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Graph-theoretic interpretations of relational data sets have proven popular due in

part to their clarity of explanation. The geodesic path length between individuals can be

considered to be a measure of closeness between individuals; the degree of an individual

is a proxy for both gregariousness and popularity. Additionally, statistical measures for

characteristics of the whole ensemble, such as global transitivity and reciprocity, may

model the tendencies of individuals to form particular relationships given others present

in the system.

There are several shortcomings in this method of analysis that cannot easily be

rectified. Geodesic path lengths may not give an accurate measure of social distance

if multiple shortest paths exist, such as the case where two unconnected people have

one mutual friend, or ten. In order to measure the importance of a tie rather than

a node, a measure of betweenness can be constructed using geodesic paths [Freeman,

1979], though the issue of multiple geodesic paths, possibly sharing edges between them,

requires solutions that may prove difficult to interpret.

As an alternative, I consider another well-studied model where multiple paths be-

tween nodes have a straightforward interpretation. When considering social ties as

conduits for information transfer, there is an immediate analogue to electrical circuitry,

in which the connection points for circuit components are seen to be the nodes of a

network, and a signal is sent from one node to another in the form of an applied volt-

age difference. The strength of this signal, in terms of the current flow that results,

depends both on the properties of each edge in the system as well as their topological

arrangement.

I briefly outline the concept of electrical conductance in terms of a fixed potential
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difference applied across a pair of nodes. I then demonstrate how this measure allows us

to determine a refined measure of social distance between two individuals in a network,

as well as the relative importance of a tie for information transfer using an analogue of

electrical power.

0.1 Previous Work

Approaches for considering electrical circuits as networks are at the root of Kirchhoff’s

Circuit Laws, discussed in detail in Section 0.3, so it is not surprising that the extension

to social networks has been considered repeatedly in the past 150 years. Among these

considerations are those by Freeman [1979], in which degree-based and betweenness

centrality are discussed. These were natural precursors to Freeman et al. [1991], which

dealt with the notion of network “flow” as a method of connectivity between two points,

in which the value of a network tie is taken to be a flow capacity – essentially, that all

ties in a network have equal length but varying diameter.

Circuit-law based derivations are found by Stephenson and Zelen [1989], and redis-

covered in the form of random walks on a graph by Newman [2005]. The underlying

methods for calculating current flow are essentially identical to those presented in this

paper, as they are based on the Kirchhoff methodology, but with differing interpreta-

tions which I elaborate in this work.

0.2 Social Pathways, Milgram’s Experiment and the Flow of

Information

As an oft-mentioned study of cross-country sociology and community, Stanley Milgram’s

small-world experiment [Milgram, 1967] was aimed to determine the minimum number

of connections between individuals separated by geography. The experiment had a

number of people from Nebraska try to send a package to a person in Boston, with the

constraint that the package could only be passed to an intermediary known personally

by each respective sender in the chain. 1

One crucial piece of this experiment is that each person in the experiment, with

the exception of the final recipient, was able to communicate only through one more

person. As a result, only single paths were traced between the originators and the

1The observed average of the number of senders was roughly six, yielding the popular aphorism
“Six Degrees of Separation”, a point made in detail throughout the networks literature.
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recipient. While this model may be useful for demonstrating a short distance in social

space along a single path, it does not accurately represent the mechanism highlighted by

the experiment – the transfer of information along social ties. Replication, division and

transmission of information are qualities that cannot be duplicated in an experiment

with this physical limitation.

As a thought experiment, consider what could happen if the small world experiment

were repeated, but where each source of information were given, say, one million small

packages to send to the target in Boston. The previous goal, that they attempt to

have the transmission take as few paths as possible, remains in effect, though there are

also practical problems with sending all the packages to one local recipient for fear of a

backlog problem. Over time, each recipient can report back to the original sender with

their ultimate capacity and how much traffic they can handle; this is then taken into

account by the original sender as they plan for future deliveries.

This is a crude but accurate representation of the flow of current in an electrical

circuit. Resistance to current represents the energy required for a signal to be trans-

mitted at every step, and nodes have a potential energy level that governs the degree

to which current flows. As seen in Figure 1, and as I explain throughout this note, this

model illustrates the importance of each node and edge in the flow of information, with

a natural extension to edges that have greater transmission power than others.

0.3 Ohmic Circuits and Kirchhoff’s Laws

This method of exploring networks requires three quick definitions from the circuit

theory literature.

Electric current I is the result of an electric field being applied to a conductor, in

which particles of one charge are free to move and others are fixed in place, and is

defined as the rate at which charge moves past a reference point per unit of time.

Kirchhoff’s Current Law states that charge cannot accumulate at any point

in a completed circuit. This implies that with respect to any fixed point,

the net current is zero; that is, any current going in must also be balanced

by an equal amount of current going out.

The energy carried by an electric current is most often expressed in terms of an

“electric potential difference” or “voltage” V , which is equal to the amount of energy

transferred per unit of charge.
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Figure 1: Representing the analogy between information transmission through a social
network and current flow through a compound electrical resistor.
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Figure 2: Simple circuits demonstrate compound conductances. In the parallel case on
the left, the total conductance is the sum of the respective conductances because the
induced current is higher; in the serial case on the right, the total conductance is the
reciprocal sum due to the drop in induced current.

Kirchhoff’s Voltage Law states that in any closed loop, the total electric

potential difference must be zero. As a corollary, any two paths taken from

one point in a circuit to another must have identical potential differences.

Ohm’s Law relates the behaviour of current to that of potential difference along a

circuit element:

The ratio of current to potential difference, I/V , is called the conductance,

with symbol G. In so-called Ohmic circuits, a conductor is a device for which

this ratio of current to potential difference is maintained for all feasible

potential differences across its length. 2

From these three pieces of information, we can define the equivalent conductance of

an arrangement of conductors in terms of the current produced by a specified applied

potential difference (as in, say, a common household battery). By determining the total

current Itotal, we calculate the equivalent conductance of the circuit as Geq = Itotal/Vtotal.

2This is usually represented canonically as the “resistance”, or R, defined as the reciprocal of
conductance. I use conductance in this paper for its isomorphism to the strength of a connection,
which in the sense of information takes the form of current.
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In the case of two parallel conductors attached to a common potential difference,

the total current is found to be

Itotal = V G1 + V G2 = V (G1 + G2),

yielding the equivalent conductance of two parallel conductors as their sum, Geq =

G1 + G2.

In the case of two serial conductors, we note that the total potential difference across

the conductors must equal that of the source:

V =
I

G1

+
I

G2

= I

(
1

G1

+
1

G2

)
;

this yields the equivalent conductance, given by 1/Geq = V/I = (1/G1 + 1/G2).

Similar expansions can be calculated for more complicated circuit arrangements, but

the equivalent conductance for any pair of nodes, even those without direct connections,

can be calculated using the following algorithm:

1. Create a vector (V1, ...Vn) specifying each intersection node in the system.

2. Choose the nodes (a, b) across which the equivalent conductance is to be found.

Set Va = 1 and Vb = 0.

3. Set up a system of equations using Kirchhoff’s Current Law and Ohm’s Law for

all nodes (except the source and sink nodes a and b):

0 = Ik =
∑
j 6=k

(Vj − Vk)

Gjk

Note that the currents through the source and sink nodes, Ia and Ib, are by

definition non-zero, reflecting the induced current due to the applied potential

difference across the circuit.

4. Solve this system of equations for the remaining Vk, noting that all values must

be in the interval [0, 1].

5. Determine the total induced current
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Ia =
∑
j 6=a

(1− Vj)Gaj

and set Geq = Ia

Va−Vb
= Ia.

As this yields a set of electric potentials, we can also identify the current across any

conductor as being Ijk = (Vj − Vk)Cjk.

0.3.1 A Note of Comparison

The method suggested here is identical in solution to that proposed by Stephenson

and Zelen [1989] and Newman [2005], except that these works suggest a fixed current

approach rather than a fixed voltage. In fact, as the voltage-based method requires a

matrix inversion for every node pair considered, it is less than practical for a full analysis

of a system with more than 200 nodes on currently available computing hardware, and

the implementations in this work have been computed using fixed current.

For the sake of the analyses that follow, both the fixed-voltage and fixed-current

approaches will be used to investigate networks. Since the relationship between voltage

and current is linear, the results only differ by a factor of the equivalent conductance

and are immediately deriveable from each other.

1 Social Conductance

In a social network setting, when individuals are considered to be nodes in a graph, the

absence or presence of an edge determines the ability to conduct information directly

between the individuals in question. Previous explorations have considered “degree”,

or the minimum path length between two individuals, to represent the effective distance

between individuals; this representation assumes, however, that information can not be

replicated and sent separately along multiple channels.

We hence define social conductance as being the rate at which two individuals

can share information directly between them, and equivalent social conductance

as the total information flow rate between individuals when accounting for all possible

paths of transmission and conductance. In the case of a binary network, the social

conductance of a tie is set as equal to one, and for the lack of a tie is equal to zero.
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It must also be noted that there is an immediate extension to univariate non-binary

relations, since we can represent any nonnegative tie strength as a social conductance.

Once we have solved for the potentials at each node in the system, given an applied

potential difference across two nodes, we can measure the current flow across any edge.

This current then represents a fraction of information that travels from one person to

another within the network, and are internally comparable for determining which edges

are the most influential in conducting information. See Figure 4 for a comparison of

several paths.

1.1 A Measure of the Effective “In-Network” Strength of a

Tie

For each pair of nodes in the network, we determine their equivalent social conductance

using the aforementioned procedure. As a measure of social connectivity, this now rep-

resents not only the strength of a direct connection but of all social pathways connecting

two individuals. This interpretation immediately lends credence to Simmel’s hypothesis

[Simmel, 1955] that influence through a single tie is insufficient to capture sociological

phenomena without considering common connections. Because this measure considers

the entire network when calculating the degree of connection between two individu-

als, this effectively extends the measurement of social distance to the consideration of

multiple middlemen alongside a relationship.

To demonstrate, consider the effective tie strength between two members of an n-

clique. As demonstrated in Figure 3, when inducing a potential difference across any

edge, the remaining points each take an electric potential halfway between the source

and sink nodes. Because no current flows between points of equal potential, the only

remaining edges that carry current are the direct path and the remaining n−2 two-step

paths, all in parallel. As the conductance of two serial conductors is half that of each

component, the total conductance of the remaining assembly is G + n−2
2

G = nG
2

.

It follows immediately that the observation of a binary tie within a highly inter-

connected component may in fact be illusory; that this is in fact a long-distance tie in

true magnitude that is only observed due to the influence of their intermediaries. This

“local amplification” effect is purely endogenous, making it difficult to disentangle in

the case of binary tie observation.

An additional visual comparison between the geodesic and electro-social models is

shown in Figure 3, in which five individuals form a clique but each maintain one outside
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Figure 3: Above, the equivalent social conductance between members of a five-clique.
As additional middlemen are added, the conductance increases, reinforcing the theory
of Simmelian ties. Below, a visual comparison of social distance under the geodesic and
electro-social models.
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friend. If the underying tie strengths are all identical, the geodesic method does not

consider the outside friendships to be any closer than those within the clique, whereas

the social conductance method allows for this possibility.

1.2 Tie and Node Importance As Average Observed Current

Consider that with a fixed potential difference across nodes a and b, there is an induced

potential at each node in the graph Vi between 0 and 1, and an induced current between

the nodes specified as

Iab
ij = (V ab

i − V ab
j )Gij.

If the total induced current in the system is Iab, define the embedded importance

of an edge in this configuration as the fraction

Mab
ij =

Iab
ij

Iab
,

and the average embedded importance of an edge as

Mij =
1(
n
2

)∑
a

∑
b 6=a

Mab
ij .

This is defined with respect to directed edges, so that one arc in a dyad may be

more important than another for whatever reason of topology, as discussed ahead.

This measure is not necessarily equal to the drop in current that would be observed

if the tie were removed from the system, defined as the tie-cut importance,

T ab
ij =

1− (Iab|Gij = 0)

Iab|Gij = Gij(true)
;

in fact, as part of this current may be directed to other less-used nodes, it can be

shown that the embedded importance is an upper bound on the true tie-cut importance,

Mab
ij ≥ T ab

ij .

As a comparative measure, the embedded importance has many desirable properties.

It can be calculated simultaneously for all ties in the system given a source-sink pair,

whereas tie-cut importance requires at most 2
(

n
2

)
calculations, one for each tie to be

removed. Additionally, the relative order of tie importance will be extremely close in
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most circumstances.

To demonstrate, Figure 4 shows the sample network from Figure 1 with potential

differences applied across pairs of nodes, where line and node thicknesses represent

current flows and therefore importances to information transfer.

2 Betweenness Measures For Nodes Based On Cur-

rent Flow

The concepts in the previous section to evaluate edge importance can be extended

immediately to nodes by taking the sum of all currents entering or leaving a node

during an electro-social path test, as seen in Figure 5.

The measure of betweenness centrality for a node, as defined in Freeman [1979], is

an average of the fraction of shortest paths between two other nodes that contain the

third node. Since non-geodesic paths may also play an important role in node-to-node

communication, an approach that considers multiple paths appropriately weighted can

be valuable. Current-based measures for centrality are the prime focus of Newman

[2005], and occupy a full chapter of Bollobas [1998].

The nature of how the averaging is conducted, however, is paramount to the cal-

culation of a centrality statistic. The assumptions of Newman [2005]; Bollobas [1998]

are that each node pair has equal weight when composing betweenness centrality; that

is, that a pair of nodes of large geodesic distance (say, 12 intermediate nodes) carry as

much weight for calculating betweenness as two adjacent points.

By considering equivalent distances based on a voltage measure, the current pro-

duced effectively decreases with distance, though it also multiplies with the number

of paths between targets. Therefore, care must be taken when applying a measure of

betweenness based on current flow. I present three electro-betweenness measures based

on what quantity should be constant over averaging for each node-pair trial: current

flow (I=1), potential difference(V =1), or electrical power (V I=1).

Having defined the current through edge (i, j) as

Iab
ij = (V ab

i − V ab
j )I(V ab

i > V ab
j )Cij

with respect to terminal potentials (Va = 1, Vb = 0) and a total induced current Ia,

the centrality measures are defined with respect to these terms.
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Figure 4: Current through nodes and edges of a sample network. Line thickness
represents the fraction of current going through an edge; node size represents the total
current flowing into (and out of) the node. Top: The current along each edge of the
network, averaging together every pair of source and sink. Bottom: The current flow
for the source at node 1 and sink at node 10.
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Figure 5: Current through a node as importance of the node in communication.

The notation of Freeman [1979] gives CD(i), CC(i) and CB(i) as the degree, closeness

and (geodesic/shortest path) betweenness centralities respectively for a node labelled

i.

2.0.1 Fixed-Voltage Electro-Betweenness Centrality

Define CV (i) as the centrality of node i as determined by the sum of the current flowing

from it, averaged with respect to an applied voltage of 1 across all pairs of nodes:

CV (i) =
∑

a

∑
b 6=a

∑
j 6=i

Iab
ij .

2.0.2 Fixed-Current Electro-Betweenness Centrality

Define CI(i) as the centrality of node i as determined by the sum of the current flowing

from it, averaged with respect to an applied current of 1 across all pairs of nodes:

CV (i) =
∑

a

∑
b6=a

1

Geq

∑
j 6=i

Iab
ij .

2.0.3 Fixed-Power Electro-Betweenness Centrality

The power through an electrical circuit is equal to the current passing through it multi-

plied by the potential difference, or P = V I; factoring in Ohm’s Law, we have P = V 2G.

A unit power is achieved by setting the potential difference to Va = 1√
Geq

. This yields
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Figure 6: A differential resistor, with diodes set up to enforce a one-way flow of current;
if current flows from node 1 to 2, the conductance equals G12 and current only goes
through the bottom path; likewise, the conductance is G21 if current flows in that
direction.

CP (i) =
∑

a

∑
b 6=a

1√
Geq

∑
j 6=i

Iab
ij .

The choice of class of electro-betweenness centrality depends on the application at

hand, though each has a natural explanation: in order, the multiplicative effect of

parallel paths, the effect of larger distances requiring more connections, and a constant

amount of energy for any individual connection.

3 Extension to Directed Graphs

The above methods have derived from standard direct current circuit theory, in which

the conductance in each direction is equivalent. To apply this method to directed

graphs, including those where conductance in each direction is non-zero but not nec-

essarily equal, I introduce the notion of a differential resistor, in which the resis-

tance/conductance of an edge in the system depends on the direction of current; see

Figure 6 for a sample electrical diagram.

Because this introduces a non-linearily into the system, a single algebra operation

will be unable to solve for the state of the system. However, because current is con-

tinuous with respect to voltage in this element (though non-differentiable at zero), the

following iterative procedure can solve for the equilibrium voltages and currents:
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1. For each asymmetric edge, create a vector of indicators whether current should

flow from the lower-numbered node to the higher one, or vice versa. (As a default,

set all to be “ascending” – however, this method can be sped up by cleverly

guessing which elements will have current flow in each direction in advance.)

2. Create a symmetric sociomatrix by replacing all asymmetric elements with those

for the indicated flow direction, and solve this system to obtain the equilibrium

voltages.

3. Determine whether any of the true current flows violate their assigned path by

examining the differences in voltages in the asymmetric edges.

4. If there are no conflicts, the procedure is finished; if there are, reverse the incorrect

flows in the indicator vector, and repeat the previous two steps (and this one)

until equilibrium is reached.

All previous measures considered for nodes and edges can still apply, since with

each potential difference applied, the system behaves as if it were a traditional Ohmic

circuit.

4 Extension to Stochastic Relational Data

The purpose of assembling this toolkit has been to evaluate practical tie-level statistics

under conditions when a tie strength is stochastic in nature. Given an (exogenous)

generative model for tie strengths, a set of networks can be drawn from the underlying

parameters. This produces a joint distribution of ties that can be examined for their

relevant statistical observations.

For example, the most “important” tie in one instance of a network may prove to be

that way due entirely to the underlying uncertainty, and that other ties may prove to be

just as important in other instances. Rank-based measures, such as centrality and edge

importance, can immediately be compared across separate instances of a generative

graph process.

5 Implementation: R Package ElectroGraph

The routines and methods described within have been implemented in an R package

titled ElectroGraph. The manual is included as Appendix ??, and full instructions and
15



demonstrations are included within. The package is available on CRAN for download.
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