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Abstract

Eagle is an R package for multi-locus association mapping on a genome-wide scale. It
is unlike other multi-locus packages in that it is easy-to-use for R users and non-users alike.
It has two modes of use, command line and GUI. Eagle is fully documented and has its
own supporting website, http://eagle.r-forge.r-project.org/index.html. Eagle is
a significant improvement over the method-of-choice, single-locus association mapping. It
has greater power to detect SNP-trait associations, does not suffer from multiple testing
issues, and there is no need for significance thresholds. It is based on model selection,
linear mixed models, and a clever idea on how random effects can be used to identify SNP-
trait associations. Through an example with real mouse data, we demonstrate Eagle’s
ability to bring clarity and increased insight to single-locus findings. Initially, we see
Eagle complimenting single-locus analyses. However, over time, we hope the community
will make, increasingly, multi-locus association mapping their method-of-choice for the
analysis of genome-wide association study data.

Keywords: association mapping, linear mixed model, model selection, genome-wide association
study.

1. Introduction

The Eagle package was developed to meet a shared need in animal, plant, and human genetics.
It was built to make multi-locus association mapping easy. Multi-locus association mapping is
more powerful, statistically, than single-locus association mapping Wang, Feng, Ren, Huang,
Zhou, Wen, Zhang, Dunwell, Xu, and Zhang (2016); Zhang, Jia, and Dunwell (2019). By being
able to model the association between multiple single nucleotide polymorphisms (SNPs) and
a trait simultaneously, multi-locus association mapping better captures the hidden reality
of heritable traits with complex genetic architectures. Yet, multi-locus association mapping
is rarely used in practice. Many of the current software implementations are not easy to
use, can produce results that can be difficult to interpret, are driven by high-level statistical
theory making their inner statistical workings mysterious to non-statisticians, and tend to be
computationally ineffecient. Eagle does not suffer from these limitations.

Genome-wide association studies (GWASs) have become an important resource for unlocking
the genetic secrets of heritable traits. They are a "first step" on the road to revealing the
genes active for a trait. Their data are analysed with association mapping methods. The
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goal of association mapping is to find the SNPs in strongest association with a trait. These
are the SNPs closest to the active genes. However, before these SNPs can be found, there
are a number of challenges association mapping must overcome. Modern-day GWASs can
collect genotypes on millions or even tens of millions of SNPs but comparatively, GWAS
have small sample sizes in the hundreds or thousands of individuals. This is a challenge,
statistically, for association mapping. Another statistical challenge is that an association
is created between a SNP and trait when the SNP is in close proximity to an active gene.
However, familial relatedness, population structure, and environmental effects can also cause
a SNP to be associated with a trait. To avoid spurious findings, these competing sources of
association need to be accounted for by the association mapping method.

The method-of-choice when analysing GWAS data is to fit a separate linear mixed model
(LMM) for each SNP Yu, Pressoir, Briggs, Bi, Yamasaki, Doebley, McMullen, Gaut, Nielsen,
Holland et al. (2006); Zhao, Aranzana, Kim, Lister, Shindo, Tang, Toomajian, Zheng, Dean,
Marjoram et al. (2007). The LMM framework is well suited to handling multiple sources of
association. Here, a SNP is treated as a fixed effect whose statistical significance is a measure
of the strength of association between the SNP and trait. The model includes a random
effect for familial relatedness. It may also include other fixed effects for environmental factors
and population structure. To a statistician, fitting a separate model for each SNP may seem
strange. Surely, it would be better to use, say, variable selection techniques to find the SNP of
interest? This is true but it quickly becomes intractable, computationally. This practice is also
abetted by several highly efficient and well developed software packages, purpose built for the
analysis of GWAS data. Such software includes PLINK Purcell, Neale, Todd-Brown, Thomas,
Ferreira, Bender, Maller, Sklar, De Bakker, Daly et al. (2007), TASSEL Bradbury, Zhang,
Kroon, Casstevens, Ramdoss, and Buckler (2007), and GAPIT Lipka, Tian, Wang, Peiffer,
Li, Bradbury, Gore, Buckler, and Zhang (2012). Still, by analysing each SNP separately,
a single-locus model is wrongly assumed. Also, how best to control the type 1 error rate
is an issue. SNP data are correlated, with a dependence structure that changes along a
genome. Adjusting significance thresholds for multiple testing, appropriately, is non-trivial.
Multi-locus association mapping does not suffer from the afore mentioned issues.

Over the past decade, there has been a growing assortment of R packages for multi-locus
association mapping. Early R packages, bigRR Shen, Alam, Fikse, and Rénnegard (2013),
LMM-Lasso Rakitsch, Lippert, Stegle, and Borgwardt (2013), and glmnet Friedman, Hastie,
and Tibshirani (2010), were focused on regularisation techniques but the interpretation of re-
sults is difficult. The R package MLMM Segura, Vilhjalmsson, Platt, Korte, Seren, Long, and
Nordborg (2012) avoided this difficulty by treating association mapping as a model selection
problem. FarmCPU Liu, Huang, Fan, Buckler, and Zhang (2016) and its much faster cousin
BLINK Huang, Liu, Zhou, Summers, and Zhang (2019) implement a two model strategy
where results are passed back and forth between the two models. The first model measures
the strength of a SNP-trait association on a SNP-by-SNP basis. The second model, with
the help of results from the first model, identify "important" pseudo quantitative trait nu-
cleotides (pseudo-QTNs). These pseudo-QTNs are then fed back into the first model and the
fitting process repeated for improved measures of association. MRMLM Wang et al. (2016)
and FASTmrEMMA Wen, Zhang, Ni, Huang, Zhang, Feng, Wang, Dunwell, Zhang, and Wu
(2018) also make use of two models but in a staged approach. In the first stage, the strength
of association between a SNP and trait is measured for each SNP separately. Here, a SNP
is treated as a random effect. Those SNPs which are deemed significant, according to some
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threshold, are moved to the second-stage. A single multi-locus model is then formed from
those SNPs which were identified in the first stage and fitted to the data. It is true to say
that software availability is not the cause for the lack of mainstream acceptance of multi-locus
association mapping.

In this paper , we present Eagle, an R package for multi-locus association mapping. We
created our package to be as fast as single-locus association mapping, to be easy to use even
for non-R users, and to give easily interpretable results. Methodologically, it is only a little
more complicated than single-locus methods. The "best" LMM is built iteratively. At each
iteration, the SNP in strongest association with a trait is identified from the random effects
part of the model and moved to the fixed effects part of the model. This process is simple
yet ingenious. It simultaneously identifies those regions of the genome that house genes
influencing a trait while also accounting for all other SNP-trait associations.

Eagle is not like other multi-locus R packages. R, by default, comes with single-threaded math
libraries. By replacing these libraries with their multi-threaded counterparts, certain linear
algebra operations become parallelised, implicitly. The Eagle package has been structured,
purposely, to make extensive use of these implicitly parallelised operations. In the parts of
Eagle where this has not been possible, we have instead written C++4 routines and parallelised
the code explicitly through openMP Dagum Leonardo (1998). Eagle differs though most from
other multi-locus R packages in its ease-of-use for non-R users. Considerable effort has been
invested in making Eagle equally useable to R and non-R users. The Eagle package comes with
a browser-based graphical user interface (GUI). A user need only issue a single R command,
OpenGUI(), to harness the full functionality of Eagle. Eagle has its own website (http:
//eagle.r-forge.r-project.org/index.html) with instructions on how to install a multi-
threaded version of R, quick start guide, tutorials, videos, and answers to frequently asked
questions. Users can experiment with Eagle, prior to installing the package, by analysing a
test data set on our public server (http://eagle.r-forge.r-project.org/demo.html).

2. Methodology

Eagle implements a recently developed method for multi-locus association mapping George,
Verbyla, and Bowden (2020). It is based on LMMs. Below, some notation, the model, how
the dimensionality of the model can be reduced, and the Eagle algorithm is described. For
consistency, the same notation as George et al. (2020) is used.

2.1. Notation

Suppose genotypes are collected on L loci from n4 individuals/lines/strains. The genotypes
are coded as -1, 0, and 1 corresponding to SNP genotypes AA, AB, and BB, respectively.
Ideally, missing genotypes are imputed prior to analysis. If not, missing genotypes are set to
0 by Eagle. Let M * L) = [m;my...my] be the matrix of SNP genotype data where the
vector m§”g “1 contains the genotypes -1, 0, and 1 for the jth SNP. Furthermore, let g™ > 1)
contain the quantitative trait data. Here, n can be larger than n, if multiple measurements,

as is common in plant studies, are recorded on the same line/strain.
The model is built iteratively. At each iteration, a SNP is selected and moved from the

random effects to the fixed effects. Suppose s iterations of the model building process have
been performed. Let S = {S1,S52,...,Ss} be a set of ordinal numbers. The number Sy
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corresponds to the Spth SNP in the marker map that was selected in the kth iteration of
the model building process. For example, if S = {101,12,1143}, then the 101th, 12th, and
1143th SNP in the marker map were selected in the first, second, and third model selection
iterations, respectively.

2.2. Multi-locus model
The standard LMM for association mapping is

y=X7+Zu,+e (1)

where X (™ *P) and Z(™*79) are known design matrices, n is the number of observations,
ng is the number of individuals/lines/strains/ with n, < n, 7 * 1) is a vector with p fixed
effects parameters including the intercept, and ugng “D s a vector containing the genetic
effects. The residuals, e™ % V)| are assumed to follow a normal distribution with mean 0 and

covariance matrix o2I(™ * ™ where o2 is an unknown residual variance.

In the standard LMM, the genetic effects, u_g"g * 1), is a random term that accounts for famil-
ial relatedness Yu et al. (2006); Zhao et al. (2007). It is assumed to follow a N(O, UEG(" xn)y
where G is a relationship matrix and O'g is the unknown genetic variance. The relationship
matrix is calculated from pedigree records or from SNP data. Eagle though models u, differ-
ently and this is where the innovation lies. In the standard model , u, measures relatedness
between individuals but Eagle instead measures relatedness between SNP.

The genetic effects are modelled as

S
Ug = Z mg,as, +M_sa_g (2)
k=1

where mgzg *D is the vector of genotypes for the kth selected SNP, ag, is the additive

effect of the kth selected SNP, MﬁbsX L=s)

for the SNPs in S removed, and aSLS_S “1 s a random effect whose distribution is a_g ~

N(0,021=5 % L=5))  The first term on the left hand side are the fixed effects. The second
term are the random effects. The fixed effects measure the additive effect of the S already-
selected SNPs on the trait. The random effects measure the association between all other
L — s SNPs and trait, simultaneously. Here, SNPs are assumed to be uncorrelated to reduce
model complexity, making the analysis more manageable. Also, for a working model, it is
not uncommon to assume SNP effects are pairwise uncorrelated. Such an assumption has
long been made for marker-assisted selection with ridge regression Whittaker, Thompson,
and Denham (2000).

is the matrix of SNP genotypes with the data

2.3. Dimension reduction

In modern genome-wide association studies, the number of loci, L, can be very large, some-
times in the tens of millions. This creates a problem, computationally, when fitting (2) as the
vector a_g contains a large number of elements. Fortunately, the dimensionality of (2) can
be reduced by orders of magnitude.

The goal is to form an equivalent model for (2) of lower dimension but where the equiva-

. . ngx1) . .
lent model has the same variance. The variance structure of ué 7V s the ng X ng matrix
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<. By taking the matrix square root,

agM_SMTS. Here, the only unknown is the variance o
Z.=(M_sMT)"/?

an equivalent, dimension-reduced, model for u, is

S
uy =Y mg,as, + Zca* (3)
k=1

where a* is a random effect with only n, elements and distributed as N (0, g2I("s*")).

The Eagle algorithm requires estimates of a and its variance to identify the SNP in strongest
association with the trait. These can be recovered from the fitting of the dimension reduced
model Verbyla, Taylor, and Verbyla (2012); Verbyla, Cavanagh, and Verbyla (2014) since

a=|MIg(M_sMT5)"?| ar (4)
and its variance matrix is
var(@) = M7g(M_sMTg) " *var(@") (M_sM”s) /2 M _s (5)

Only the diagonal elements of the variance matrix are needed which simplifies its calculation.

2.4. The Eagle algorithm

Eagle treats association mapping as a model selection problem. The model is built iteratively,
via forward selection. At each iteration, from the current model, a new model is formed. This
is done by selecting a SNP from the random effects and moving it to the fixed effects. The
SNP is selected based on a score statistic. The reasoning behind moving effects from random
to fixed is if there are major SNP-trait associations, then at first, they are contained in the
genetic background of the model. This gives opportunity for the genetic background to act
as a SNP selection mechanism. Major SNP-trait associations are identifiable as outliers when
compared to background effects.

Suppose s iterations of the model building process have been performed. The current model is
of the form (1) and (3). The vector of genetic effects uy has s fixed effects for the s discovered
SNP-trait associations. The model has been fitted and parameter estimates obtained via
maximum likelihood. The vector of random effects a* and its variance var(a*) are then
computed Robinson (1991).

The following steps are performed for the (s + 1)th iteration of the model building process.

Step 1: SNP selection. A SNP is selected from the random effects based on the maximum

score statistic
a2
2= J
I var(aj)

where j refers to the jth SNP in the marker map, the j index is over all SNPs except
the s SNPs already selected, 6? is a scalar value formed from the square of the best linear
unbiased predictor of the jth SNP’s random effect, and var(a;) is its variance. These values
are recovered from a* and var(a*), which were obtained from the fitting of the current model,
and equations (4) and (5). By choosing the SNP with the maximum score statistic, we are
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selecting the SNP which is in strongest association with the trait, from amongst those SNP
whose association is being modelled by the random effects.

Step 2: model building and fitting. A new dimension-reduced model is built, according
to (1) and (3), from the trait data y, and known matrices X, Z, and M_g. Here, S is the
set of indexes of the s previously selected SNP and the additional SNP found in the previous
step. The model is fitted to the data and parameters estimated via maximum likelihood.

Step 3: model selection. The importance of the (s + 1)th selected SNP is determined via
the extended Bayes information criteria (extBIC, Chen and Chen (2008)). The extBIC is a
model selection measure that takes into account the number of parameters and the complexity
of the model space. If the extBIC increases, then the new model is accepted and the iterative
model building process continues.

Upon completion, S is the set of indexes of the SNP in strongest and measurable association
with the trait. Each SNP identifies a different part of the genome housing genes that are
influencing the trait.

3. The Eagle package

3.1. Overview

Eagle is an R package for the genome-wide analysis of association data. It can handle data
collected from inbred or outbred study populations. The populations can be of arbitrary
and unknown complexity. The data can be larger than the memory capacity of the com-
puter. Since Eagle is framed within a LMM paradigm, it is best suited to the analysis of
data on continuous normally distributed traits. LMMs though can also tolerate non-normal
data Schielzeth, Dingemanse, Nakagawa, Westneat, Allegue, Teplitsky, Réale, Dochtermann,
Garamszegi, and Araya-Ajoy (2020). A flow chart of the analysis pipeline for Eagle is shown
in Figure 1. The package contains functions for opening the GUI, inputing the data, per-
forming genome-wide analyses, and for summarising and visualising the results. Non-R users
need only be familiar with a single function OpenGUI () that opens the GUI.

3.2. Installation

Eagle is available on CRAN. As such, it can be installed in the usual way. Eagle though
has been designed to make extensive use of implicit parallelisation. Many of the vector,
matrix, and linear algebra operations in R link directly to the API’s of BLAS (Basic Linear
Algebra Subroutines, see Blackford, Petitet, Pozo, Remington, Whaley, Demmel, Dongarra,
Duff, Hammarling, Henry et al. (2002)) and LAPACK (Linear Algebra Package, see Anderson,
Bai, Bischof, Blackford, Demmel, Dongarra, Croz, Greenbaum, Hammarling, McKenney et al.
(1999)). R, by default, comes with single-threaded versions of these libraries. If these libraries
are replaced by their multi-threaded counterparts, such as MKL and openBLAS, parts of R
become multi-threaded, implicitly. Detailed instructions for converting R to multi-threaded
computation are available on the Eagle website (http://eagle.r-forge.r-project.org/
instruction.html).
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Eagle Analysis Pipeline
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Figure 1: A flow chart of the analysis pipeline for Eagle. Each green box corresponds to a
separate page of the GUI.

3.3. Data input

There are, potentially, four different types of data required by Eagle for input. These are the
phenotypic data, the genotypic data, the marker map, and the Z matrix. Whether all four
are needed is dependent upon the study design and format of the genotypic data. Each input
data type is discussed below.

The phenotypic data consists of observations on one or more traits and any explanatory
variables. A trait may have a single observation per individual/line/strain or, as is common
in plant studies, may have repeat observations. The data are arranged into columns. The
first row contains the column headings. The observations can be space or comma separated.
Missing trait and/or explanatory variable values are allowed. The data are read into Eagle
with the function ReadPheno ().

The genotypic data are the genotypes observed on the individuals/lines/strains from the
SNPs. Since association studies can collect genotypes on thousands of individuals across
millions of SNPS, these data can be extremely large. Fortunately, Eagle can handle data
beyond a computer’s memory capacity. Eagle will accept genotypic data that are in variant
call format, space delimited ASCII format (the default), or PLINK ped format. The data
are read with the function ReadMarker (). The argument type , which has the value "vcf",
"text", or "PLINK", specifies the type of data being read. The argument availmemGb tells
Eagle how much memory, in gigabytes, are available. The order of the SNPs in the input file
must correspond to their map order. Ideally, missing genotypes are imputed prior to input
but some missing genotypic data can be tolerated.

The marker map consists of the names and locations of the SNPs. The map is specified via
three columns of data. The first column contains the SNP labels. The second has the names
of the chromosomes upon which the SNPs residue. The third column has their chromosomal
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positions. The data are space separated with the first row being the column names. The
SNPs are in map order. Missing values are not allowed. The data are read with the function
ReadMap (). If the genotypic data are in variant call format, a separate marker map file is not
needed. A variant call format file contains not only the SNP genotypes but also marker map
information.

The Z matrix is needed only if a trait has repeat observations. It is an incidence matrix. As
such, it contains zeroes and ones only. The number of rows in the matrix equals the number
of rows of phenotypic data. The number of columns equals the number of rows of genotypic
data. The data are space separated. The function ReadZmat () reads the data.

3.4. Controlling the type 1 error rate

All association mapping methods commit type 1 errors. For some, the type 1 error rate is
controlled explicitly. For others, it is implicit to the internal workings of the methodology.
In Eagle, the conservativeness of the model building process is managed explicitly via the
parameter A\. The parameter A is part of the extBIC. It ranges from zero to one. The
conservativeness of the extBIC increases with increasing A. Although it is possible to set A
analytically, the desired type 1 error rate is not part of the calculation. Instead, an empirical
approach is adopted in Eagle.

A permutation approach is implemented in the function FPR4AM(). It finds the type 1 error
rate for discrete values of A. If npe,n, permutations are performed and their are ny discrete
values of A\ being considered, potentially this means npeqm X n) genome-wide analyses are
required. For large data sets, this quickly becomes computationally intractable. Fortunately,
even though the trait data y changes across replicates, the SNP and explanatory variable data
remains the same. This means, for a permutation, only those parts of the Eagle algorithm
impacted by a change in y need recalculation. Also, through vectorisation, the type 1 error
rates corresponding to all n) discrete values of A can be calculated simultaneously, for each
permutation.

In the example below, the run time for FPR4AAM() was 36 seconds and for the analysis it was
20 seconds but the run times are situation specific. Having to run FPR4AM() can more than
double the computational cost of an analysis but being able to control the type 1 error more
than compensates for this cost.

3.5. Association mapping analysis

One of the most important functions in the package, from a user’s perspective, is AM(). This
function implements the methodology presented in Section 2. It is the function that performs
association mapping. The function has 12 arguments. The important arguments are as
follows. The trait and fixed effects are specified via the arguments trait and fformula,
respectively. The data are passed to AM() through the arguments pheno, geno, map, and if
required, Zmat. The number of threads, for parallel computation, is set with ncpu. The type
1 error rate is controlled with lambda. It’s value is found by running FPR4AM(Q).

As an example, suppose the phenotypic data, SNP data, and marker map have been read with
the functions described above and stored in data objects phenoObj, genoObj, and mapObj,
respectively. The trait name is ’y’. The explanatory variables of interest are ’covl’ and 'cov2’
and the fixed effects part of (1) has the form covl + cov2 + covl*cov2 where covl*cov2
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is an interaction term. Let the A value that gives a type 1 error rate of 0.05 be 0.78 and it
was found with FPR4AM(). Then, the function call that performs the analysis is

R> AM(trait = "y", fformula = "covl + cov2 + covl*cov2", geno = genoObj,
+ pheno = phenoObj, map = mapObj, ncpu = 8, lambda = 0.78)

The number of threads for parallel computation has been set to 8. After running the function,
the SNPs closest to the genes underlying 'y’ are reported. Each SNP identifies a different
region of interest on the genome.

3.6. Results

Additional analysis information is obtained with the function SummaryAM(). Three tables
are generated. They are a table of summary information, a findings table, and an effects
table. The summary table contains information on items such as the number of cpu that
were available, number of samples, the fixed effects formula, number of significant SNP-trait
associations, and the \ value at which the analysis was performed. The findings table lists the
names, chromosomes, and positions of those SNPs that were found to be in association with
the trait. The effects table has the effect sizes, degrees of freedom, Wald statistic values, and
p-values of the fixed effects in the model, including the SNPs that were identified as being in
association with the trait.

3.7. Visualisation

PlotAM() is a interactive function for viewing the strength of association along a chromosome
or genome. This is done on an iteration-by-iteration basis. It is useful for better understanding
how a model is built, how SNP-trait association varies within a region, and how the strength
of association for SNPs changes over the model building process.

The function has the form PlotAM(AMobj=NULL,itnum=1,chr="A11",type="Manhattan").
An example of its use is given in the Example section.

3.8. Browser-based GUI

To release users from the requirement of having to know R, a GUI was built. Here, a user
need only know how to load the package with library(Eagle) and start the GUI with
OpenGUI(). After running OpenGUI() , a browser automatically opens to the GUI’s home
page. By clicking on the tabs in the navigation bar at the top of a page, a user can access
pages for reading the input data, for performing analyses, and for summarising/visualising
results.

3.9. Help

Detailed help files are available for each of the functions in the package. These help files
include many worked examples. Help on a function is accessed in the usual way, with the
library() function. With the GUI, every page contains a help banner that gives a summary
of the functionality contained within the page. Single sentence help descriptions also appear
as the mouse cursor hovers over different parts of a page. External to the package, an email
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address eaglehelp@csiro.au has been set up to answer any queries . Also, help is available
via the website http://eagle.r-forge.r-project.org/index.html.

4. Example

Here, the steps for performing association mapping with Eagle are presented. Both modes-
of-use are given. That is, via function statements issued at the R command line and via
the GUI. For each function statement, a screenshot of its matching GUI page is shown where
applicable. The example is for the analysis of a mouse data set. As stated previously, the goal
of association mapping is to find the SNPs in strongest association with the genes underlying
a heritable trait. The data are real. They were collected from a large GWAS in outbred
mice Nicod, Davies, Cai, Hassett, Goodstadt, Cosgrove, Yee, Lionikaite, McIntyre, Remme
et al. (2016). Many different traits were measured but our focus is on high-density lipoprotein
(Bioch.HDL). We chose this trait because from previous analyses, a number of genomic regions
of interest across multiple chromosomes have been reported. In the original study Nicod et al.
(2016), this trait was found to be influenced by the explanatory variables for sex (Sex), batch
number (Batch), and average weight (Weight.Average). These same variables are treated as
explanatory variables in our analysis. Even though large data sets are not a problem for
Eagle, we wanted the example data to be easily accessible to R. A way of doing this is to
host the data on GitHub (https://github.com/geo047/Example_Data) . GitHub has a file
size limit of 10 megabytes, which made it necessary to base the example on a subset of the
original data.

4.1. Creating the input files

Three input files were created. These are the files phenoex.dat with the phenotypic data,
genoex.dat with the genotypic data, and mapex.dat with the maker map. In the original
study, data were collected from 1887 outbred mice on a large number of traits and SNPs. As
such, this data set was too large to house on GitHub. So the study size was reduced to 800
randomly selected mice. Our focus was restricted to the analysis of a single trait, Bioch.HDL.
The genotypic data was reduced to the genotypes from 70484 SNPs. The SNPs were selected
from every 5th locus of the original set where loci with a minor allele frequency of less than
1% have been removed along with loci on the sex chromosome.

The phenotypic data in phenoex.dat is space separated and arranged into 801 rows and four
columns. The rows correspond to data on different mice. The columns contain data on
Bioch.HDL and the explanatory variables Sex, Batch, and Weight.Average. The first row has
the column names.

The genotypic data in genoex.dat has 800 rows and 70484 columns. The data are space
separated. The columns are not named, nor are there missing values. Each row contains the
genome-wide data for a mouse. Each column contains the genotypes for a SNP. Rows in the
two files are assumed to be ordered such that the same row in each file corresponds to data
collected on the same mouse. The columns are in marker map order. A numeric coding of 0,
1, and 2 was used for the SNP genotypes, AA, AB, and BB, respectively.

The marker map in mapex.dat is space separated and has 70485 rows and three columns. The
first row is the column names. The rows contain map information on the SNPs. The rows
are ordered according to a SNP’s map order. The first column has the names of the SNPs.
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The second column contains the chromosome names upon which the SNPs reside. The third
column have the chromosome positions of the SNPs. It is assumed that the row order of the
SNPs in this file matches the column order in genoex.dat.

The input files are downloaded and uncompressed from GitHub with the R commands

R> DIR <- "https://raw.githubusercontent.com/geo047/Example_Data/master/"
R> download.file(pasteO(DIR, "mapex.dat"))

R> download.file(pasteO(DIR, "phenoex.dat"))

R> download.file(pasteO(DIR, "genoex.dat.zip"))

R> unzip("genoex.dat.zip")

4.2. Single-locus association mapping

We begin by analysing these data in the "usual' way, with single-locus association mapping. As
stated previously, for a single-locus analysis, a separate LMM is fitted to the data for each SNP.
The statistical significance of a SNP, when treated as a fixed effect, is a measure of the strength
of association between the SNP and trait. The data were analysed with the R package GAPIT
Wang and Zhang (2018). The process was to read in the phenotypic and genotypic information
with read.table(), convert the explanatory variables into a useable form with covObj <-
model .matrix( ~Sex+Batch+Weight.Average, phenoObj), and perform the analysis with
the GAPIT() function with the argument model="MLM" for single-locus association mapping
with LMMs.

The single-locus analysis results are shown in the Manhattan plot in Figure 2. The positions
of the SNPs on the genome are on the x-axis and the significance scores (—logio(p-value))
of the SNPs are on the y-axis. We would conclude from this analysis that there is a single
region of interest on chromosome 5. In fact, with Eagle, there are five regions of interest for
this trait. These are on chromosomes 1, 5, 6, and 10. The region on chromosome 5 is obvious.
The regions on 1 and 6 we might have suspected but lacked the power under a single-locus
analysis to confirm. However, the region on chromosome 10 is only revealed after the effects
of the other regions have been accounted for. Also, it is not at all obvious from a single-locus
analysis that we are dealing with two closely linked regions on chromosome 5.

The Eagle analysis is now presented.

4.3. Reading in the data

The function statements for reading the phenotype and map input files are simple. Only
the file names need specifying. This is also true if using the GUIL. By default, the two input
files are assumed space separated. If comma or tab separated, an additional argument is
need in the function statement. For comma separated files, sep=",". For tab separated files,
sep="\t". The GUI has a checkbox for choosing if the file is space or comma separated. A
tab separated option is not yet available.

The function statements for reading the two input files are

R> phenoObj <- ReadPheno ("phenoex.dat")
R> mapObj <- ReadMap("mapex.dat")

Both the phenoObj and map0bj are data frame objects.
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Figure 2: Manhattan plot for the single-locus analysis of the example data. Each point is the strength
of association between a SNP and trait. Results are shown for the entire genome. The red horizontal
line is the 5% genome-wide significance threshold, calculated via a Bonferroni correction. The blue
dashed horizontal lines are the locations of the findings from Eagle. The order in which Eagle found
these findings is given below the blue line. Where single-locus association mapping found only a single
region of interest, because of Eagle’s increased statistical power, Eagle found five regions of interest.

Screenshots of the corresponding GUI pages are shown in Figure 3. The screenshots were
taken after the relevant information had been entered and the files uploaded. The output
from uploading a file is printed in the right-half of the GUI page. These are the same outputs
that appear when running the function statements from the command line.

The function statement for reading the SNP data differs from the two previous input state-
ments. Besides the file name, additional arguments are required. The file type needs spec-
ifying. Here, since the marker data are in a space delimited text file, the type="text"
argument is included in the function statement. Other allowable formats are variant call
format (type="vcf") and PLINK ped (type="PLINK"). Text files give the user the freedom
to select their own coding scheme but how these codes map to the SNP genotypes need spec-
ifying. In this example, the file contains the codes 0, 1, and 2 for SNP genotypes AA, AB,
and BB, respectively. This means the function statement includes the arguments AA=0, AB=1,
and BB=2. Also, it is good practice to set the amount of available memory, in gigabytes, with
the availmemGb argument. The default is to assume 16 gigabytes of memory.

The ReadMarker function statement for this example is

R> genoObj <- ReadMarker("genoex.dat", type="text",
+ AA=0, AB=1, BB=2, availmemGb=8)

A screenshot of the corresponding GUI page after uploading the file is shown in Figure 4.
The output from running the statement is the same as the output shown in the right-half of
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Figure 3: Screenshots of the GUI pages after the phenotypic data (left) and marker map
(right) have been uploaded. Any output from the underlying functions is shown in the right-
half of a page.

the GUI page. Unlike the other input functions, ReadMarker () does not read the data into
memory. Instead, the marker data ,and its transpose, are stored on disk in a binary form.
By not holding the genotype data in memory, it gives Eagle the ability to analyse marker
data larger than the memory capacity of a computer. The object returned by ReadMarker ()
is a list object that holds elements containing information on the dimensions of the marker
data, the name and location of the reformatted marker data, and the number of phenotypic
samples.

4.4. Controlling the type 1 error and performing the analysis

To find the value of lambda that will give a 5% type 1 error rate for the analysis, we

ran the function FPR4AM() . For its arguments, we specified the desired type 1 error rate
(falseposrate=0.05), the number of permutations (numreps=100), the trait name
(trait="Bioch.HDL"), the fixed effects part of the model (fformula="Sex+Batch+Weight.Average"),
the phenotypic data (pheno=pheno0bj), the genotypic data (geno=geno0bj), the marker map
(map=map0bj), and the number of processes (ncpu=8).

The function statement and its output are

R> fdr <- FPR4AM(falseposrate=0.05, numreps=100, trait = "Bioch.HDL",
+ fformula="Sex+Batch+Weight.Average",
+ pheno=phenoObj, geno=geno0Obj, map=mapObj, ncpu=8)

Setting up null model.
Calculating variance components for null model
Calculating extBIC for null model
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Calculating matrices that will be used in alternate model.
Analysing 100 permuations.

A VAN VAN VAN VAN VAN VAN VAN VAN VAN VAN VAN VAN VAN VAN VAN VAN VAN VA VAN VAN VAN VALY

Table: Empirical false positive rates, given lambda value for model selection.

Lambda | False Pos Rate
0 | 1
0.0526315 | 1
0.1052632 | 1
0.1578947 | 0.98
0.2105263 | 0.97
0.2631579 | 0.82
0.3157895 | 0.59
0.3684211 | 0.36
0.4210526 | 0.23
0.4736842 | 0.16
0.5263158 | 0.06
0.5789474 | 0.03
0.6315789 | 0.01
0.6842105 | O
0.7368421 | O
0.7894737 | O
0.8421053 | O
0.8947368 | O
0.9473684 | O
1 | 0

For a false positive rate of 0.05 set the lambda parameter in
the AM function to 0.5263158

The function concludes by reporting that a labmda value of 0.53 (rounded to two significant
digits) should be used for this analysis in order to achieve a 5% false positive rate.

To perform multi-locus association mapping of the example data, the function statement and
its output are

R> res <- AM(trait= "Bioch.HDL",

+ fformula="Sex+Batch+Weight.Average",
+ pheno=phenoObj, geno=genoUbj, map=mapObj, ncpu=8,
+ lambda=0.53 )

Multiple-Locus Association Mapping
Version 2.4.2
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Iteration 1: Searching for most significant marker-trait association

Number of cores being used for calculation is .. 8
Significant marker-trait association found.

New results after iteration 1 are

SNP Chrm Map Pos Col Number extBIC

Null Model 1700.22

Iteration 2: Searching for most significant marker-trait association

Significant marker-trait association found.

New results after iteration 2 are

SNP Chrm Map Pos Col Number extBIC
Null Model 1700.22
M12008C5 5 124991768 22264 1659.56

Iteration 7: Searching for most significant marker-trait association

Significant marker-trait association found.

New results after iteration 7 are
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Null Model
M12008C5
M1530C6
M26336C1
M12020C5
M11706C10
M17665C4

Final Results

Null Model
M12008C5
M1530C6
M26336C1
M12020C5
M11706C10

Gamma value for model selection was set to

Eagle for multi-locus association mapping

g = O O,

10

124991768

17541026
171730395
125044979
125357987
134588243

124991768

17541026
171730395
125044979
1256357987

0.53

22264
23521

5254
22267
41402
18959

extBIC

1659.56
1652.16
1644 .45
1643.63
1643.24
1644.77

1659.56
1652.16
1644 .45
1643.63
1643.24

Five snp-trait associations were found. They are listed in a final results table along with their
map location, column number in the marker file, and extended BIC value. The search for
genes that are influencing the trait can be narrowed to the genomic regions tagged by these

five SNPs.

In Figure 4, a screenshot of the Analysis page is shown of how the same analysis can be
performed via the GUIL. Here, a user chooses a trait for analysis, selects any fixed effects, lets
Eagle find 1lambda by selecting the Set automatically option or specifies their own lambda
value by selecting Set manually, and performs the analysis. The same output from the above
two functions is printed in the right-half of the Analysis page.
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Figure 4: Screenshots of the GUI pages after the genotypic data (left) has been uploaded
and the multi-locus association mapping analysis (right) performed. Output is shown in the
right-half of the page.

4.5. Summarising the results

A summary of the results is produced with
R> SummaryAM(AMobj=res)

where res is the list object obtained from AM(). Three tables are printed. These same three
tables are available within the GUI by going to the Summary page (page not shown). The first
table contains summary information such as the number of cpu, trait name, and number of
significant snp-trait associations found. The second table gives the names and locations of the
SNPs. The third table contains the effect sizes and statistical significances of the explanatory
variables and the selected SNPs.

Table 1: Summary Information

Number cpu: 8
Max memory (Gb): 8
Number of samples: 800
Number of snp: 70484

Trait name: Bioch.HDL
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Fixed model: Sex + Batch + Weight.Average
Number samples missing obs: 0

Number significant snp-trait assocs: 5

Lambda value for extBIC: 0.53

Table 2: Findings

SNP Chr Position Col index
M12008C5 5 124991768.00 22264
M1530C6 6 17541026.00 23521
M26336C1 1 171730395.00 5254
M12020C5 5 125044979.00 22267
M11706C10 10 125357987.00 41402

Table 3: Size and Significance of Effects in Final Model

Effect Size Df Wald Statistic Pr(Chisq)
(Intercept) -2.31 1 35.98 1.995E-09
SexM 1.13 1 507.16 0.000E+00
Batch0OBT02 0.00 1 0.00 9.869E-01
BatchOBTO03 -0.28 1 1.29 2.561E-01
BatchOBT63 -0.16 1 0.43 5.117E-01
Batch0BT64 -0.11 1 0.21 6.448E-01
BatchOBT65 -0.12 1 0.21 6.491E-01
BatchOBT66 -0.20 1 0.85 3.570E-01
Weight .Average 0.05 1 148.30 0.000E+00
M12008C5 0.35 1 23.30 1.387E-06
M1530C6 0.15 1 29.76 4 .878E-08
M26336C1 0.15 1 26.03 3.363E-07
M12020C5 -0.20 1 18.98 1.324E-05
M11706C10 -0.23 1 17.89 2.346E-05
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Figure 5: Screenshots of the plots from running the Eagle function PlotAM. All plots are
Manhattan plots and are of chromosome 5. These plots show how the significance of the
SNPs change throughout the model building process. The red vertical line is the position of
the SNP that has the largest score statistic and strongest association with the trait at that
iteration. The orange vertical lines are the positions of SNPs found in previous iterations
to be in strongest association with the trait. Green (purple) points denote SNPs that have
increased (decreased) in significance from the previous iteration. The size of the point is
proportional to the size of the change in significance. (A), (B), and (D) are plots of the first,
second, and fifth iteration, respectively, of the model building process. (C) and (E) were
created from (B) and (D) respectively by using P1lotAM’s interactive zoom feature.

4.6. Visualising the findings

Suppose we are interested in viewing how the pattern of significance varies throughout the
model building process. Here, we focus on chromosome 5. This chromosome is interesting
because it has two closely linked regions housing genes underlying the trait.

Using the function statement
R> PlotAM(AMobj=res, itnum=1, chr = "5", type = "Manhattan")

the resulting plot, for chromosome 5 and iteration 1, is shown in Figure 5A. Each point
is a measure of the strength of association between a SNP and trait. The measure is cal-
culated as the —logio of the p-value of the score statistic (Section 2.4) for the SNP, since
type="Manhattan". There is a clear spike towards the middle of the chromosome. In fact,
the SNP in strongest association across the entire genome, at iteration 1, was on chromosome
5. Its position is given by the red vertical line.

19
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By the end of the second iteration of the model building process, the SNP which was identified
in the first iteration, has been found to be significant. Its effect has been moved from the
random to the fixed effects part of the model. This change impacts the significance of the
other SNPs. By using the above command but with itnum set to 2, the plot in Figure 5B
is generated. Here, the SNPs that have increased (decreased) in significance are denoted
by green (purple) points. The size of the point is proportional to the size of the change in
significance from the previous iteration. Unsurprisingly, the largest changes have occurred
around the SNP whose effect is now being treated as a fixed effect. We can see this more
clearly by using the zoom feature in P1otAM() to focus on the region around the SNP of
interest (Figure 5C).

What is interesting about Figure 5C is that there are still several SNPs in strong association
with the trait. This suggests that there may be other statistically significant SNP-trait
associations here. This is in fact the case, because by the fifth iteration, a second SNP has
been found and fitted as a fixed effect. The pattern of association is shown in Figure 5D
with the same zoomed region as before shown in Figure 5E. The drop in significance between
fitting a single SNP in this region as a fixed effect to fitting two closely linked SNPs as fixed
effects is apparent when you compare figures 5C and 5E, noting the change in scales of the
y-axes.

5. Summary

The Eagle package has been created to make genome-wide multi-locus association mapping
easy. The package accepts marker data in different formats, has easy-to-use functions, comes
with a user-friendly GUI, and has an interactive plotting function for visualising the model
building process. We welcome feedback via eaglehelp@csiro.au from users on how the
functionality and usability of the package could be even further improved. As we saw in the
example, Eagle brings clarity to situations where there are tightly linked SNPs in association
with a trait. It can also uncover significant SNP-trait associations that are otherwise hid-
den to single-locus association mapping. At the very least, Eagle compliments single-locus
association mapping. Ultimately though, with the aid of Eagle, our hope is that the genet-
ics community will shift to multi-locus association mapping as the method-of-choice for the
genome-wide analysis of association data.
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