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Abstract

A new alternative to the standard Poisson regression model for count data is suggested.
This new family of models is based on discrete distributions derived from renewal pro-
cesses, i.e., distributions of the number of events by some time ¢. Unlike the Poisson model,
these models have, in general, time-dependent hazard functions. Any survival distribution
can be used to describe the inter-arrival times between events, which gives a rich class
of count processes with great flexibility for modelling both underdispersed and overdis-
persed data. The R package Countr provides a function, renewal (), for fitting renewal
count regression models and methods for working with the fitted models. The interface
is designed to mimic the glm() interface and standard methods for model exploration,
diagnosis and prediction are implemented. Package Countr implements state-of-the-art
recently developed methods for fast computation of the count probabilities. The package
functionalities are illustrated using a fertility dataset.

Keywords: renewal process, duration dependence, count data, Weibull distribution, convolu-
tion, Richardson extrapolation.

1. Introduction

Modelling a count variable (the number of events occurring in a given time interval) is a
common task in many fields such as econometrics, social sciences, sports modelling, marketing,
physics or actuarial science just to name a few. The standard approach is to use the Poisson
model, where Y|z ~ Poisson(E(Y|x) = exp(2/8)). Here Y is predicted given covariates
with values z, using regression coefficients 5. This model was built around a one-to-one
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correspondence between the count model (Poisson) and the distribution of the inter-arrival
times (exponential). Perhaps this conceptual elegance contributed to its popularity. With this
elegance comes some limitation: the Poisson model restricts the (conditional) variance to be
equal to the (conditional) mean. This situation is rarely observed in real life data and among
the thousands of alternatives proposed in the literature (see for example Winkelmann (2013)
or Cameron and Trivedi (2013) for a review), only a few retain the correspondence between the
count model and the timing process. This correspondence is not only a conceptual elegance
but also offers the researcher the flexibility to model the aspect (counting or timing) that is
perhaps known better (from the available data) and to draw conclusions (typically prediction)
using the other. A classic example is the exponential distribution used in radioactive decay
which leads to Poisson count model. Another very good example in the marketing context
can be found in McShane, Adrian, Bradlow, and Fader (2008).

Another limitation of the Poisson model results from the memorylessness property of the
exponential distribution. In fact, this property states that the probability of having an arrival
during the next [t,¢ + At] time period (where ¢ > 0 and At > 0) is independent of when the
last arrival occured. In many situations, this assumption is not realistic and the history of
the process can be informative about future occurrences.

One way to incorporate the history of the process in the modelling process is to make the
current probability of an occurence depend on the number of previous event occurences.
These models are known as occurence dependence and they are said to display true contagion.
Bittner, Nussbaumer, Janke, and Weigel (2007) gave a discrete time example where the
probability of scoring a goal in soccer in the current unit of time depends on the number of
goals scored previously. The modelling process resulted in a negative binomial distribution.

Another way to take advantage of the process history is to assume that the time since last
observed event is informative about the probability of a future occurence. Inter-arrival times
between events are still assumed to be independent and identically distributed but the hazard
function, defined by h(t) = 7 g %) where f(t) and F(t) are the density and the cummulative
probability function, is no longer a constant function of time (as in the exponential case) but
is replaced by a time-varying function. These type of models display duration dependence
where negative duration dependence is obtained by a decreasing hazard function (of time)
and positive duration dependence by an increasing hazard function. As noted by Winkelmann
(1995), “Events are ‘dependent’ in the sense that the occurence of at least one event (in contrast
to none) up to time t influences the occurence in t + At”. This class of models is known as
renewal processes and will form the main focus of this paper.

The key quantity when studying renewal processes (and time to event in general) is the
hazard function. Not only does it fully characterize the inter-arrival timing distribution
but it also relates to the type of dispersion observed in the corresponding count data. In
particular, Winkelmann (1995) established that if the hazard function is monotonic, increasing
(decreasing) hazard corresponds to count data with under-dispersion (over-dispersion); the
constant hazard characterizing the exponential distribution corresponds to data with equi-
dispersion. Therefore, allowing for a more flexible hazard function results in more flexible
counting processes able to accomodate over-dispersed and under-dispersed, as well as equi-
dispersed data.

Winkelmann (1995) was the first to comment on the usefulness of renewal process models
and derived a count model based on gamma distributed inter-arrival times. The choice of
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the gamma distribution was justified by computational necessity. In fact, the reproductive
property of the gamma distribution (sums of independent gamma distributions are gamma
distributed) leads to a simple form for the derived gamma count probability. McShane et al.
(2008) derived a closed formula for the count probability of a renewal process based on Weibull
inter-arrival times using series expansion. The same approach has been used by Jose and
Abraham (2011) and Jose and Abraham (2013) to derive a counting process with Mittag-
Leffler and Gumbel inter-arrival times, respectively.

Despite the attractive properties of count models based on renewal processes, their use is
still limited in practice where Poisson, geometric and negative binomial are usually preferred.
Perhaps the main reason is the lack of available software to easily fit this new type of models.
The development of Countr (Kharrat and Boshnakov 2016), available from the Comprehensive
R Archive Network (CRAN), is meant to fill in this gap and complete the practioners’ toolbox
for modeling count data in R.

The Countr package provides a function, renewal (), for fitting count regression models based
on renewal distributions. It offers several built-in renewal distributions and supports custom
distributions. The design of the fitting function (renewal()) and the methods that act on the
object returned by it is meant to mimic the familiar user interface associated with a number of
R modelling functions, especially glm() (Chambers, Hastie, and Pregibon 1990) from package
stats or hurdle() and zeroinfl() (Zeileis, Kleiber, and Jackman 2008).

The remainder of this paper is laid out as follows. In Section 2, we briefly review the fun-
damental relationship between a timing process and the resulting count model as well the
renewal regression models considered in Countr. The package design is discusssed in Section 3
and several working examples are given in Section 4. Some closing remarks are addressed in
Section 5. We conclude and discuss future work in Section 6.

2. Models

2.1. Count models and inter-arrival times

The distribution of non-negative integer valued discrete random variables, count distributions
for short, can be used as the distribution of the number of events in a given time interval, and
vice versa. A powerful method to specify count distributions then can be based on models of
the times between the events.

Consider a stochastic process starting at time ¢ = 0 which produces a sequence of events. Let
71 be the time of the first event and, in general, 7, be the time between the (k — 1)th and
the kth event, k£ € N. The 7;’s are known as inter-arrival times or waiting times. The arrival
time of the mth event is

m
ang Th) m=1,2,...,
k=1

with cummulative probability function F,(t) = P(am, < t).

Let N; = N(t) denote the total number of events in [0,¢). For any fixed ¢ (the observation
horizon), N; is the count variable we wish to model. We have P(N; > m) = F,,(t) and
P(N: < m) =1 — Fy,(t), since N; > m if and only if the mth event occurs before time ¢.
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Moreover, the probability, P, (t), for exactly m events before time ¢ is

Pp(t) = P(Ny =m)
=P(N; > m) — P(N; > m+ 1)
= Fi(t) - Fpa (1) S

For fixed ¢, Equation (1) shows how a count distribution, {P,(t), m = 0,1,...}, can be
obtained from {F,(t), m = 0,1,...}, which in turn can be specified flexibly by the inter-
arrival distributions.

More specifically, let {7 }ren be independent and identically distributed (iid) random vari-
ables with common density f(7). In this case the process is called a renewal process (see Feller
1970, for a formal definition) and Equation (1) can be used to derive the following recursive
relationship:

Poia(t) = /0 Pt — ) dF(u) — /0 Foir (1 — u) dF(u)
:/th(t—u)dF(u), form=1,2,... @)
0

where Py(u) = S(u) = 1 — F(u) (a survival function). Equation (2) can be understood
intuitively: the probability of exactly m + 1 events occurring by time ¢ is the probability that
the first event occurs at time 0 < u < ¢, and that exactly m events occur in the remaining time
interval, integrated over all times u. Pj(t),..., Py (t) can be generated in turn by evaluating
this integral. Several methods implemented in Countr for the demanding task of computing
P, (t) are summarized in Section 5.1. Readers interested in the computational details are
referred to Baker and Kharrat (2016).

We use the term count distribution or renewal count distribution for the distribution of V;
and qualify it with the name of the inter-arrival distribution for a particular distribution of
the inter-arrival times. For example, Weibull count distribution refers to the count model
arising from a renewal process with inter-arrival times having a Weibull distribution.

2.2. Renewal regression models

The regression models fitted by Countr are in the spirit of the generalised linear models
(McCullagh and Nelder 1989) and consist of two main components: a conditional distribution
of the response variable (given the covariates, if any) and one or more linear equations relating
parameters to covariates, possibly via link functions.

More formally, let Y be the response variable of interest,  a vector of covariates and D a
renewal count distribution. We assume that

Y|x ~D(6), (3)

where 6 is the vector of the parameters of D.

One or more parameters of the distribution may depend linearly on covariates via link func-
tions. The equation for the kth parameter then is:

9k (Or) = ' By, (4)
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where g, is the link function for the kth parameter, z the covariates and S the corresponing
vector of regression parameters. Typically, covariates are related to a location parameter but
it is helpful in some applications to be able to let other parameters depend on covariates.

We call these models renewal regression models. Note that, in general, the renewal distri-
butions are not from the exponential family. For comparison, in standard generalised linear
models (glm) the distribution is taken from the exponential family of distributions and the
mean, transformed by a link function, is a linear combination of the covariates.

2.3. Choosing the inter-arrival time distribution

As discussed before, count models arising from renewal processes provide very flexible families
of distributions. Perhaps the simplest way to use them is to simply ignore their connections
to renewal theory. Several models can be tried and users can choose the model that provides
the best fit to the data using standard goodness of fit tests (for example chi-squared) or
compare information criteria such as the Akaike information criterion (AIC) or the Bayesian
information criterion (BIC).

In some applications however, the researcher may have some information about the inter-
arrival time process which can lead to a particular choice of model. For example, assume that
a researcher is interested in modelling the number of occurences by some time horizon ¢. He
or she has data on the observed count for a number, n, of individuals, together with a set
of individual covariates x;,7 = 1,...,n. If data on time to first event are also available, the
researcher can fit a parametric hazard model using package flexsurv (Jackson 2016), choose
the parametric model that presents the best fit and use the associated renewal count family
to model his data. This approach has been used in Kharrat (2016, Chapter 4).

3. Package design

The Countr package is available from CRAN https://cran.r-project.org/web/packages/
Countr and can be installed using the standard R tools.

The main function in Countr is renewal (). It fits renewal regression models for count data
using maximum likelihood. Several built-in distributions for the inter-arrival times are pro-
vided. These are "weibull", "gamma", "gengamma" and "burr". User-defined distributions
are also supported.

The renewal () function returns the fitted model as an object from S3 class "renewal". The
standard interface to the modelling functions is maintained, as much as possible. In particular,
methods for summary (), predict(), confint (), coef () and similar functions are available.

The Countr package also exports functions for the computation of the probabilities associated
with several renewal count models. The probability computations are rather intensive and
are mostly implemented in C++ with the help of the ReppArmadillo (Eddelbuettel and
Sanderson 2014) package. Several methods are provided offering various degrees of trade-off
between speed and accuracy, see Section 5.1.

4. Fitting renewal regression models

The examples below assume that the package is made available in the current session via
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> library(Countr)

The fertility dataset We illustrate the usage of Countr with the fertility data, first de-
scribed in Winkelmann (1995, Section 5) and re-analyzed by McShane et al. (2008) and Baker
and Kharrat (2016). The dataset is available when Countr is attached. It can also be loaded
independently using data() e.g.

> data(fertility, package = "Countr")
> head(fertility)

GERMAN EDU VOC UNI CATH PROT MUSL RURAL YEAR_OF_B AGEMARR Y
1 o 8 0 O 0 0 0 1 42 20 2
2 0 8 0 O 0 0 0 1 55 21 3
3 0o 8 0 O 0 0 0 1 51 24 2
4 0 8 0 O 0 0 0 0 54 26 4
5 0o 8 0 O 0 0 0 1 46 22 2
6 0 8 0 O 0 0 0 0 41 18 2

The fertility dataset contains information about a sample of 1,243 women who were over
44 years old in 1985 and answered the questions of the German Socio-Economic Panel. The
responses are arranged in a data frame with one row for each person and 11 columns, coded
as follows:

GERMAN — German nationality, dummy variable.
e EDU — general education, measured as years of schooling.

e VOC, UNI — post-secondary education: vocational training (VOC) and/or university
(UNI), dummy variables.

e CATH, PROT, MUSL — religion: catholic (CATH), protestant (PROT), muslim (MUSL), with
other or none as reference group without its own column in the dataset.

e RURAL — rural, dummy variable.
e YEAR_OF_B — year of birth.
e AGEMARR — age at marriage.

e Y — number of children.

The response variable considered here is the number of children per woman (Y). The average
number of children observed in this sample is 2.384 and variance of 2.33, so there is a hint for
under-dispersion in the response variable’s marginal distribution.

Renewal regression models are fitted with the function renewal (). It has been designed to
mimic the GLM functionality in R. In fact, users familiar with glm() should recognize several
common arguments in renewal ()’s interface:
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> renewal (formula, data, subset, na.action, weights, offset,

+ dist = c("custom", "weibull", "weibullgam",

+ "gamma", "gengamma", "burr"),

+ anc = NULL, convPars = NULL, link = NULL, time = 1.0,

+ control = renewal.control(...), customPars = NULL,

+ seriesPars = NULL, weiMethod = NULL,

+ TRUE, y = TRUE, x = FALSE, ...)

computeHessian = TRUE, model

where the first line contains the standard model-frame specifications, the last line controls
some components of the returned object and the remaining arguments are specific to the
renewal regression model.

The minimum required inputs are formula (an R formula), data (a data frame) and dist (a
character string). Argument formula describes the model, data contains the values of the
response and the covariates, while dist specifies the desired count model distribution.

The fitting process is based on maximum likelihood using optimization routines implemented
in package optimx (Nash and Varadhan 2011). Users can customize different aspects of the
fitting process and control what is returned but if the minimum inputs are provided the
routine will work just fine.

The fitting process is discussed in more details in the following sections. Additional guidance
can be found in the package documentation.

4.1. Specifying the count distribution

The count distribution is selected by specifying the distribution of the inter-arrival times.
Countr currently provides four built-in distributions: the Weibull, the gamma, the generalized
gamma (with Prentice (1974) parameterization), and the Burr type XII distribution. The
Weibull-gamma distribution described in McShane et al. (2008) has also been implemented
but we found the model to be numerically unstable and it should be used with care (see also
the discussion in Baker and Kharrat 2016, Section 7.4).

For the renewal() function and other functions in the package that provide a choice, the
desired inter-arrival distribution is specified by the argument dist as a character string,
which should have one of the following values: "weibull", "gamma", "gengamma" or "burr".
Inter-arrival distributions defined by the user are also supported (and specified by dist =
"custom"), see Section 4.4.

4.2. Specifying covariates

Covariates can be introduced using familiar R formula syntax. We will use the following
formula in the examples using the fertility dataset:

> regModel <- Y ~ GERMAN + EDU + VOC + UNI + CATH + PROT + MUSL +
+ RURAL + YEAR_OF_B + AGEMARR

As usual, the left-hand side of the formula supplied as the argument formula in a call to
renewal () specifies the response variable. The right-hand side gives the covariates for the
linear relationship to the (possibly transformed by a link function) corresponding parameter
of the count distribution.
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A link function (the function g() in equation (4)) can also be specified via the 1ink argument
as a named list with the same length as the distribution’s number of parameters. Each slot
is named after the parameter it is linked to and takes the name of the desired link function
as its slot value. Possible options for the link function are "log", "cauchit", "cloglog",
"probit", "logit" and identity (default for user defined distributions). For example, for
the Weibull distribution, one can choose log for the shape and the scale parameters as follows:

> link_weibull <- list(scale = "log", shape = "log")

4.3. Fitting built-in models

When fitting built-in models, users are advised to work with the default setting and simply
provide the required inputs. For example, the gamma model of Winkelmann (1995) can be
fitted as follows:

> gamModel <- renewal (formula = regModel, data = fertility, dist = "gamma",
+ control = renewal.control(trace = 0)

+ )

To fit a count distribution without covariates, put 1 in its right-hand side. This fits a Weibull
count distribution to Y:

> weiCountA <- renewal (formula =Y ~ 1, data = fertility, dist = "weibull",
+ weiMethod = '"series_acc",

+ control = renewal.control(trace = 0)

+ )

Almost any step of the computation can be customized in renewal () and options are provided
to give the user control over the computation of the initial values, the numerical optimization
algorithm, the method for computing the count probability and the returned values, among
others.

User defined initial values

As usual in non-linear optimisation, for best results informed initial values should be provided
whenever possible. For the built-in distributions which generalize the Poisson model, one
strategy is to fit a Poisson glm model and use its parameter estimates as starting values for
the numerical optimizer. This is the strategy adopted by renewal () when no initial values
are provided.

> IV <- glm(regModel, family = poisson(), data = fertility)

The initial values are passed to renewal () as a named numeric vector. For this, the names
of the coefficients are needed. They have the form par_covname, where covname is the
name of a covariate and par is the name of the distribution parameter to which it is linked.
Intercepts are named par_. The names of the distribution parameters can be found by a call
to getParNames ().
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> pars <- getParNames ("weibull")
> pars

[1] "scale" "shape"

Initial values for the Weibull count model of McShane et al. (2008) can be prepared as follows.
We rename the coefficients of model IV obtained from glm() to link them to the first parameter
of the Weibull distribution:

> parlValues <- coef (IV)
> names(pariValues) <- paste(pars[1], names(pariValues), sep = "_")
> names (pariValues) <- gsub('\\(Intercept\\)', "", names(parlValues))

The Poisson model is a particular case of the Weibull model with shape parameter equal to
one:

> par2Value <- 1.0
> names (par2Value) <- paste(par2, "", sep = "_")
> start <- c(parilValues, par2Value)

Finally, the initial values are passed to renewal() through the renewal.control() routine
that will run a sanity check on them before passing them to the optimizer:

> weiModel <- renewal (formula = regModel, data = fertility, dist = "weibull",
+ control = renewal.control(trace = 0, start = start)
+ )

Customizing the optimization routine

As mentioned above, renewal () maximizes the (log)-likelihood of the desired model by a call
to optimx () from package optimx (Nash and Varadhan 2011). The default is to use method
= "nlminb" with a maximum of 1000 iterations. Users can change this again through the
renewal .control() routine. Any other option accepted by optimx() can also be passed in
renewal.control(), e.g.

> weiModel <- renewal (formula = regModel, data = fertility, dist = "weibull",
+ control = renewal.control(trace = 0, method = "L-BFGS-B")
+ )

Probability computation methods

Users can choose the method by which the count probabilities are computed. As discussed in
more details in Section 5.1, there are two families of methods. First, there are series expansion
methods specific to the Weibull-count models and selected via the weiMethod argument and
second, there are convolution based methods that work with any inter-arrival distribution. If a
series expansion method is selected, users can customize it by appropriately setting argument
seriesPars. It is a list with components terms (the number of terms in the expansion),
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iter (the number of iterations in the accelerated series expansion algorithm) and eps (the
convergence tolerance).

If a convolution method is to be used, users can customize it by using argument convPars.
It is a list with optional components for choosing the number of steps in the convolution
(nsteps), the convolution algorithm (convMethod), which can take one of the following values:
"conv_naive", "conv_direct" or "conv_dePril") and specify if Richardson extrapolation
should be applied by setting the boolean slot extrap.

As an example we show below how to fit the Weibull model of McShane et al. (2008) using
a series accelerated method based on the Euler and van-Wijngaarden transformations (Press
2007, Chapter 5) and user defined parameters.

> weiModel <- renewal (formula = regModel, data = fertility, dist = "weibull",
+ weiMethod = '"series_acc",

+ control = renewal.control(trace = 0),

+ seriesPars = list(terms = 80, iter = 400, eps = 1e-10)
+ )

Controlling the returned values

Following the R convention, users can decide whether the model frame (model), the model
matrix (x) and the response (y) are returned in the output of renewal (). In addition, users
can decide whether the variance-covariance matrix of the model should be computed by setting
the boolean flag computeHessian (defaults to TRUE).

Regression models on the ancillary parameters

So far we have given examples of regression models in which the parameter regressed on
was the location parameter, or more precisely, the first parameter of the count distribution.
Countr offers the possiblity to specify covariates on the “ancillary” parameters (the ones that
determine the shape, the variance or other higher moments) via the argument anc. anc is
a named list containing formulas describing regression equations for the desired ancilliary
parameters. Only the right-hand sides of the formulas are used here.

In the ancillary regression case, starting values have to be provided. We show below an
example of fitting such a model for the generalized gamma inter-arrival times with covariates
applied to all the distribution parameters. The names of the distribution parameters in this
case are "mu" (location), "sigma" and "Q". Given the complexity of the optimization task,
we solve the problem in two steps. First, we need to find informative initial values. In order
to do that, we use the Poisson trick for the location parameter described earlier and set other
regression coefficients to zero (except for the intercept which is set to one) and run a first
optimization:

mu <- coef(IV)

names (mu) <- pasteO("mu_", names (mu))

sigma <- @ <- c(1, rep(0, 10))

names (sigma) <- gsub("mu_", "sigma_", names(mu))
names (Q) <- gsub("mu_", "Q_", names(mu))

start <- c(mu, sigma, Q)

V VvV V Vv Vv VvV
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> names(start) <- gsub('\\(Intercept\\)', "", names(start))

> anc <- list(sigma = regModel, ( = regModel)

> gengamModel_ext0O <- renewal (formula = regModel, data = fertility,

+ dist = '"gengamma",

anc = anc,

control = renewal.control(start = start, trace = 0),
computeHessian = FALSE)

+ + +

Second, we use the values of the frst optimization as starting values in a second one. The spg
algorithm was used in this second iteration:

> start <- coef (gengamModel_ext0)
> gengamModel_ext <- renewal (formula = regModel, data = fertility,

+ dist = '"gengamma",

+ anc = anc,

+ control = renewal.control(method = "spg",

+ start = start, trace = 0),
+ computeHessian = FALSE)

Users can make sure that the optimization did converge by investigating the convergence
status flag in object gengamModel_ext:

> gengamModel_ext$converged

[1] TRUE

4.4. Custom inter-arrival distributions

Instead of using the built-in distributions in Countr, users can also specify their own inter-
arrival parametric distributions. For this to work, the following information is required:

e names of the distribution parameters, a character vector.

e survival distribution function, a function with signature function(tt, distP), where
tt is a vector of class "numeric" of non-negative values and distP gives the values of
the distribution parameters as a named list.

e the name(s) of the link function(s); different link functions may be used for the different
parameters. If not specified, identity will be used.

The Weibull inter-arrival distribution is one of the built-in distributions but as an illustrative
example here is how it could be specified as a custom distribution:

> parNames <- c("scale", "shape")

> sWei <- function(tt, distP)

+ exp( -distP[["scale"]] * tt ~ distP[["shape"]])
> link <- list(scale = "log", shape = "log")
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Here parNames defines the names of the parameters, "sWei" computes the survival distribu-
tion function and link requests log link for both parameters (a common choice for positive
parameters).

Initial values are very desirable for user defined distributions and are computed as discussed
in 4.3.1.

> pars <- coef (IV)

> names (pars) <- gsub('\\(Intercept\\)', "',

+ pasteO("scale_", names(pars))
+ )

> start <- c(pars, shape_ = 1)

>

control_custom <- remewal.control(start = start, trace = 0)

For custom inter-arrival distributions, convolution based methods are the only option. If the
user is willing to speed up the computation using a Richardson correction scheme (see Baker
and Kharrat 2016, Section 3.5 for more details), the appropriate correction function that
computes the correction coefficients must be passed. As argued by Baker and Kharrat (2016,
Section 3.5), the appropriate values for the Weibull case are (2,«), where « is the shape
parameter. This can be communicated to renewal () by defining a function whose argument
is a named list of the distribution parameters, as in:

> .getExtrapol <- function(distP) {
+ c(2, distP[["shape"]])
+ }

Once all the inputs are ready, renewal () can be called in the usual way with argument dist
set to "custom". The names of the parameters, the survival function and the extrapolation
parameters are passed to renewal() through argument customPars. In our example these
are parNames, sWei and .getExtrapol, respectively. This illustrates the syntax for preparing
the list:

> customPars <- list(parNames = parNames,
+ survivalFct = sWei,
+ extrapolFct = .getExtrapol)

There is also an argument for the links. A model with our custom specified distribution can
now be fitted with:

> weiModelCust <- renewal (formula = regModel, data = fertility, dist = "custom",
+ link = link,

+ control = control_custom, customPars = customPars,

+ computeHessian = FALSE)

Note that the computations in this example can be much slower than for the equivalent built-
in distribution (that is why the hessian computation has been turned off), since the crucial
parts of the latter are implemented in C+—+.

4.5. Working with the fitted models
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The function renewal () produces an S3 object from class "renewal". Methods for a number
of R functions are provided, so that objects from class "renewal" can be manipulated and
explored in a familiar way. Currently, methods for the following generics are available:

> methods(class = "renewal")

[1] coef confint df .residual extractAIC fitted
[6] logLik model .matrix nobs predict print
[11] residuals se.coef summary vcov

see '"methods' for accessing help and source code

Model fit

The usual summary() method can be used to check the coefficients’ estimates together with
their standard errors (computed using numerical estimates of the gradient and Hessian) and
Wald test statistics. Here is a summary of Winkelmann’s model fitted above:

> summary (gamModel)

Call:
renewal (formula = regModel, data = fertility, dist = "gamma",
control = renewal.control(trace = 0))

Pearson residuals:
Min 1Q Median 3Q Max
-2.6410 -0.7262 -0.0901 0.4890 6.7411
Inter-arrival dist.: gamma
Links: rate: link log, shape: link log

Count model coefficients
Estimate Std. Error z value Pr(>lz|)

rate_ 1.55670 0.25234 6.17 6.9e-10 *x*x
rate_GERMAN -0.18976 0.05904 -3.21 0.00131 *x*
rate_EDU 0.03169 0.02650 1.20 0.23185
rate_VOC -0.14394 0.03584 -4.02 5.9e-05 *xx
rate_UNI -0.14606 0.12961 -1.13 0.25981
rate_CATH 0.20577 0.05780 3.56 0.00037 *x*x
rate_PROT 0.10714 0.06230 1.72 0.08547 .
rate_MUSL 0.52263 0.06984 7.48 T7.3e-14 xxx
rate_RURAL 0.05549 0.03119 1.78 0.07520 .
rate_YEAR_OF_B 0.00234 0.00195 1.20 0.22863
rate_AGEMARR  -0.02880 0.00533 -5.41 6.5e-08 **x
shape_ 1.43932 0.07106  20.25 < 2e-16 **x
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Number of iterations in nlminb optimization: 57
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Execution time 73.228
Log-likelihood: -2078.226 on 12 Df

The results are exactly the same as the ones in Winkelmann (1995, Table 1)!. Similarly, the
results for weiModel below coincide with those given by McShane et al. (2008, Table 2)2:

> summary (weiModel)

Call:
renewal (formula = regModel, data = fertility, dist = "weibull",
control = renewal.control(trace = 0), seriesPars = list(terms = 80,
iter = 400, eps = le-10), weiMethod = "series_acc")

Pearson residuals:
Min 1Q Median 3Q Max
-2.6623 -0.7299 -0.0936 0.4978 6.7416
Inter-arrival dist.: weibull
Links: scale: link log, shape: link log

Count model coefficients
Estimate Std. Error z value Pr(>|z|)

scale_ 1.39721 0.31484 4.44 9.1e-06 **x
scale_GERMAN -0.22255 0.07179 -3.10 0.00194 *x
scale_EDU 0.03853 0.03268 1.18 0.23840
scale_V0OC -0.17335 0.04395 -3.94 8.0e-05 **x
scale_UNI -0.18146 0.16029 -1.13 0.25761
scale_CATH 0.24200 0.07016 3.45 0.00056 *xx
scale_PROT 0.12314 0.07553 1.63 0.10302
scale_MUSL 0.63876 0.08663 7.37 1.7e-13 *x*xx
scale_RURAL 0.06806 0.03812 1.79 0.07417 .
scale_YEAR_OF_B 0.00230 0.00230 1.00 0.31631
scale_AGEMARR -0.03403 0.00635 -5.36 8.6e-08 ***
shape_ 1.23615 0.03371 36.67 < 2e-16 **x*
Signif. codes: O '*x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Number of iterations in nlminb optimization: 48

Execution time 32.876
Log-likelihood: -2077.022 on 12 Df

!Note that the regression model defined in Winkelmann (1995, Equation (17)) is slightly different and hence
the constant value defined in Table 1 is related to our estimated rate_ parameter by exp(Constant) x o =
exp(scale_).

2The value of X in McShane et al. (2008, Table 2) is the exponential of the value of scale_. Also note that
the standard errors in their table are obtained by the bootstrap procedure with 100 replicates.



Journal of Statistical Software

Boostrap standard errors

Bootstrap standard erros and confidence intervals can be computed by setting type = "boot"
and specifying the desired number of boostrap samples gith argument R. Here is an example
with R = 5 replicates:

> se_boot <- se.coef(object = weiModel, type = '"boot", R = 5)
> confint_boot <- confint(object = weiModel, type = "boot", R = 5)

Comparing fitted models

In the previous section, we fitted three models to the fertility data. One way to select the
“best” model is to use information criteria such as AIC or BIC. For completeness, we also
include the Poisson model (previously fitted for use as initial values) and add it to the list of
models to be compared:

> poissModel <- IV

mat <-
cbind(logLlik = c(logLik(poissModel),
logLik (gamModel),
logLik (weiModel),
logLik(gengamModel_ext)),
c(length(coef (poissModel)),
length(coef (gamModel)),
length (coef (weiModel)),
length(coef (gengamModel_ext))),

AIC = c(AIC(poissModel),
AIC(gamModel),
AIC(weiModel),
AIC(gengamModel_ext)),

BIC = c(BIC(poissModel),
BIC(gamModel),
BIC(weiModel),
BIC(gengamModel_ext))

nPars

+ + + + + + + 4+ 4+ ++ 4+ ++ 4+ +V

+ )
> rownames (mat) <- c("Pois", "gam", "wei", "gengam_ext")
> print (mat)

loglLik nPars AIC BIC

Pois -2102 11 4226 4282
gam -2078 12 4180 4242
wel -2077 12 4178 4240

gengam_ext -2054 33 4174 4343

The generalized gamma model has the largest log-likelihood and is favoured by AIC. On
the other hand, BIC, which penalizes the number of parameters more strongly than AIC,
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favors the less parsimonious Weibull model. Note also that for this dataset, the three renewal
regression models clearly outperform the Poisson one.

Prediction

Predictions from the fitted model are obtained by calling predict (). Two types of prediction
are available: predicting a given count (response) value (type = "prob") i.e., the probability
of observing a specific value of the count variable (the value of Y in our data.frame) given
the (individual) covariates or predicting the expected value (type = "response").

The procedure is illustrated for the first few individuals in the fertility data:

> newData <- head(fertility)

> predNew.response <- predict(weiModel, newdata = newData,

+ type = "response", se.fit = TRUE)
> predNew.prob <- predict(weiModel, newdata = newData,
+ type = "prob", se.fit = TRUE)

> predtable <- data.frame(newData$Y, predNew.prob$values,

+ predNew.response$values)
> names (predtable) <- c("Y", "P(Y=ylx)", "E(Y[x)")

> predtable

Y P(Y=ylx) E(Y|x)
1 2 0.284675 2.6349
2 3 0.253154 2.6257
3 2 0.303078 2.3851
4 4 0.095872 2.1319
5 2 0.295155 2.5046
6 2 0.285129 2.6296

The covariates are not printed here since they were shown in Section 4.

To conclude this section, one can verify that the results produced by the built-in model and
the user defined Weibull model are identical (up to rounding errors):

> cbind(builtIn = coef(weiModel), user = coef (weiModelCust))

builtIn user
scale_ 1.3972 1.3973
scale_GERMAN -0.2226 -0.2226
scale_EDU 0.0385 0.0385
scale_VOC -0.1733 -0.1734
scale_UNI -0.1815 -0.1815
scale_CATH 0.2420 0.2420
scale_PROT 0.1231 0.1231
scale_MUSL 0.6388 0.6388
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scale_RURAL 0.0681 0.0681
scale_YEAR_OF_B 0.0023 0.0023
scale_AGEMARR -0.0340 -0.0340
shape_ 1.2362 1.2362

5. Additional details

5.1. Count probability computation methods

In order to compute the different count probabilities defined in equation (2), two families of
algorithms have been implemented in Countr:

Taylor series expansion: this is specific to the Weibull renewal process. Following the
method of McShane et al. (2008), the exponential in the Weibull density can be expanded out
and series transformation techniques can be used to speed up convergence. Two algorithms
have been implemented: a matrix approach (series_mat) using series_terms terms and a
series accelerated method based on the Euler and van-Wijngaarden transformations (Press
2007, Chapter 5) controlled by series_acc_niter number of iterations and a convergence
tolerance series_acc_eps.

Convolution methods: as developed and described in Baker and Kharrat (2016), three
algorithms are available: the naive convolution that computes all the probabilities up to the
desired one (conv_naive), the direct convolution that computes a reduced number of convolu-
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tions to produce the result (conv_direct) and the dePril’s convolution method (conv_dePril).

The number of discretization steps can be controlled by setting conv_steps. By default, the
built-in distributions apply Richardson correction (conv_extrap = TRUE).

5.2. Naming conventions

The names of the more technical functions in the package are somewhat verbose. We use the
following conventions. The names of the renewal count models are formed by concatenating
the name of the inter-arrival distribution and the word ‘Count’. Functions that accept the
inter-arrival distribution as a parameter simply contain the word ‘Count’. Following the con-
ventions from base R, names of functions that compute densities (actually probabilities, since
the distributions are discrete) start with ‘d’. Functions with suffix _bi (short for ‘built-in’)
do computations for any of the built-in models, the particular one being chosen by argument
dist. Functions with suffix _user accept a user specified distribution for the inter-arrival
times. See the documentation of the individual functions for further details.

6. Conclusion and Future Work

Count regression models derived from renewal processes are a flexible class of models that
extends the Poisson model and allows the use of inter-arrival times distributions that are
more flexible than the exponential. The Countr package implements this class of models
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using standard R framework (very similar to glm()) and hence allows users familiar with
the generalized linear models to experience a more flexible class of models with minimum
additional effort. Usual methods for model fitting, goodness of fit diagnosis and prediction
are also provided.

Countr currently contains four built-in distributions for which the computations are optimised
by programming crucial parts in C++ and choosing taylored parameters for optimisation
functions. Although users can define their own inter-arrival times distribution, this may
result in long computation times as demonstrated in Section 4.4. In future versions of the
package, a larger choice of survival distributions will be available.

Renewal regression models can be extended in many directions. One of them is to allow the
time to the first event to have a different distribution from the inter-arrival times for later
events. This gives rise to a type of hurdle model that we call "modified renewal processes”.
This family of models is being studied by the authors and an experimental version is shipped
with Countr. Another direction in which the Countr package can be extended is by allowing
multivariate (and especially bivariate) models to be fitted. A Copula (Cameron and Trivedi
2013, Section 8.5) can be used the take into account dependence between the count marginals.
Such models will also be included in future versions of Countr.
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