An Infra-Structure for
Experimental Comparisons of Predictive Models

Luis Torgo
FCUP - LIAAD/INESC Tec
University of Porto
ltorgo@inescporto.pt, 1torgo@fc.up.pt

March 12, 2013

Abstract

This document describes an infra-structure available in package DMwR
that facilitates carrying out experimental comparisons between different
predictive models for different data sets using several different experimen-
tal methodologies to estimate their predictive performance.

1 Introduction

The goal of this document is to describe the infra-structure that is available
in package DMwR [Torl0] to carry out experimental comparisons between dif-
ferent approaches to predictive tasks. This is a general infra-structure in the
sense that it allows the user to specify the overall process taken to the task and
then takes care of the process of obtaining reliable estimates of its predictive
performance using some experimental methodology. The infra-structure imple-
ments the most frequently used experimental methodologies for performance
estimation, namely: (i) cross validation, (ii) holdout, (iii) leave one out cross
validation, (iv) bootstrap and also (v) Monte-Carlo experiments for time series
forecasting tasks.

Experimental methodologies for performance estimation are iterative pro-
cesses that repeat the modelling task several times using different data samples
with the goal of improving the accuracy of the estimates. These estimates are
the results of aggregating the scores obtained on each of the repetitions. For
each of these repetitions different training and testing samples are generated
and the process being evaluated is ”asked” to: (i) obtain the predictive model
using the training data, and then (ii) use this model to obtain predictions for the
respective test sample, which in turn (iii) can be used to calculate the scores of
the performance metrics being estimated. This means that there is a workflow
that starts with a predictive task for which training and testing samples are
given, and that it should produce as result the scores of the performance met-
rics being estimated. There are far too many possible approaches and sub-steps
for the implementation of this workflow. To ensure full generality of the infra-
structure, we ask the user to provide a function that implements this workflow
for each of the predictive approaches he/she wishes to compare and/or evaluate.

This function can be parametrizable in the sense that there may be variants of
the workflow that the user wishes to evaluate and/or compare. Still, the goal
of this workflow implementation functions is very clear: (i) receive as input a
predictive task for which training and test samples are given, as well as any
eventual workflow specific parameters; and (ii) produce as result a set of scores
for the evaluation metrics being estimated. These scores should be obtained
by applying some modeling technique to the training sample and then use the
resulting to model to obtain predictions for the test sample. These predictions
should then be used to obtain the scores of the predictive metrics the user is
interested in obtaining reliable estimates.

The infra-structure we describe here provides means for the user to indi-
cate: (i) a set of predictive tasks with the respective data sets; (ii) a set of
workflows and respective variants; and (iii) an experimental methodology. The
infra-structure then takes care of all the process of experimentally comparing the
different approaches on the different tasks, producing as result an object that
can be explored in different ways to obtain the results of the experimental com-
parisons. During the experiments the infra-structure will call the user-supplied
workflow functions with different train and test samples.

The infra-structure also provides several utility functions to explore the ob-
ject resulting from the experiments, for instance to obtain statistics of the results
both in textual format as well as visually. Moreover, it also provides functions
that carry out statistical significance tests based on the outcome of the experi-
ments.

Finally, the infra-structure provides utility functions implementing frequently
used workflows for common modelling techniques, as well as functions that fa-
cilitate the automatic generation of variants of workflows by specifying sets of
parameters that the user wishes to consider in the comparisons.

2 A Simple Illustrative Example

Let us assume we are interested in comparing several variants of an SVM on
the Iris classification problem. More specifically, we want to obtain a reliable
estimate of the error rate of these variants using 10-fold cross validation. The
following code illustrates how these estimates could be obtained with our pro-
posed infra-structure.

> library(DMwR)

> library(e1071)

> data(iris)

> res <- experimentalComparison(

+ dataset (Species ~ .,iris),

variants ('standardWF',
learner='svm',
learner.pars=1list(cost=c(1,5,10),gamma=c(0.1,0.001))
),

cvSettings(1,10,123))

+ + + + +

This simple example illustrates several key concepts of our infra-structure.
First of all, we have the main function - experimentalComparison(), which is
used to carry out the experimental comparisons. It has 3 arguments: (i) a vector

of predictive tasks (in the example a single one); (ii) a vector of workflows; and
(iil) the experimental settings.

Predictive tasks are S4 objects of class dataset. This class, also defined in
our infra-structure, describes a predictive task by: (i) a formula; (ii) the source
data set (an R data frame); and (iii) an optional name of the task (a string).

Workflows are S4 objects of class learner, which are also defined within
the infra-structure. These objects include two pieces of information: (i) the
name of the function (a string) implementing the workflow; and (ii) the list of
parameters to this function. The function will be called from within experi-
mentalComparison() with a formula in the first argument, a training sample
(a data frame) on the second argument, a test sample (another data frame)
on the third, and then all the parameters the user specifies in the list of pa-
rameters used when creating the learner object. This means that the object
learner (’svmTrial’,pars=list(cost=10,gamma=0.5)), if used in a call to
experimentalComparison, will generate calls of the type svmTrial (someFormula,
someTrainingSample, someTestSample, cost=10, gamma=0.5). In the illus-
trative example with Iris we are using the function variants() from our pack-
age to automatically generate a vector of learner objects. This function can be
used to generate different variants of a workflow function using all combinations
of different parameters of the workflow. In the code above the workflow function
is standardWF () which is another auxiliar function we provide. This function
implements a typical workflow for different modeling techniques that are indi-
cated through its parameter learner. Above we are using it to generate variants
of the svm() model, which is an implementation of an SVM available in package
e1071 [|. Later we will provide more details on the standardwF function. For
now we can think of the call to the variants () function as generating the follow-
ing vector:

c(learner ('standardWF',
pars=list(learner='svm',
learner.pars=list(cost=1,gamma=0.1))
),
learner('standardWF',
pars=list(learner='svm',
learner.pars=list(cost=5,gamma=0.1))

),

The workflow implemented through function standardWF() by default cal-
culates the error rate of the used modeling techniques if handling classification
tasks, though we will see later that we can specify other metrics.

Finally, the third parameter of the function experimentalComparison()
specifies the experimental settings to use in the estimation process. It is an
S4 object of class expSettings that in effect is an union that includes among
others the S4 class cvSettings. Objects of this latter class include information
on the number of repetitions of the cross validation process (in our example 1
single repetition, which is the default), the number of folds (10 above, which

is also the default), the random number seed and a logical indicating whether
stratified samples should be used (defaulting to FALSE, i.e. no stratification).

The result of the call to experimentalComparison() is an S4 object of the
class compExp. These objects tipically are not directly explored by the end-
user so we ommit their details here!. There are several utility functions that
allow the users to explore the results of the experimental comparisons. Here are
a few illustrative examples:

> summary (res)

== Summary of a Cross Validation Experiment ==
1 x 10 - Fold Cross Validation run with seed = 123

* Data sets :: iris
* Learners :: svm.vl, svm.v2, svm.v3, svm.v4

* Summary of Experiment Results:

-> Datataset: iris

*Learner: svm.vl

err
avg 0.02666667
std 0.04661373
min 0.00000000
max 0.13333333

invalid 0.00000000

*Learner: svm.v2

err
avg 0.04000000
std 0.06440612
min 0.00000000
max 0.20000000

invalid 0.00000000

*Learner: svm.v3

err
avg 0.5733333
std 0.1967639
min 0.3333333
max 0.8666667

invalid 0.0000000

*Learner: svm.v4
err
avg 0.09333333

Hnterested readers may have a look at the corresponding help page - class?compExp .

std 0.06440612
min 0.00000000
max 0.20000000
invalid 0.00000000

The generic function summary allows us to obtain the estimated scores for
each compared approach on each predictive task. For each performance metric
(in this case only the error rate), the function shows the estimated average per-
formance, the standard error of this estimate as well as minimum and maximum
scores on the different iterations of the experimental comparison. Moreover, in-
formation is also given on eventual failures on some of the iterations.

The best scores for each predictive task can be obtained as follows:

> bestScores(res)

$iris
system score
err svm.vl 0.02666667

The generic function plot can be used to obtain a graphical display of the
distribution of performance metrics across the different iterations of the estima-
tion process using box-plots, as show in Figure 1. In this case we can observe
that the performance is constant on all variants (which could also be observed
in the output of summary), which indicates that the different levels of pruning
are having no effect for this simple predictive task.

You might have observed that the infra-structure uses some IDs to describe
each variant (e.g. svm.v1l). The user can check the parameter configuration
corresponding to some ID as follows:

> getVariant('svm.v1l',res)

Learner:: '"standardWF"

Parameter values

learner.pars = structure(list(cost = 1, gamma = 0.1), .Names = c("cost", "gamma

learner = svm

3 Predictive Tasks

Predictive tasks are data analysis problems where we want to obtain a model
of an unknown function ¥ = f(X1, Xo,---,X,) that relates a target variable
Y with a set of p predictors X, Xa,--,X,. The model is usually obtained
using a sample of n observations of the mapping of the unknown function,
D = {{(x;,Y;)}~,, where x; is a vector with the p predictors values. These data
sets in R are usually stored in data frames, and formula objects are used to
specify the form of the functional dependency that we are trying to model, i.e.
which is the target variable and the predictors.

Objects of class dataset encapsulate the information of a predictive task,
i.e. the functional form and the data required for solving it. For convinience
they also allow the user to assign a name to each task. These S4 objects can
be created using the construtor function dataset(), as seen in the following
example:

> plot(res)

iris
svm.v4 ~<D>
svmv3 i
svm.v2 { °
svm.vl { rF-- ‘
T T T T T
0.0 0.2 0.4 0.6 0.8

err

Figure 1: The distribution of the error rate on the 10 folds.

> data(iris)
> dataset (Species

.,iris, 'irisTask')

Task Name :: irisTask
Formula :: Species ~
Task Data ::
'data.frame': 150 obs. of 5 variables:
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 111111111 ...
$ Sepal.Length: num 5.1 4.9 4.7 4.6 56 5.4 4.6 5 4.4 4.9 ..
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.51.41.71.41.51.41.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1

We should remark that the objects of this class only store the data required
for the specified task, as it should be clear from this other simple example:

> data(iris)
> dataset(Species ~ Petal.Length + Sepal.Length,iris, 'ShortIrisTask')

Task Name :: ShortIrisTask
Formula :: Species " Petal.Length + Sepal.Length

Task Data ::

'data.frame': 150 obs. of 3 variables:

$ Species : Factor w/ 3 levels "setosa",'"versicolor",..: 1111111111
$ Petal.Length: num 1.4 1.4 1.3 1.51.41.71.41.51.41.5 ...

$ Sepal.Length: num 5.1 4.9 4.7 4.6 56 5.4 4.6 5 4.44.9 ...

So, although we have supplied the full data frame to the constructor function,
as the task only uses 3 of the columns, the resulting dataset object only includes
the information on the columns required for this task.

4 Workflows

Experimental methodologies work most of the times by re-sampling the available
data set D in order to create different train and test samples from D. The goal
is to estimate the predictive performance of a proposed workflow to solve the
task, by using these different samples to increase our confidence on the estimates.
This workflow consists on the process of obtaining a model from a given training
sample and then use it to obtain predictions for the given test set. This process
can include several steps, e.g. specific data pre-processing steps, and may use
any modeling approach, eventually being proposed by the user.

4.1 User-defined Workflows

With the goal of ensuring that the proposed infra-structure is able to cope with
all these possible usage scenarios, we ask the user to take care of the writing
of a function implementing each workflow being compared/evaluated. These
user-defined workflow functions should be written assuming that the first three
arguments are: (i) the formula defining the predictive task; (ii) the provided
training sample; and (iii) the test sample where to evaluate the obtained model.
The functions may eventually accept other arguments with specific parameters
of the workflow. The following is a general sketch of a user-defined workflow
function:

myWorkFlow <- function(form,train,test,...) {
require (mySpecialPackage,quietly=T)
myTrain <- mySpecificPreProcessingSteps(train)
myModel <- myModelingTechnique(form,myTrain,...)
preds <- predict(myModel,test)
scores <- mySpecialEvaluationMetrics(resp(form,test),preds)
scores

Not all workflows will require all these steps, though some may even require
more. This is clearly something that is up to the user. The only requirements
for these functions are: (i) the first 3 arguments of the workflow function should
be the formula, train and test data frames; and (ii) the result of the function
should be a named vector with the values of the metrics being estimated.
The names of the positions of this vector will typically be the names of the
corresponding metrics.

The sketch shown above also illustrates the use of the function resp() that
can be used to obtain the values of the target variable given a formula and a
data frame.

Users should write one such workflow function for each process they want
to evaluate/compare. As mentioned before these functions may accept further
parameters on top of the 3 mandatory parameters. These extra parameters will
typically be parameters of the modeling technique being used in the workflow
but it is up to the user to control this. As we have seen in Section 2 we provide
the function variants () to facilitate the specification of different variants of any
workflow function by trying all combinations of several of its specific parameters.
For instance, if the modeling function in the above example workflow (function
myModelingTechnique()) had an integer parameter x and a Boolean parameter
y, we could generate several learner objects to be evaluated/compared using
the experimentalComparison() function, as follows:

> variants ('myWorkFlow',x=c(0,3,5,7),y=c(T,F))

This would generate 8 variants of the same workflow with all combinations
of the specified values for the 2 parameters. This means that any parameter
of the variants() function that has more than one element is assumed to be
a source for generation of variants. There may be situations where this is not
desirable, because a particular argument of the workflow function is supposed
to be a vector. In these cases the user needs to “tell” the variants() function
that it should not generate variants from the values of that parameter. Suppose
that on the above example the parameter x takes as values a vector, and thus
your meaning in the above statment is that you only have two variants of the
workflow (the different values of the other parameter). You could get that results
by calling the variants() function as follows:

> variants ('myWorkFlow',x=c(0,3,5,7),y=c(T,F),as.is=c('x"'))

While the previous call would generate 8 variants, this one only generates 2.

Let us see a concrete example of a user supplied workflow function. Imagine
we want to evaluate a kind of ensemble model formed by a regression tree and a
multiple linear regression model on an algae blooms data set [Tor10]. Moreover,
let us suppose we are interested in using the correlation between the predictions
and true values as evaluation metric. We could start by writting the following
workflow function that implements our modeling approach:

> RLensemble <- function(f,tr,ts,weightRT=0.5,step=F,...) {
+ require(DMwR,quietly=F)

+ noNAsTR <- knnImputation (tr)

+ noNAsTS <- knnImputation(ts)

+ r <- rpartXse(f,tr,...)

+ 1 <- 1m(f,noNAsTR)

+ if (step) 1 <- step(l,trace=0)

+ pr <- predict(r,ts)

+ pl <- predict(l,noNAsTS)

+ ps <- weightRT*pr+(1-weightRT) *pl

+ c(correlation=cor(resp(f,ts),ps))

+

}

This workflow starts by building two modified samples of the training and
testing sets, with the NA values being filled in using a nearest neighbour strategy
(see the help page of the function knnImputation() of package DMwR for more
details). These versions are to be used by the 1m() function that is unable to
cope with cases with missing values. After obtaining the two models and their
predictions the function calculates a weighted average of both predictions before
obtaining and returning the respective correlation score.

To evaluate different variants of this workflow we could run the following
experiment:

> data(algae)

> expRes <- experimentalComparison(

dataset(al ~ .,algael[,1:12],'algal'),

+ variants('RLensemble’,

+ se=c(0,1),step=c(T,F),weightRT=c(0.4,0.5,0.6)),
+ bootSettings (1234,100))

+

In this experimental comparison we have used 100 repetitions of a bootstrap
estimation procedure as experimental methodology (further details on this and
other methodologies will be given later), to compare 12 variants of our workflow.

4.2 Generic Workflows

Writing workflow functions may be tedious on large comparisons, particularly
when few details change among them. Moreover, the most frequent use of our
infra-structure will probably be to compare existing modeling techniques on
one or more problems. This means that the most frequently used workflows will
essentially build a model using some existing algorithm, obtain its predictions
and then calculate some standard prediction error metric. In this context, we
have provided a generic workflow function that carries out this type of process
for any modeling technique. The idea is to save the user from having to write
these functions provided his/her workflow fits this generic schema.

4.2.1 Classification and Regression Tasks

Function standardWF() implements a typical workflow for both classification
and regression tasks. Apart from a formula, a training set data frame and a test
set data frame, this function has the following parameters that help the user to
specify is intended workflow:

learner - the name of a R function that obtains a model from the training data.
This function will be called with a formula in the first argument and the
training set data frame in the second.

learner.pars - a list specifying any extra parameter settings that should be
added to the formula and training set, at the time the learner function is
called (defaults to NULL).

predictor - the name of a R function that is able to obtain the predictions of
the model obtained with learner. This function will be called with the
object resulting from the learner call on the first argument and the test
set data frame in the second (it defaults to function “predict”).

predictor.pars - a list specifying any extra parameter settings that should be
added to the model and test set, at the time the predictor function is
called (defaults to NULL).

evaluator - the name of a R function that is able to calculate the evaluation
metrics you want to estimate based on the predictions of the model and
the true values of the target variable on the given test set (it will default
to class.eval() function if it is a classification task, and to regr.eval ()
if a regression task - check the respective help pages to see what are the
default metrics that are calculated for each). This function will be called
with the values of the target variable in the test set on the first argument
and with the result of the call to the predictor function on the second.

evaluator.pars - a list specifying any extra parameter settings that should
be added to the true values and predictions, at the time the evaluator
function is called (defaults to NULL). A typical usage here would be to
use the parameter stats of functions class.eval() and regr.eval() to
specify the metrics you want to calculate, provided you are using these
functions as evaluators.

Below you find an example of one of the most frequent type of comparisons
users carry out - checking which is the “best” model for a given predictive task.
Let us restrict the search to a small set of models for illustrative purposes and
let us play with the well-known Boston housing regression task:

data(Boston, package="'MASS')

library(e1071)

library(randomForest)

bostonRes <- experimentalComparison(
dataset (medv ~ .,Boston),

cvSettings(1,10)
)

+ + + + VvV VvV

Notice that on this simple example we have used all modeling tools with
their default parameter settings which is not necessarly a good idea when we are
looking for the best performance. Still, the goal of this illustration is to show you
how simple this type of experiments can be if you are using a standard workflow
setting. In case you want to use the modeling tools with other parameter settings
then you should separate them in different variants() calls, as shown in the
following example:

> data(Boston,pacakge="'MASS"')

> library(e1071)

> library(randomForest)

> bostonRes <- experimentalComparison(
+ dataset(medv ~ .,Boston),
+ c(variants('standardWF',

+ learner='rpartXse',
+

+

learner.pars=list (se=c(0,1))

),

10

variants('standardWF',learner=c('rpartXse', 'svm', 'randomForest')),

+ variants('standardWF',

+ learner='svm',

+ learner.pars=list(cost=c(1,3,5),gamma=c(0.01,0.1))
+ s

+ variants ('standardWF',

+ learner='randomForest',

+ learner.pars=1list (ntree=c(500,1000))
+)

+),

+ cvSettings(1,10)

+

)

Notice that this code will involve evaluating 10 models through 10-fold cross
validation.

4.2.2 Time Series Tasks

Our infra-structure also includes another generic workflow function that is spe-
cific for predictive tasks with time-dependent data (e.g. time series forecast-
ing problems). This workflow function implements two different approaches to
the problem of training a forecasting model with a set of time-dependent data
and then use it to obtain predictions for a test set in the future. These two
approaches contrast with the standard approach of learning a model with the
available training sample and then use it to obtain predictions for all test period.
This standard approach could be used with the already described standardWF ()
function. However, there are alternatives to this procedure, two of the most com-
mon being the sliding and growing window approaches, which are implemented
in our provided workflow function for time series.

Predictive tasks for time-dependent data are different from standard classifi-
cation and regression tasks because they require that the test samples have time
stamps that are more recent then training samples. In this context, experimen-
tal methodologies handling these tasks typically do not shuffle the observations
to avoid these effects. The most common setup is that we have a L time steps
training window containing samples in the period [t1,¢1] and a F time steps test
window typically containing the observations in the time window [try1,tr+r].
In this context, the idea of the sliding window method is that if we want a
prediction for time point ¢; belonging to the test interval [tf11,tr+r] then we
can assume that all data from ¢y till ¢,_1 is already past, and thus usable by
the model. In this context, it may be wise to use this new data in the interval
[tL+1,tk—1] to update the original model obtained using only the training period
data. This is particularly advisable if we suspect that the conditions may have
changed since the training period has ended. Model updating using the sliding
window method is carried out by using the data in the L last time steps, i.e.
every new model is always obtained using the last L data observations, as if
the training window was slided forward in time. Our timeseriesWF() function
implements this idea for both time series with a numeric target variable and a
nominal target variable. This function has a parameter (type) that if set to
“slide” will use a sliding window approach. As with the standardWF () function,
this timseriesWF () function also accepts parmeters specifying the learner, pre-
dictor, evaluator and their respective parameters. Moreover, this function also

11

includes an extra parameter, named relearn.step, which allows the user to
establish the frequency of model updating. By default this is every new test
sample, i.e. 1, but the user may set a less frequent model-updating policy by
using higher values of this parameter. The idea of the growing window method
is very similar. The only difference is on the data used when updating the mod-
els. Whilst sliding window uses the data occurring in the last L time steps,
growing window keeps increasing the original training window with the newly
available data points, i.e. the models are obtained with increasing size training
samples. By setting the parameter type to “grow” you get the timseriesWF ()
function to use this method.

5 Estimation Methodologies

There are different ways of providing reliable estimates of the predictive perfor-
mance of a model. Our infra-structure implements some of the most common
estimation methods. In this section we briefly describe them and provide short
illustrative examples of their use.

5.1 Cross Validation

k-Fold cross validation (CV) is one of the most common methods to estimate
the predictive performance of a model. By including an S4 object of class
cvSettings in the third argument of function experimentalComparison() we
can carry out experiments of this type.

Function cvSettings() can be used as a constructor of objects of class
cvSettings. It accepts the following arguments:

cvReps - the number of repetitions of the k-fold CV experiment (default is 1)
cvFolds - the number of % folds to use (default is 10)

cvSeed - the random number generator seed to use (default is 1234)

strat - whether to use stratified samples (default is FALSE)

dataSplits - a data frame containing user-supplied data splits for each of the
folds and repetitions (check the help page of the class for further details).
This parameter defaults to NULL, i.e. no user-supplied splits, they are
decided internally by the infra-structure.

Bellow you can find a small illustration using the Breast Cancer data set
available in package mlbench. On this example we compare some variants of
an SVM using a 3 x 10—fold cross validation process with stratified sampling
because one of the two classes has a considerably lower frequency.

data(BreastCancer,package='mlbench')

library(e1071)

bc <- knnImputation(BreastCancer[,-1])

bcExp <- experimentalComparison (
dataset(Class ~ .,bc, 'BreastCancer'),
variants ('standardWF',

+ + v Vv VvV

12

+ learner='svm',

+ learner.pars=1list (cost=c(1,5),gamma=c(0.01,0.1))
+),

+ cvSettings(3,10,1234,T))

5.2 Bootstrapping

Bootstrapping or boostrap resampling is another well-known experimental method-
ology that is implemented in our infra-structure. By including an S4 object of
class bootSettings in the third argument of function experimentalComparison ()
we can carry out experiments of this type.

Function bootSettings() can be used as a constructor of objects of class
bootSettings. It accepts the following arguments:

bootSeed - the random number generator seed to use (default is 1234)

bootReps - the number of repetitions of the bootstrap experiment (default is
50)

dataSplits - a data frame containing user-supplied data splits for each of the
repetitions (check the help page of the class for further details). This
parameter defaults to NULL, i.e. no user-supplied splits, they are decided
internally by the infra-structure.

Bellow you can find a small illustration using the Servo data set available in
package mlbench. On this example we compare some variants of an artificial
neural network using 200 repetitions of a boostrap experiment.

> data(Servo,package='mlbench')
> library(nnet)
> nnExp <- experimentalComparison(

+ dataset(Class ~ .,Servo),

+ variants('standardWF',

+ learner='nnet',

+ learner.pars=list (trace=F,linout=T,size=c(3,5),decay=c(0.01,0.1))
+),

+ bootSettings (1234,200))

5.3 Holdout

The Holdout is another frequently used experimental methodology, particularly
for large data sets. To carry out this type of experiments in our infra-structure
we can include an S4 object of class hldSettings in the third argument of
function experimentalComparison().

Function hldSettings() can be used as a constructor of objects of class
hldSettings. It accepts the following arguments:

hldReps - the number of repetitions of the Holdout experiment (default is 1)

hldSz - the percentage of cases (a number between 0 and 1) to leave as holdout
(test set) (default is 0.3)

13

hldSeed - the random number generator seed to use (default is 1234)
strat - whether to use stratified samples (default is FALSE)

dataSplits - a data frame containing user-supplied data splits for each of the
repetitions (check the help page of the class for further details). This
parameter defaults to NULL, i.e. no user-supplied splits, they are decided
internally by the infra-structure.

Notice that when we have a number of repetitions larger than one what we
have is actually usually known as random subsampling.

The following is a small illustrative example of the use of the Holdout with
the LetterRecognition classification task from package mlbench.

> data(LetterRecognition,package='mlbench')

> 1trExp <- experimentalComparison(

+ dataset(lettr ~ .,LetterRecognition),

+ variants('standardWF',

+ Jearner='rpartXse',

+ learner.pars=1list (se=c(0,1)),

+ predictor.pars=list (type='class')
+),

+ hldSettings(3,0.3))

5.4 Leave One Out Cross Validation

Leave one out cross validation is a type of cross validation method that is
mostly used for small data sets. You can think of leave one out cross vali-
dation as a k-fold cross validation with k equal to the size of the available data
set. To carry out this type of experiments in our infra-structure we can in-
clude an S4 object of class loocvSettings in the third argument of function
experimentalComparison().

Function loocvSettings() can be used as a constructor of objects of class
loocvSettings. It accepts the following arguments:

loocvSeed - the random number generator seed to use (default is 1234)

verbose - whether the execution of the experiments should provide a verbose
form of output (default is FALSE)

The following is a small illustrative example of the use of the Holdout with
the LetterRecognition classification task from package mlbench.

> data(iris)
> library(e1071)
> irisExp <- experimentalComparison(

+ dataset(Species ~ .,iris),

+ variants('standardWF',

+ learner='svm',

+ learner.pars=1list (cost=c(1,10))
+),

+ loocvSettings())

14

5.5 Monte Carlo Experiments

Monte Carlo experiments are similar to random subsampling (or repeated Hold-
out) in the sense that they consist of repeating a learning + testing cycle sev-
eral times using different data samples. The main different lies on the way the
samples are obtained. In Monte Carlo experiments the original order of the
observations is respected and train and test splits are obtained such that the
testing samples appear “after” the training samples, thus being the methodology
of choice when you are comparing time series forecasting models. The idea of
Monte Carlo experiments is the following: (i) given a data set spanning from
time ¢; till time ¢y, (ii) given a training set time interval size L and a test
set time interval size F', such that T+ F' < N, (iii) Monte Carlo experiments
generate R random time points from the interval [t1,7,tn—F|, and then (iv)
for each of these R time points they generate a training set with data in the
interval [tg—741,tr] and a test set with data in the interval [tg+1,tr+r]. Using
this process R train+test cycles are carried out using the user-supplied workflow
function, and the experiment estimates result from the average of the R scores
as usual.

To carry out this type of experiments in our infra-structure we can in-
clude an S4 object of class mcSettings in the third argument of function
experimentalComparison().

The function mcSettings() can be used as a constructor of objects of class
mcSettings. It accepts the following arguments:

mcReps - the number of repetitions of the Monte Carlo experiment (default is
10)

mcTrain - the percentage (a number between 0 and 1) or the actual number
of cases to use in the training samples (default is 0.25)

mcTest - the percentage (a number between 0 and 1) or the actual number of
cases to use in the test samples (default is 0.25)

mcSeed - the random number generator seed to use (default is 1234)

dataSplits - a data frame containing user-supplied data splits for each of the
repetitions (check the help page of the class for further details). This
parameter defaults to NULL, i.e. no user-supplied splits, they are decided
internally by the infra-structure.

The following is a small illustrative example using the quotes of the SP500
index. This example compares two random forests with 500 regression trees,
one applying in a standard way, and the other using a sliding window with a
relearn step of every 5 days. The experiment uses 10 repetitions of a train+test
cycle using 50% of the available data for training and 25% for testing.

library(quantmod)
library(randomForest)
getSymbols (' “GSPC',from='2008-01-01"',to="'2012-12-31")
data.model <- specifyModel(
Next (100*%Delt (Ad(GSPC))) ~ Delt (Ad(GSPC),k=1:10)+Delt (Vo(GSPC) ,k=1:3))
data <- modelData(data.model)

vV + VvV Vv VvV

15

> colnames(data) [1] <- 'PercVarClose'
> spExp <- experimentalComparison (
+ dataset (PercVarClose ~ .,data, 'SP500_2012'),
c(standRF=learner ('standardWF',
pars=list(learner='randomForest',
learner.pars=1list (ntree=500))
),
slideRF=learner('timeseriesWF',
pars=list(learner='randomForest',
learner.pars=1list(ntree=500,relearn.step=5))

s
mcSettings(10,0.5,0.25))

+ + + + + + + + + +

6 Statistical Significance of Differences

The experimental methodologies that we have presented in the previous section
allow the user to obtain estimates of the predictive performance of different
workflows or variants of these workflows, on different predictive tasks. We have
seen that by applying the summary method to the objects resulting from the ex-
periments we can obtain the average performance for each candidate workflow
on each task. These numbers are estimates of the expected average perfor-
mance of the workflows on the respective tasks. Being estimates, the obvious
next question is to check whether the observed differences in performance be-
tween the workflows are statistically significant. That is the goal of the function
compAnalysis(). This function provides a series of pairwise comparisons be-
tween different workflows for each predictive task, with the goal of calculating
and presenting the statistical significance of the differences, if any.

Our experimental infra-structure ensures that all compared workflows are
run on exactly the same train+test samples on all repetitions and for all predic-
tive tasks. In this context, we can focus on pairwise statistical significance tests.
Given that we cannot ensure that the different iterations are statistically inde-
pendent (for instance there may be some overlap between the training samples),
we use the Wilcoxon signed rank test to assess the statistical significance of the
differences between every pair of compared workflows. Let us see a concrete
example:

> data(LetterRecognition,package='mlbench')

> 1trExp <- experimentalComparison(

+ dataset(lettr ~ .,LetterRecognition),

+ variants ('standardWF',

+ learner='rpartXse',

+ learner.pars=1list (se=c(0,1)),

+ predictor.pars=list(type='class')
+),

+ hldSettings(3,0.3))

Using the bestScores() function we can find out the best scoring variant
of this comparison of rpartXse-based workflows,

16

> bestScores (1trExp)

$LetterRecognition
system score
err rpartXse.vl 0.1424444

Now we can proceed to check whether the advantage of this variant over the
others is statistically significant,

> compAnalysis (1trExp, 'rpartXse.v1')

== Statistical Significance Analysis of Comparison Results ==
Baseline Learner:: rpartXse.vl (Learn.1)
** Evaluation Metric:: err
- Dataset: LetterRecognition
Learn.1 Learn.2 sig.2

AVG 0.142444444 0.15277778
STD 0.005618257 0.01410903

Legends:
Learners -> Learn.l1 = rpartXse.vl ; Learn.2 = rpartXse.v2 ;
Signif. Codes -> 0 '++' or '--' 0.001 '+' or '-' 0.056 ' ' 1

The function compAnalysis() receives as first argument the object result-
ing from the comparative experiments. The second argument is the baseline
workflow against which you want to compare the others to. In the output this
baseline will be named “Learn.1”, and its scores will be on the first column. Af-
ter this first column we have the scores of the other workflows (in this example
only another one), presenting also the estimated average performance and re-
spective standard error. In front there may be zero, one or two symbols (either
“4+7or “-7). If no symbol is presented it means that the observed difference is not
statistically significant at the 0.05 confidence level (i.e. with 95% confidence).
If one symbol appears it means that the p-level is between 0.05 and 0.01, while
two symbols represent confidence higher than 99% on the observed difference.
The meaning of the plus or minus depends on the semantics of the scores of the
evaluation metric being compared. If the lower the scores the better, than a
workflow with minus signals is significantly better than the baseline on the first
column. If the higher the metric scores the better, than a workflow with minus
signals is significantly worse than the baseline. The interpretation of the plus
signals is the inverse of this. In the above example we observe that although
rpartXse.vl has a lower estimated error rate, its advantage over rpartXse.v2
is not statistically significant.

7 Larger Examples

The main advantage of the infra-structure we are proposing is to automate large
scale experimental comparisons. It is on these very large setups that the use of

17

the infra-structure spares more time to the user. However, in these context the
objects resulting from the experiments are very large and some of the tools we
have shown before for exploring the results may produce over-cluttered output.
In effect, if you have an experiment involving dozens of predictive tasks and
eventually hundreds of workflow variants being compared on several evaluation
metrics, doing a plot of the resulting object is simply not possible as the graph
will be unreadable. This section illustrates some of these cases and presents
some solutions to overcome the difficulties they bring.

Extremely large experiments may take days or weeks to complete, depending
on the available hardware. In this context, it may not be wise to run the
experiments on a single call to the experimentalComparison function because
if something goes wrong in the middle you may loose lots of work. Using the
random number generation seeds that are available in all experimental settings
objects we can split the experiments in several calls and still ensure that the
same data folds are used in all comparisons. Moreover, we will see that when all
experiments are finished we will be able to merge the objects of each call into a
single object as if we had issued a single call. Let us see an example.

library (DMwR)
library(e1071)
library(randomForest)
library(earth)
data(algae)
DSs <- sapply(names(algae)[12:18],
function(x,names.attrs) {
f <- as.formula(paste(x,"~ ."))
dataset (f,algael, c(names.attrs,x)],x)
},
names (algae) [1:11])
WEFs <- 1ist()
WFs$svm <- list(learner.pars=list(cost=c(10,150,300),gamma=c(0.01,0.001)))
WFs$randomForest <- list(learner.pars=list(mtry=c(5,7),ntree=c(500,750,1500)))
WFs$earth <- list(learner.pars=list(nk=c(10,17),degree=c(1,2),thresh=c(0.01,0.001)))
for(d in seq_along(DSs)) {
for(w in names(WFs)) {
resObj <- paste(names(DSs) [d],w, 'Res',sep="")
assign(resObj,
experimentalComparison (
DSs[d],
c(
do.call('variants',
c(list('standardWF',learner=w) ,WFs[[w]]))
),
cvSettings(3,10,1234))

save(list=resObj,file=paste (names(DSs) [d],w, 'Rdata’',sep="."))
}
}

The above code compares 6 SVM variants with 6 random forest variants and

+ + + + +++++++++++VVVVVE+H+H+++VVVYVYVY

18

8 MARS variants, on 7 algae blooms regression tasks, using 3 x 10—fold cross
validation. Although this is not a very large experimental comparison it still
includes applying 20 different workflow variants on 7 different prediction tasks,
30 times, i.e. 4200 train+test cycles. Instead of running all these experiments in
a single call to the function experimentalComparison (which would obviously
still be possible), we have made different calls for each workflow type (SVM,
random forest and MARS) and for each predictive task. This means that each
call will run all variants of a certain workflow on a certain predictive task. The
result of each of these calls will be assigned to an object with a name composed
of the task and workflow learner. In the end each of these objects is saved on
a file with a similar name, for future loading and results analysis. For instance,
in the end there will be a file with name “al.svm.Rdata” which contains an
object of class compExps named alsvmRes. This object contains the MAE
and MSE estimated scores of the SVM variants on the task of predicting the
target variable “al” (one of the eight algae in this data set).

Later on, after the above experiment have completed you can load them into
R and moreover, join them into a single object, as shown below:

nD <- paste('a',1:7,sep="")
nlL <- c('svm', 'randomForest', 'earth')
res <- NULL
for(d in nD) {
resD <- NULL
for(l in nL) {
load(paste(d,1, 'Rdata',sep="'."))
x <- get(paste(d,1, 'Res',sep=""))
resD <- if (is.null(resD)) x else join(resD,x,by='variants')
}
res <- if (is.null(res)) resD else join(res,resD,by='datasets')
}
save(res,file='allResultsAlgae.Rdata')

V++++++++VYVYIVY

The join() generic function when applied to objects of class compExp
allows merging of these objects across different dimensions. Namely, such ob-
jects have the individual scores of all experiments spread across 4 dimensions:
the iterations, the statistics, the workflows and the datasets (in effect, inter-
nally these scores are stored as a 4-dimensions array). The argument by of the
join() function allows you to specify how to merge the given objects. The most
common situations are: (i) merging the results of different workflows over the
same data sets - you should use “by=’variants’”, or (ii) merging the results of
the same workflows across different datasets - you should use “by=’datasets’”.

The following code can be used to check that the merging was OK, and also
to illustrate a few other utility functions whose purpose should be obvious:

> res

== (Cross Validation Experiment ==
3 x 10 - Fold Cross Validation run with seed = 1234

20 1learning systems
tested on 7 data sets

19

> dsNames (res)

al

a2

a3

a4 ab a6

|Ia1Il n a2|| n a3l| Ila4ll |Ia5ll n a6||

> learnerNames (res)

[1]
[4]
(7]
[10]
[13]
[16]
[19]

"regrWF.
"regrWF.
"regrWF.
"regrWF.
"regrWF.
"regrWF.
"regrWF.

svm.v1"

svm.v4"
randomForest.v1"
randomForest.v4"
earth.v1"
earth.v4"
earth.v7"

> statNames (res)

(1]

mae

mse

a7
n a7 n

"regrWF.
"regrWF.
"regrWF.
"regrWF.
"regrWF.
"regrWF.
"regrWF.

svm.v2"

svm.v5"
randomForest.v2"
randomForest.vb"
earth.v2"
earth.vb"
earth.v8"

"regrWF.
"regrWF.
"regrWF.
"regrWF.
"regrWF.
"regrWF.

svm.v3"

svm.v6"
randomForest.v3"
randomForest.v6"
earth.v3"
earth.v6"

With such large objects the most we can do is obtaining the best scores or
rankings of the workflows:

> bestScores(res)

$al

mae
mse

$a2

mae
mse

$a3

mae
mse

$ad

mae
mse

$ab

mae
mse

$ab

regrWF.randomForest.vl

system

score

10.29005

regrWF.randomForest.v5 233.37908

system
regrWF.svm.v1

score

6.088107

regrWF.randomForest.v5 102.504805

regrWF.svm.v4 4.135187
regrWF.earth.vl 46.993918

regrWF.randomForest.vl

regrWF.randomForest.v5

system

system score

system score
regrWF.svm.v4 1.726276
13.700926

system score
regrWF.svm.v4 4.251671
46.664527

Score

20

mae regrWF.svm.v6

5.912782

mse regrWF.svm.v6 115.938396

$a7

system

> rankSystems (res)

$al
almae

1 regrWF.
2 regrWF.
3 regrWF.
4 regrWF.
5 regrWF.

$a2$mse

1 regrWF.
2 regrWF.
3 regrWF.
4 regrWF.
5 regrWF.

$a3
$a3$mae

1 regrWF.

regrWF.

score
mae regrWF.svm.v4 2.50103
mse regrWF.earth.vl 26.74473

system

randomForest
randomForest
randomForest
randomForest
randomForest

vl
.vb
.v2
.v3
.v6

system

.randomForest.
.randomForest.
.randomForest.
.randomForest.
.randomForest.

vb
vl
v3
v2
v4

system

regrWF.svm.
regrWF.svm.
regrWF.svm.
regrWF.svm.
randomForest

vl
v4
vb
v6

.vh

system

randomForest.
randomForest.
randomForest.
randomForest.
randomForest.

vb
vl
v3
v6
v2

system score
svm.v4 4.135187

score
10.29005
10.30520
10.33958
10.34220
10.37149

score
233.3791
233.6848
234.9995
236.4458
238.0586

score
6.088107
6.225823
6.247941
6.261020
6.803680

score
102.5048
103.4508
103.7538
104.1717
104.7752

21

o W N

$a3$mse

O WN -

$ad
admae

O N

$adPmse

O W N

$ab
abmae

O W N

1 regrWF.
2 regrWF.
3 regrWF.
4 regrWF.
5 regrWF.

regrWF.
regrWF.
regrWF.
regrWF.

regrWF.

regrWF.
regrWF.
regrWk.
regrWF.

regrWF.
regrWF.
regrWF.
regrWF.
regrWF.

.randomForest

svm.vl 4.247689
svm.vb 4.268914
svm.v6 4.335368
svm.v2 4.501554

system

regrWF.earth.
regrWF.earth.
regrWF.earth.
regrWF.earth.
randomForest.

vl
vb
v2
v6
vb

system

regrWF.svm.
randomForest.
randomForest.
randomForest.
randomForest.

v4
v3
vl
vb
v4

system

randomForest.
randomForest.
randomForest.
randomForest.
randomForest.

vl
v3
vb
v4
v6

system

regrWF.svm.
regrWF.svm.
regrWF.svm.
regrWF.svm.

v4
vl
vb
v6

.vh

system

randomForest
randomForest
randomForest
randomForest
randomForest

.vb
.v3
vl
.v6
.v4d

score
46.99392
46.99392
47.45440
47.48074
48.30861

score
1.726276
1.782650
1.787691
1.789502
1.793457

score
13.70093
13.84821
13.86660
13.99223
14.04755

score
4.251671
4.291560
4.389319
4.390436
4.798468

score
46.66453
46.72200
46.88803
47.79440
47.88862

22

$ab

$a6$mae
system score
1 regrWF.svm.v6 5.912782
2 regrWF.svm.vl 5.949782
3 regrWF.svm.v5 5.996308
4 regrWF.svm.v4 6.064159
5 regrWF.svm.v2 6.625542
$abPmse
system score
1 regrWF.svm.v6 115.9384
2 regrWF.svm.v5 122.4529

3 regrWF.randomForest.v3 131.7257
4 regrWF.randomForest.v5 132.0186
5 regrWF.randomForest.vl 132.4300

$a7
$a7$mae

system score
regrWF.svm.v4 2.501030
regrWF.svm.v1l 2.512760
regrWF.svm.v5 2.533496
regrWF.svm.v6 2.534732
regrWF.svm.v2 2.822847

O WN -

$a7$mse
system score
regrWF.earth.vl 26.74473
regrWF.earth.vb 26.74473
regrWF.svm.v2 27.72257
4 regrWF.randomForest.v3 28.26148
5 regrWF.randomForest.v5 28.36151

[OV I S

Notice that both bestScores () and rankSystems () assume that the evalua-
tion metrics are to be minimized, i.e. they assume the lower the better the scores.
Still, both functions have a parameter named maxs that accepts a vector with
as many Boolean values as there are evaluation metrics being estimated, which
you may use to indicate that some particular metric is to be maximized and not
minimized (the default). So for instance, if you had an experiment where the
1st and 3rd metrics are to be minimized, whilst the second is to be maximized,
you could call these functions as rankSystems (resObj,maxs=c(F,T,F)).

In order to obtain further results from these large objects one usually pro-
ceeds by analyzing parts of the object, for instance focusing on a particular
data set or metric, or even a subset of the workflows. To facilitate this we can
use the generic function subset () that can also be applied to objects of class
compExp. An example of its use is given below, which results in a graph of
the performance of the different workflows in the predictive task “al”; in terms
of “MAE”, which is show in Figure 2.

23

> plot(subset(res,dss='al',stats='mae'))

al
regrWF.svm.v6 e -4
regrWF.svm.v5 ROLEE
regrWF.svm.v4 Lo}
regrWF.svm.v3 o9t
regrWF.svm.v2 BRI
regrWwF.svm.v1l e} 1
regrWF.randomForest.v6 | o fe|
regrWF.randomForest.v5 o e}
regrWF.randomForest.v4 | o [},
regrWF.randomForest.v3 o e},
regrWF.randomForest.v2 | o o},
regrWF.randomForestvl | o |}
regrWF.earth.v8 el R R °
regrWF.earth.v7 e} -
regrWF.earth.vé P fetio
regrWF.earth.v5 o8t
regrWF.earth.v4 i-fF4 o °
regrWF.earth.v3 o}~
regrWF.earth.v2 PRk
regrWF.earth.vl o/t
T T T T T T
20 40 60 80 100
mae

Figure 2: The MAE results for the task “al”.

As before we are using the generic function plot () but this time applied to
a subset of the original object with all results. This subset is obtained using the
generic function subset () that accepts several parameters to specify the subset
we are interested on. In this case we are using the parameters dss and stats to
indicate that we want to analyze only the results concerning the task “al” and
the metric “mae”. Other possibilities are the parameters vars for indicating a
subset of the workflows, and its for indicating a subset of the iterations. Both
vars, dss and stats accept as values a character string containing a regular
expression that will be used internally with the R function grep() over the
vector of names of the respective objects (names of the workflows, names of
the tasks and names of the metrics, respectively). For instance, if you want to
constrain the previous graph even further to the workflows whose name ends in
“4” (absurd example of course!), you could use the following:

If you are more familiar with the syntax of "wildcards” you may use the R
function glob2rx() to convert to regular expressions, as show in the following
example:

> summary (subset (res,dss="'al',vars=glob2rx('*svm*'),stat='mae'))

== Summary of a Cross Validation Experiment ==

3 x 10 - Fold Cross Validation run with seed = 1234

24

> plot(subset (res,dss='al',vars='4$',stats="'mae'))

al
regrWksvm.v4 3 w:
regrWF.randomForest.v4 o 3 3
regrWF.earth.v4 % - w: ° °
T T T T T
20 40 60 80 100
mae

Figure 3: Illustration of the use of regular expressions in sub-setting the results

objects.
* Data sets :: al
* Learners :: regrWF.svm.vl, regrWF.svm.v2, regrWF.svm.v3, regrWF.svm.v4, regrWF.svm.v5,

* Summary of Experiment Results:

-> Datataset: al

*Learner: regrWF.svm.vl

mae
avg 11.119022
std 1.948345
min 8.031872
max 15.235946

invalid 0.000000

*Learner: regrWF.svm.v2
mae
avg 12.080142

25

std 1.353831
min 9.648594
max 15.579599
invalid 0.000000

*Learner: regrWF.svm.v3

mae
avg 13.017781
std 1.435948
min 9.639135
max 16.287188

invalid 0.000000

*Learner: regrWF.svm.v4

mae
avg 12.008268
std 2.413037
min 7.878324
max 16.960718

invalid 0.000000

*Learner: regrWF.svm.vb

mae
avg 11.838932
std 2.796543
min 7.478762
max 19.463476

invalid 0.000000

*Learner: regrWF.svm.v6

mae
avg 11.947164
std 2.814148
min 7.452906
max 18.939631

invalid 0.000000

The following are some illustrations of the use of other available utility func-
tions.

Obtaining the scores on all iterations and metrics of a workflow on a partic-
ular data set:

> getFoldsResults(res, 'regriF.svm.v6', 'a3"')

mae mse
.738376 35.167234
.720053 85.865674
.062192 24.206549
.420911 58.518744
.916167 161.426858
.817921 43.421922

DO WN -
W o wow

26

BSOBRPD OTOWOaNWNWWEe OoTWwod WwwN WO

.972168 77
.989061 13
.522196 31
.420862 31
.067749 98
.984418 34.
.357721 28
.479078 51
.355505 120
.114532 18
.066947 67
.645389 T78.
.866368 37
.021332 23
.572863 12
.327102 32.
.283692 8
.643101 72
.698872 35
.157141 73
.329479 116.
.1564213 68.
. 765092 49.
.610639 57.

.363021
. 755938
.300923
.060239
.893965

911924

.456739
.941996
. 783822
.345599
.551031

109269

.893128
.811086
.474939

1562724

.395073
.896639
.597947
.571018

683214
634512
769519
289961

Getting the summary of the results of a particular workflow on a data set :

> getSummaryResults(res, 'regrWF.svm.v3', 'a7')

avg
std
min
max

mae
3.060265
1.062458
1.462067
6.195879

invalid 0.000000

mse
28.631648
25.950318
4.234327
110.197624
0.000000

Finally, the statScores () function allows you to apply any summary func-
tion (defaulting to mean ()) to the results on a certain statistic given in parameter
stat. The following calculates the median of the results of the SVMs on the
task “al”,

> statScores(subset (res,vars=glob2rx('*svm*'),dss="'al'),

+

$ail

stat='mae', summary='median')

regrWF.svm.vl regrWF.svm.v2 regrWF.svm.v3 regrWF.svm.v4 regrWF.svm.vb

11.33815

regrWF.svm.v6

11.75567

11.97405

12.98539

27

12.29963

11.66416

References

[Torl0] Luis Torgo. Data Mining with R: learning with case studies. Chapman
& Hall/CRC Press, 2010.

28

