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Abstract The R package DEoptim implements
the differential evolution algorithm. This algo-
rithm is an evolutionary technique similar to
classic genetic algorithms that is useful for the
solution of global optimization problems. In this
note we provide an introduction to the package
and demonstrate its utility for financial appli-
cations by solving a non-convex portfolio opti-
mization problem.

Introduction

Differential Evolution (DE) is a search heuristic intro-
duced by Storn and Price (1997). Its remarkable per-
formance as a global optimization algorithm on con-
tinuous numerical minimization problems has been
extensively explored (Price et al., 2006; Lampinen,
2009). DE has also become a powerful tool for
solving optimization problems that arise in finan-
cial applications: for fitting sophisticated models
(Gilli et al., 2008; Gilli and Schumann, 2009; Gilli
and Winker, 2008; Mullen et al., 2009), for per-
forming model selection (Maringer, 2005; Maringer
and Meyer, 2008; Maringer and Oyewumi, 2007), or
for optimizing portfolios under non-convex settings
(Maringer and Oyewumi, 2007; Krink et al., 2009;
Krink and Paterlini, 2009; Yollin, 2009). DE is avail-
able in R with the package DEoptim.

In what follows, we briefly sketch the DE algo-
rithm and discuss the content of the package DE-
optim. The utility of the package is then explored
by solving a non-convex portfolio optimization prob-
lem.

Differential evolution

DE belongs to the class of genetic algorithms which
use biology-inspired operations of crossover, muta-
tion, and selection on a population in order to mini-
mize an objective function over the course of succes-
sive generations (Holland, 1975). As with other evo-
lutionary algorithms, DE solves optimization prob-
lems by evolving a population of candidate solutions
using alteration and selection operators. DE uses
floating-point instead of bit-string encoding of pop-
ulation members, and arithmetic operations instead
of logical operations in mutation.

Let NP denote the number of parameter vectors
(members) x ∈ Rd in the population. In order to

create the initial generation, NP guesses for the op-
timal value of the parameter vector are made, ei-
ther using random values between upper and lower
bounds (defined by the user) or using values given
by the user. Each generation involves creation of a
new population from the current population mem-
bers {xi | i = 1, . . . ,NP}, where i indexes the vectors
that make up the population. This is accomplished
using differential mutation of the population mem-
bers. An initial mutant parameter vector vi is created
by choosing three members of the population, xr0 , xr1
and xr2 , at random. Then vi is generated as

vi
.= xr0 + F · (xr1 − xr2)

where F is a positive scale factor, effective val-
ues for which are typically less than one. After the
first mutation operation, mutation is continued un-
til d mutations have been made, with a crossover
probability CR ∈ [0,1]. The crossover probability CR
controls the fraction of the parameter values that are
copied from the mutant. If an element of the trial pa-
rameter vector is found to violate the bounds after
mutation and crossover, it is reset in such a way that
the bounds are respected (with the specific protocol
depending on the implementation). Then, the ob-
jective function values associated with the children
are determined. If a trial vector has equal or lower
objective function value than the previous vector it
replaces the previous vector in the population; oth-
erwise the previous vector remains. Variations of
this scheme have also been proposed; see Price et al.
(2006).

Intuitively, the effect of the scheme is that the
shape of the distribution of the population in the
search space is converging with respect to size and
direction towards areas with high fitness. The closer
the population gets to the global optimum, the more
the distribution will shrink and therefore reinforce
the generation of smaller difference vectors.

For more details on the DE strategy, we refer the
reader to Price et al. (2006), Storn and Price (1997)
and Lampinen (2009).

The package DEoptim

DEoptim (Ardia and Mullen, 2009) was first pub-
lished on CRAN in 2005. Early versions were written
in pure R. Since version 2.0-0 (published to CRAN in
2009) the package has relied on a interface to a C im-
plementation of DE, which is significantly faster on
most problems as compared to the implementation
in pure R. Since version 2.0-3, the C implementation
dynamically allocates the memory required to store
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the population, removing limitations on the number
of members in the population and length of the pa-
rameter vectors that may be optimized. Since be-
coming publicly available, DEoptim has been used
by several authors, e.g., Börner et al. (2007), Higgins
et al. (2007), Cao et al. (2009), and Opsina Arango
(2009), to solve optimization problems arising in di-
verse domains.

DEoptim consists of the core function DEoptim
whose arguments are:

• fn: the function to be optimized (minimized).
The function should have as its first argument
the vector or real-valued parameters to opti-
mize, and return a scalar real result.

• lower, upper: two vectors specifying scalar real
lower and upper bounds on each parameter to
be optimized, so that the ith element of lower
and upper applies to the ith parameter. The
implementation searches between lower and
upper for the global optimum of fn.

• control: a list of tuning parameters: VTR (de-
fault: -Inf), the value to reach, which speci-
fies the global minimum of fn if it is known,
or if you wish to cease optimization after hav-
ing reached a certain value. NP (default: 50),
the number of population members. itermax
(default: 200), the maximum number of itera-
tions (i.e., population generations) allowed. F
(default: 0.8), the scaling factor used in the mu-
tation. CR (default: 0.9) the crossover probabil-
ity. For details on the other control parame-
ters, the reader is referred to the documenta-
tion manual (by typing ?DEoptim) or to Mullen
et al. (2009). For convenience, the function
DEoptim.control() returns a list (and a mem-
ber of the S3 class DEoptim.control) with de-
fault elements of control.

• ...: allows the user to pass additional argu-
ments to the function fn.

The output of the function DEoptim is a member
of the S3 class DEoptim. Members of this class have
a plot method that accepts the argument plot.type.
plot.type = "bestmemit" results in a plot of the pa-
rameter values that represent the lowest value of
the objective function each generation. plot.type
= "bestvalit" plots the best value of the objec-
tive function each generation. Finally, plot.type =
"storepop" results in a plot of stored populations
(which are only available if these have been saved
by setting the control argument of DEoptim appro-
priately).

Let’s quickly illustrate the package’s usage with
the minimization of the Rastrigin function in R2,
which is a common test for global optimization:

> Rastrigin <- function(x) {

+ sum(x^2 - 10 * cos(2 * pi * x)) + 20
}

The global minimum is zero at point x = (0,0)′. A
perspective plot of the function is shown in Figure 1.

x_1

x_
2

f(x_1, x_2)

Figure 1: Perspective plot of the Rastrigin function.

The function DEoptim searches for a minimum
of the objective function between lower and upper
bounds. A call to DEoptim can be made as follows:

> DEoptim(fn = Rastrigin,
+ lower = c(-5, -5),
+ upper = c(5, 5),
+ control = list(storepopfrom = 1))

The above call specifies the objective function to
minimize, Rastrigin, the lower and upper bounds
on the parameters, and, via the control argument,
that we want to store intermediate populations from
the first generation onwards (storepopfrom = 1).
Storing intermediate populations allows us to exam-
ine the progress of the optimization in detail. Upon
initialization, the population is comprised of 50 ran-
dom values (50 being the default value of NP) drawn
uniformly within the lower and upper bounds. The
members of the population generated by the above
call are plotted at the end of different generations in
Figure 2. DEoptim consistently finds the minimum of
the function within 200 generations using the default
settings. We have observed that DEoptim solves
the Rastrigin problem more efficiently than the sim-
ulated annealing method available in the R function
optim (for all annealing schedules tried).

Note that DEoptim relies on repeated evaluation
of the objective function fn in order to move the pop-
ulation toward a global minimum. Therefore, users
interested in making DEoptim run as fast as possible
should ensure that evaluation of the objective func-
tion is as efficient as possible. Using pure R code,
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Figure 2: The population associated with various generations of a call to DEoptim as it searches for the min-
imum of the Rastrigin function at point x = (0,0)′. The minimum is consistently determined within 200
generations using the default settings of DEoptim.
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this may often be accomplished using vectorization.
Writing parts of the objective function in a lower-
level language like C or Fortran may also increase
speed.

Risk allocation portfolios

It is generally accepted that rational investors should
allocate their portfolio optimally according to a re-
turn/risk criterion. This often amounts to defin-
ing optimal portfolios as minimizers of non-linear
functions of the portfolio return and risk subject to
non-linear constraints. As mentioned previously, the
package DEoptim is well suited to solve these prob-
lems. This was first illustrated by Yollin (2009). DE-
optim is also the evolutionary optimization strategy
used in PortfolioAnalytics (Boudt et al., 2010b).

Here we illustrate the use of DEoptim to find
portfolios whose downside risk exposure is opti-
mized. Value-at-Risk (VaR) and Conditional Value-
at-Risk (CVaR or ES) are the most popular measures
of downside risk. VaR is the negative value of the
portfolio return such that lower returns will only oc-
cur with at most a preset probability level, which typ-
ically is between one and five percent. CVaR is the
negative value of the mean of all return realizations
that are below the VaR. Boudt et al. (2010a) propose
to use the Euler decomposition of portfolio condi-
tional value-at-risk (CVaR) as an objective function
or constraint in the portfolio optimization problem
to create portfolios that are aligned with the desired
level of risk diversification. This strategy is moti-
vated by the result that the contributions to CVaR can
be interpreted as the expectation of the return on the
portfolio component conditional on the portfolio re-
turn being larger than its VaR loss (Scaillet, 2002).

To illustrate this, consider as a stylized example,
a five-asset portfolio invested in the stocks with tick-
ers GE, IBM, JPM, MSFT and WMT. Under the as-
sumption of normality, the percentage CVaR contri-
butions are an explicit function of the mean and co-
variance matrix. We first download ten years of clos-
ing price data using the function get.hist.quote of
the package tseries. Then we compute the monthly
log-return series and the mean and covariance ma-
trix estimators.

> library("tseries")
> tickers <- c("GE", "IBM", "JPM", "MSFT", "WMT")
> for (ticker in tickers) {
+ close <- get.hist.quote(instrument = ticker,
+ start = "1989-12-01",
+ end = "2009-12-31",
+ retclass = "zoo",
+ quote = "AdjClose",
+ compression = "m")
+ if (ticker == "GE") {
+ P <- close
+ }
+ else {

+ P <- merge(P, close)
+ }
+ }
> R <- diff(log(P))
> colnames(R) <- tickers
> mu <- apply(R, 2, "mean")
> sigma <- cov(R)

Investors interested in risk diversification tend to
choose portfolios that are close to the equal-weight
portfolio. But is the risk exposure of this portfo-
lio effectively well diversified across the different as-
sets? This question can be answered by computing
the percentage CVaR contributions with function ES
in the package PerformanceAnalytics (Carl and Pe-
terson, 2010). These percentage CVaR contributions
indicate how much each asset contributes to the total
portfolio CVaR.

> library("PerformanceAnalytics")
> pContribCVaR <- ES(weights = rep(0.2, 5),
+ method = "gaussian",
+ portfolio_method = "component",
+ mu = mu,
+ sigma = sigma)$pct_contrib_ES)
> rbind(tickers, round(pContribCVaR, 3))

[,1] [,2] [,3] [,4] [,5]
tickers "GE" "IBM" "JPM" "MSFT" "WMT"

"0.185" "0.192" "0.265" "0.235" "0.123"

We see that in the equal-weight portfolio, 26.5%
of the portfolio CVaR risk is caused by the 20% in-
vestment in JPM, while the 20% investment in WMT
only causes 12.3% of total portfolio CVaR. The risk
contribution of the other investments is close to their
portfolio weight. The high risk contribution of JPM
is due to its high standard deviation and low average
return:

> round(mu, 3)
GE IBM JPM MSFT WMT

0.007 0.009 0.009 0.017 0.010
> round(diag(sigma)^1/2, 3)

GE IBM JPM MSFT WMT
0.003 0.004 0.005 0.005 0.002

We now use the function DEoptim of the package
DEoptim to find the portfolio weights for which the
portfolio has the lowest CVaR and each investment
can contribute at most 22.5% to total portfolio CVaR
risk. For this, we first define our objective function to
minimize:

> obj <- function(w) {
+ if (sum(w) == 0) { w <- w + 1e-2 }
+ w <- w / sum(w)
+ CVaR <- ES(weights = w,
+ method = "gaussian",
+ portfolio_method = "component",
+ mu = mu,
+ sigma = sigma)
+ tmp1 <- CVaR$ES
+ tmp2 <- max(CVaR$pct_contrib_ES - 0.225, 0)
+ out <- tmp1 + 1e3 * tmp2
+ }
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The first two lines are to ensure that all weights
sum up to unity. Note that we introduced the risk
allocation constraint though a penalty in the objec-
tive function. This penalty is non-differentiable and
therefore standard optimization routines cannot be
used. Several other optimization routines are avail-
able in R (e.g., optim, nlminb, constrOptim) without
achieving the same performance as DEoptim. These
other routines found local minima, took longer, or
did not converge, even on our relatively simple styl-
ized example. In contrast, DEoptim is more robust
in finding a good approximation to the global mini-
mum of this optimization problem:

> out <- DEoptim(fn = obj,
+ lower = rep(0, 5),
+ upper = rep(1, 5))
> out$optim$bestval
[1] 0.1063684
> wstar <- out$optim$bestmem
> wstar <- wstar / sum(wstar)
> rbind(tickers, round(wstar, 3))

par1 par2 par3 par4 par5
tickers "GE" "IBM" "JPM" "MSFT" "WMT"

"0.224" "0.215" "0.105" "0.166" "0.291"
> sum(wstar * mu) - mean(mu)
[1] -0.0001759887

Note that the main differences with the equal-
weight portfolio is the low weight given to JPM and
the high weight to WMT. As can be seen from the
last two lines, this minimum risk portfolio has a lower
expected return than the equal weight portfolio.

Suppose now the investor is interested in the
most risk diversified portfolio whose expected re-
turn is higher than the equal-weight portfolio. This
amounts to minimizing the largest CVaR contribu-
tion subject to a return target and can be imple-
mented as follows:

> obj <- function(w) {
+ if(sum(w) == 0) { w <- w + 1e-2 }
+ w <- w / sum(w)
+ contribCVaR <- ES(weights = w,
+ method = "gaussian",
+ portfolio_method = "component",
+ mu = mu,
+ sigma = sigma)$contribution
+ tmp1 <- max(contribCVaR)
+ tmp2 <- max(mean(mu) - sum(w * mu), 0)
+ out <- tmp1 + 1e3 * tmp2
+ }
> out <- DEoptim(fn = obj,
+ lower = rep(0, 5),
+ upper = rep(1, 5))
> wstar <- out$optim$bestmem
> wstar <- wstar / sum(wstar)
> rbind(tickers, round(wstar, 3))

par1 par2 par3 par4 par5
tickers "GE" "IBM" "JPM" "MSFT" "WMT"

"0.163" "0.212" "0.163" "0.178" "0.285"
> sum(wstar * mu) - mean(mu)
[1] 5.545333e-08

This portfolio invests more in the JPM stock and
less in the GE (which has the lowest average return)
compared to the portfolio with the upper 22.5% per-
centage CVaR constraint. We refer to Boudt et al.
(2010a) for a more elaborate study on using CVaR al-
locations as an objective function or constraint in the
portfolio optimization problem.

A classic risk/return (i.e., CVaR/mean) scatter
chart showing the results for portfolios tested by
DEoptim is displayed in Figure 3. Gray elements de-
note the results for all tested portfolios. The blue line
shows the path of the best member of the population
over time, with the darkest solution at the end be-
ing the optimal portfolio. Note how DEoptim does not
spend much time computing solutions in the scatter
space that are suboptimal, but concentrates the bulk
of the calculation time in the vicinity of the final best
portfolio.

One of the key issues in practice with real port-
folios is that a portfolio manager rarely has only a
single objective or only a few simple objectives com-
bined. For many combinations of objectives, there is
no global optimum, or the constraints and objectives
formed lead to a non-convex search space. It may
take several hours on very fast machines to get the
best answers, and the best answers may not be a true
global optimum, they are just as close as feasible given
potentially competing and contradictory objectives.

When the constraints and objectives are relatively
simple, and may be reduced to quadratic, linear, or
conical forms, a simpler optimization solver will pro-
duce answers more quickly. When the objectives are
more layered, complex, and potentially contradic-
tory, as those in real portfolios tend to be, DEoptim
or a pure random portfolio space as those integrated
into PortfolioAnalytics provide a portfolio manager
with a feasible option for optimizing their portfolio
under real-world non-convex constraints and objec-
tives. The PortfolioAnalytics framework allows any
arbitrary R function to be part of the objective set,
and allows the user to set the relative weighting that
they want on any specific objective, and use the ap-
propriately tuned optimization solver algorithm to
locate portfolios that most closely match those objec-
tives.

Summary

In this note we have introduced DE and DEoptim.
The package DEoptim provides a means of applying
the DE algorithm in the R language and environment
for statistical computing. DE and the package DE-
optim have proven themselves to be powerful tools
for the solution of global optimization problems in
a wide variety of fields. We have referred inter-
ested users to Price et al. (2006); Lampinen (2009) and
Mullen et al. (2009) for a more extensive introduc-
tion, and further pointers to the literature on DE. The
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Figure 3: Risk/return scatter chart showing the results for portfolios tested by DEoptim.

utility of using DEoptim was further demonstrated
with a simple example of a stylized non-convex port-
folio risk contribution allocation, with users referred
to PortfolioAnalytics for portfolio optimization us-
ing DE with real portfolios under non-convex con-
straints and objectives.
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