)/100)

plot.wedding.cake(bk.graph, lower.bound=lower.bound, upper.bound=upper.bound)

plot.wedding.cake will save a series of images to disk, currently only in the Portable

Network Graphics (.png) format. The routine will also output a shell script for automatically

creating the movie in the freeware program ImageMagick.

5

4.2 Plotting a Graphical Time Series with animate.plot.series

Given a series of ElectroGraph plots with identical node sets, ElectroGraph can produce a

set of plots with animated transitions between each plot.

For this, we much save the outcome of each plot into an R object. Suppose we have the

Newcomb data preloaded:

data(electro.frats)

newcomb.electro <- list(NA)

for (kk in 1:dim(newcomb)[3]) {

newcomb.electro[[kk]] <- electrograph(newcomb[,,kk])

}

We can then pre-plot the objects using the following sequence:

newcomb.plot <- list(NA)

newcomb.plot[[1]] <- plot(newcomb.electro[[1]],distance.mode="electro.social", just=TRUE)

for (kk in 2:length(newcomb.electro))

newcomb.plot[[kk]] <- plot(newcomb.electro[[kk]],distance.mode="electro.social",

just.coordinates=TRUE, previous.elec=newcomb.plot[[kk-1]])

This sets up a series of plots of the Newcomb sequence where the nodes are aligned to be

as close to their previous positions as possible.

To create a series of images, run the command

animate.plot.series(newcomb.plot)

Like the Wedding Cake plot, this will produce a series of images that can then be assem-

bled into a movie using software such as ImageMagick; a shell script is provided that will

perform the assembly assuming the software is installed.

A Force-Energy Graph-Drawing Algorithms

Kamada-Kawai Algorithm

The Kamada-Kawai plotting algorithm [Kamada and Kawai, 1989] begins with the premise

that all pairs of points have a “preferred” distance from each other, as governed by a spring

that pulls or pushes on the points when distance is not maintained; that is, that
(

N
2

)
springs

are present in the system. In the social network context, this distance is typically taken to
6

be the shortest geodesic distance between two nodes along the network. A spring between

these individuals, with “spring constant” kij
1 exerts a restoring force on each proportional

to the difference between their actual and preferred distance apart.

Letting dij be the geodesic distance, define the ideal plot difference lij = Ddij, where D

holds the value of a unit distance. Kamada and Kawai recommend for a graph with width

and height L0, that D be defined as

D =
L0

maxi<jdij

so that the maximum distance between points, maxi<jlij, corresponds directly to the size of

the plot.

The restoring force exerted by a spring between nodes i and j is

−kij ||pi − pj| − lij| ,

where pi = (xi, yi) is the position in two-dimensional space, and the total energy in the spring

due to this deformation is

kij

2
(|pi − pj| − lij)

2 .

The trick to generating a pleasant looking graph is then to define an appropriate spring

constant for each pair of nodes, such as one inversely proportional to the squared distance,

or

kij =
K

d2
ij

where K is a constant to be chosen by the plotter.

The coordinates for each point pi = (xi, yi) are solved by finding the minimum of the

total energy equation,

U =
∑
i<j

kij

2
(|pi − pj| − lij)

2 ,

with respect to the centering constraints
∑

i xi =
∑

i yi = 0. As they have no relationship

to connected points in the graph, isolates are often placed at the periphery of the plot in

random fashion. In ElectroGraph, isolates are considered to be separate components and are

1As the spring law that follows is known as Hooke’s Law, kij is also known as Hooke’s constant.

7

plotted distinctly from the main component.

Fruchterman-Reingold Algorithm

The work of TMJ and EM [1991] suggests an alternate method for deriving forces between

nodes. In particular, it is assumed that all nodes have a repulsive force between them that

decays with distance, and only nodes with a connection exhibit an attraction. Nodes are

allowed to interact until they reach equilibrium distances from each other. The compelling

factor to be considered is that all connected nodes should be evenly spaced as a means of

picturing structure.

Following experimentation with various functional forms, TMJ and EM [1991] suggest

setting an “ideal” distance for connected nodes equal to k. Given the observed distance dij,

the force magnitudes are specified to be

Fa =
d2

ij

k
,

Fr = − k2

dij

.

Under this scheme, the forces balance when d2
ij/k = k2/dij, or when the observed distance

dij equals the ideal distance k. In the case of unconnected nodes, there is no attractive force

present between these pairs.

It should be noted that these algorithms will work in any integer dimension, and have

been coded as such in ElectroGraph. However, plotting methods are limited in ElectroGraph

to two dimensions, so I leave the creation of higher-dimensional plotting mechanisms as an

exercise to the user.

Modifications to Consider in Weighted Graph Scenarios

As previously implemented, both algorithms have features that are desirable in some circum-

stances but less so in others. I attempt to bring the best of both worlds to the solution of

graph positioning with the following implementations.

Combined Force-Energy Direction

Previous implementations of force-energy algorithms typically take one of two approaches

when finding ideal positions, starting with a randomly determined configuration:

8

• All-energy. Take a random perturbation of a node’s position, and compare the total

energy of the new configuration to the old one. If the new energy is smaller, accept

the new configuration. This has been improved with the introduction of simulated

annealing techniques, in which a larger energy can be accepted with nonzero probability

as a function of the “temperature” of a system, which is slowly lowered throughout the

process.

• All-force. A node is chosen and all resulting forces on it are added up; the node is then

moved in the direction of the force. This approach benefits from the directionality of

forces but does not have the global-energy-minimum properties of the first approach.

We can combine these approaches to quickly find an ideal position that finds an energy

minimum more likely to be a global minimum. For each node in the system, perform the

following steps:

1. Exchange its position with another node. Calculate the resulting energy difference

and accept the swap if the new energy configuration is smaller in magnitude, or if an

acceptance step is satisfied in a simulated annealing setting.

2. Determine the total force on a node, as well as the rate of change of the force in the

direction of influence. From here, estimate the point where the force equals zero from

one step of Newton’s method.

3. Add a random perturbation to this point proportional to the temperature of the system.

4. Accept this point if the energy is lower, or if an acceptance step is satisfied in a simulated

annealing setting.

This approach has the benefit of directed searches as well as finding global energy minima.

References

Kamada, T. and Kawai, S. (1989). An algorithm for drawing general undirected graphs.

Information Processing Letters, 31 7–15.

Newcomb, T. (1961). The acquaintance process.

TMJ, F. and EM, R. (1991). Graph drawing by force-directed placement. Software –

Practice and Experience, 21 1129–64.

9

	Installation Instructions
	Initializing an ElectroGraph object
	Included Data Sets
	Analyses

	Graph Plots
	Dynamic Graph Plots
	Wedding Cake Plots of Valued Graphs
	Plotting a Graphical Time Series with animate.plot.series

	Force-Energy Graph-Drawing Algorithms

