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Abstract

ChemoSpec]|I] is a collection of functions for plotting spectra (NMR, IR etc, as well as chromatograms) and
carrying out various forms of top-down exploratory data analysis, such as hierarchical cluster analysis (HCA), principal
components analysis (PCA) and model-based clustering. Robust methods appropriate for this type of high-dimensional
data are employed. ChemoSpec is designed to facilitate comparison of samples from treatment and control groups. It is
designed to be user friendly and suitable for people with limited background in R. This vignette gives some background
on ChemoSpec and takes the reader through a typical workflow.

*The development of ChemoSpec has been generously supported by DePauw University in the form of sabbatical funding and a Fisher
Fellowship. Thanks!
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1 Introduction

Chemometrics, as defined by Varmuza and Filzmoser[2], is
"...the extraction of relevant information from chemical data by mathematical and statistical tools.”

This is an appropriately broad definition, considering the wealth of questions and tasks that can be treated by chemometric
approaches. In our case, the focus is on spectral data sets, which typically have many variables (frequencies) and
relatively few samples. Such multivariate, high p, low n data sets present some algorithmic challenges, but these have
been addressed by knowledgeable folks. In particular, for both the practical and theoretical background to multivariate
chemometric analysis, | strongly recommend the Varmuza/Filzmoser book. Some of the functions described here are not
much more than wrappers for the functions they have made available to the R community in their packages.

ChemoSpec was developed for the chemometric analysis of spectroscopic data, such as UV-Vis, NMR or IR data (it also
works with chromatographic data, see below). The approach is entirely exploratory and unsupervised, in other words,
"top-down"[3]. | developed it while beginning a new research focus on plant metabolomics, and | needed software to
analyze the data | was collecting. My research involves ecological experiments on plant stress, so ChemoSpec was designed
to accommodate samples that have different histories, i.e., they fall into different classes, categories or groups. Examples
would be treatment and control groups, or simply different specimens (red flowers vs. blue flowers). Since my research
is done with undergraduates, who are true novices with R, ChemoSpec is designed to be as user friendly as possible,
with plenty of error checking, helpful warnings and a consistent interface. It also produces graphics that are consistent
in style and annotation, and are suitable for use in publications and posters. Careful attention was given to writing
the documentation for the functions, but this vignette serves as the best starting point for learning data analysis with
ChemoSpec.

The centerpiece of ChemoSpec is the Spectra object. This is the place where your data is stored and made available
to R. Once your data in stored this way and checked, all analyses are easily carried out. ChemoSpec currently ships with
several built-in data sets; we'll use one called CuticleIR for our demonstrations. You will see in just a moment how to
access it and inspect it.

| assume you have at least a bare-bones knowledge of R as you begin to learn ChemoSpec, and have a good workflow set
up. For detailed help on any function discussed here, type ?function_name at the console.
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Finally, some conventions for this document: names of R "objects” such as packages, functions, function arguments, and
data sets are in typewriter font. The commands you issue at the console and the output are in slanted typewriter
font. Names of files stored on a computer are shown in blue to distinguish them from R objects which are kept in
RAM.

By the way, if you try ChemoSpec and find it useful, have questions, have opinions, or have suggestions, please do let me
know. The current version has already been improved by users.

2 A Sample Exploration

This sample exploration is designed to illustrate a typical ChemoSpec workflow. The point is to illustrate how to carry
out the commands, what options are available and typically used, and the order in which one might do the analysis. The
CuticlelR data set will be used for illustration only — we are not trying to analyze it to reach useful conclusions. You
may wish to put your versions of these commands into a script file that you can source as you go along. This way you can
easily make changes, and it will all be reproducible. To do this, open a blank R document, and type in your commands.
Save it as something like My First ChemoSpec.R. Then you can either cut and paste portions of it to the console for
execution, or you can source the entire thing:

> source("My First ChemoSpec.R")

Alternatively, look through your computer after installing ChemoSpec for a file called ChemoSpec.Rnw. Point R to the
folder containing that file, then at the console issue > Stangle("ChemoSpec.Rnw"). R will extract all the code used in
this vignette into a file which you can then study and modify.

2.1 Getting Data into ChemoSpec

Currently, there is only one means of moving raw data sets into ChemoSpec, and that is the function getManyCsv (it
is relatively easy to write analogous functions for other formats). This function assumes that your raw data files are
formatted as .csv files, and contain only the data itself, in two cqumnsE] The first column should be the frequency
values, and this column must be the same for all files (as it will be if these are data sets from the same instrument and
experimental parameters). The second column should contain the intensity values. There should not be a header row. If
your data set contains treatment and control groups, or any analogous class/group information, this information should
be encoded in the file names. getManyCsv argument gr.crit will be the basis for a grep process on the file names,
and from there, each file, representing a sample, will be assigned to a group and be assigned a color as well. If your
samples don't fall into groups, that’s fine too, but you still have to give gr.crit something to go on—just give it one
string that is common to all the file names. Obviously, this approach encourages one to name the files as they come off
the instrument with forethought as to how they will be analyzed, which in turn depends upon your experimental design.
Nothing wrong with having a plan! Remember that getManyCsv acts on all .csv files it finds in a directory, so don’t
have any extra .csv files hanging around. The output of getManyCsv is a Spectra object, which is R-speak for a file,
readable by R, that contains not only your data, but other information about the experiment, as provided by you via the
arguments to getManyCsv.

Here's a typical example (we have to talk hypothetically because | don't have your data). Let's say you had a folder
containing 30 NMR files of flower essential oils. Imagine that 18 of these were from one hypothetical subspecies, and
12 from another. Further, let's pretend that the question under investigation has something to do with the taxonomy of
these two supposed subspecies, in other words, an investigation into whether or not they should be considered subspecies
at all. If the files were named like this:

sspAl.csv ...sspAl8.csv and sspBl.csv ...sspB12.csv
Then the following command should process the files and create the desired Spectra object:

> getManyCsv(gr.crit = c("sspA", "sspB"), gr.cols = c("red3", "dodgerblue4"),
+ freq.unit = "ppm", int.unit = "peak intensity", descrip = "Subspecies Study",
+ out.file = "subspecies')

lUsers in the EU have different standards for a .csv file: they are delimited by semi-colons, and a comma is used where a decimal point is
used in the United States. For these files, use the argument format = "csv2" to read the files properly.
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This causes getManyCsv to read the file names for the strings sspA and sspB and use these to assign the samples into
groups. Samples in sspA*.csv files will be assigned the color red3 and sspB*.csv will be assigned dodgerblue4 (see the
help file for some thinking-ahead about colors; ?colorSymbol at the console). After running this command, a new file
called subspecies.RData will be in your directory, and you can access the data set and give it whatever name you like as
follows:

> SubspeciesNMR <- loadObject ("subspecies.RData")

Now it is ready to use.

Working with Chromatograms

While all the language in this vignette and in the package are geared toward analysis of spectra, ChemoSpec can also work
with chromatograms as the raw data. In this case, time replaces frequency of course, but other than that the analysis is
virtually the same. So the only real difference is when you issue the command getManyCsv, you will give the frequency
unit along these lines: freq.unit = "time (minutes)".

Built-in Data Sets

ChemoSpec ships with several built-in data sets. CuticlelIR is the set used for this vignette; it is a series of IR spectra
of the cuticle (leaf surface) of the plant Portulaca oleracea. The data were taken by gently pinning the leaf against an
ATR sampling device. The plants were grown at two different temperatures, and two different genotypes (varieties) were
used (a classic G x E, genotype by environment, experiment). In the plots in this vignette you will see the data colored
by these categories: GE for example means "golden” genotype and "experimental’ conditions (higher temperature, to be
precise). For more details about this data set, type > ?CuticlelR at the console.

There are also two data sets from a unpublished study of the medicinal plant Saw Palmetto (Serenoa repens). One is
a set of IR spectra, the other a set of NMR spectra on the same samples. For more detail on these data sets, type >
?SrE. IR at the console.

Color and Symbol Options

In ChemoSpec, the user may use any color name/format known to R. For ease of comparison, it would be nice to plan
ahead and use the same color scheme for all your plots. However, a difficulty to bear in mind is that R plots are generally
on a white background, so pale colors should be avoided, while GGobi, which is used by functionplotScoresG, plots on
a black background (interactively), so dark colors should be avoided. Hence some compromise is necessary.

In addition to colors, "Spectra" objects also contain a list of symbols, and alternative symbols. These are useful for
plotting in black and white, or when color-blind individuals will be viewing the plots. The alternative symbols are simply
lower-case letters, as these are needed for plotScoresRGL, and other rgl-graphics driven functions which cannot plot
traditional symbols.

NOTE affecting the next section: as of July 28, 2011 GGobi is on "life support” and the communication of color information
between ChemoSpec and GGobi is not working perfectly. You are on your own!

If you plan to use rggobi and GGobi to view the data later, keep in mind that GGobi only uses certain color schemes
(although there are many options) and in interactive operation plots on a black background. In the case of ChemoSpec, two
particular options have been hard-coded into the function plotScoresG for simplicity. If you plan to use plotScoresG,
you may wish to choose from one of these two color schemes before you begin if you want all your graphics to use the
same scheme. Keep in mind that these colors must be used in order (though you can use the order of argument gr.crit
to associate a particular group with a particular color:

non, non non non

primary scheme: c("red3", "dodgerblued”, "forestgreen”, "purpled”, "orangered”, "yellow", "orangered4”, "violetred2")

non non non non

pastel scheme: c("seagreen”, "brown2", "skyblue2”, "hotpink3", "chartreuse3”, "darkgoldenrod2”, "lightsalmon3", "gray48")

Example[T]shows these colors. Finally, the current color scheme of a Spectra object may be determined using sumSpectra
or changed using conColScheme.
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Example 1: Recommended Color Sets in ChemoSpec

ChemoSpec Primary Scheme

ChemoSpec Pastel Scheme

2.2 Preliminary Inspection of Data

One of the first things you should do, and this is very important, is to make sure your data is in good shape. First, you
can summarize the data set you created, and verify that the data ranges etc look like you expect them to:

> sumSpectra(SubspeciesNMR)

This will display quite a bit of information about your data set. Here are the commands and the result using the built-in
data set CuticlelIR:

> data(CuticleIR) # makes the data available
> sumSpectra(CuticleIR)

Kelly's Complete IR Data Set, Summer 2009

There are 157 spectra in this set.
The y-axis unit is Absorbance.

The frequency scale runs from 501.4261 to 3596.768 Wavenumbers
There are 1242 frequency (x-axis) data points.
The frequency resolution is 1.9286 Wavenumbers/point.

This data set is not continuous along the frequency axis.
Here are the data chunks:

beg.freq end.freq size beg.indx end.indx
1 501.4261 1797.420 1295.994 1 673
2 2501.3450 3596.768 1095.423 674 1242

The spectra are divided into 4 groups:

group no. color symbol alt.sym
1 GC 16 dodgerblue4 2 b
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Example 2: Procedure to Find Gaps in a Data Set

> check4Gaps (CuticleIR$freq, CuticleIR$datall,], plot = TRUE)

beg.freq end.freq size beg.indx end.indx
1 501.4261 1797.420 1295.994 1 673
2 2501.3450 3596.768 1095.423 674 1242

Gaps in Frequency Data

(o)
g
Lo —
o
q- —
o
N
o
1l T
e | | | | | | |
500 1000 1500 2000 2500 3000 3500
marked regions are skipped in data set
2 GE 35 purple4 15 d
3 TC 69 red3 1
4 TE 37 forestgreen 3 C

**x*x Note: this data is an S3 object of class 'Spectra'

Notice that sumSpectra has identified a gap in the data set; this is because a range of frequencies that contain no useful
information were removed to compact the data—what's the point of analyzing baseline anyway? You can see this gap in
the data as shown in Example (sumSpectra checks for gaps, but doesn't produce the plot); both the numerical results
and a figure are provided. Again, the point at this stage is to verify that your data looks like you expect it to. If there
are problems, I'll tell you how to fix them in the next few sections.
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Example 3: Plotting Spectra
> plotSpectra(CuticleIR, title = "Cuticle IR Spectra Demo",

+ which = c¢(10, 11, 40, 41, 100, 101, 140, 141, 150, 151),
+ yrange = c(0, 10), offset = 0.8, lab.pos = 2000)

Cuticle IR Spectra Demo

TE4

TE39

TE29

TE28

TC24

Absorbance

TC23

GE34

GE33

GC33
e~ LN

GC30
_\______ A~

[ I I I I I |
500 1000 1500 2000 2500 3000 3500

)

Wavenumbers

2.2.1 Plotting the Spectra

Assuming that everything looks good so far, it's time to plot the spectra and inspect them. Good practice would be to
check every spectrum for artifacts and other potential problems, which might take a while; hopefully you looked at them
when you originally recorded them. The basics of creating a plot are shown in Example 3

Depending upon the intensity range of your data set, and the number of spectra to be plotted, you have to manually
adjust the arguments yrange, offset and amplify, but this usually only takes a few iterations. Keep in mind that
offset, and amplify are multiplied in the algorithm, so if you increase one, you may need to decrease the other. Suppose
that you wanted to focus just on the hydrocarbon region of these spectra; you can add an argument called x1im. To
demonstrate, let's look at fewer spectra, and at higher amplitude, so we can see details, as shown in Example

The argument which in plotSpectra takes a numerical list of the spectra you wish to plot— you can think of this as
the row number if you imagine each spectra to be a row in a matrix, with intensities in the columns (with each column
corresponding to a particular frequency value). You may be wondering how to determine which particular sample is in
each row. This is best accomplished with a grep command. For instance, if you wanted to know what row sample GE7
was in, the following command would locate it for you:



2 A SAMPLE EXPLORATION 8

Example 4: Zooming in on a Spectral Region
> plotSpectra(CuticleIR, title = "Cuticle IR Spectra: Detail of Hydrocarbon Region",

+ which = c¢(10, 40, 100, 151), amplify = 10.0, xlim = c (2750, 3000),
+ yrange = c(0, 5), offset = 0.1, lab.pos = 2775)

Cuticle IR Spectra: PCA Score Plot

centered/noscale/classical Key
— —— robust ellipses by group GC

15

e TC28

1.0

o TC30TC39
L]

0.5

PC2 score (2%)

-1.0

-10 -5 0 5

PC1 score (98%)

> grep("GE7", CuticleIR$names)
[11 49
See the discussion in the next section for more details on using grep effectively.

These sample plots display the IR spectra in two ways that may be upsetting to some readers: First, the x-axis is
"backwards”, because the underlying spectra were originally saved with an ascending frequency axis (which is not always
the case). This is readily fixed by supplying the x1im argument in the desired order, e.g. x1im = c(3000, 2750) in the
previous example. Second, the vertical scale in these examples is absorbance. When using IR for structural elucidation,
the vertical axis is typically %T, with the peaks pointing downward. You don't have that choice in ChemoSpec because
the absorbance mode is the appropriate one for chemometrics. Get used to it.

2.2.2 Identifying & Removing Problematic Samples

In the process of plotting and inspecting your spectra, you may find some spectra/samples that have problems. Perhaps
they have instrumental artifacts. Or maybe you have decided to eliminate one subgroup of samples from your data
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set to see how the results differ. To remove a particular sample, or samples meeting a certain criteria, you use the
removeSample function. This function uses a grepping process based on its rem. sam argument, so you must be careful
due to the greediness of grep. Let's imagine that sample TC138 has artifacts and needs to be removed. The command
would be:

> noTC138 <- removeSample(CuticleIR, rem.sam = c("TC138"))
> sumSpectra(noTC138)

Kelly's Complete IR Data Set, Summer 2009

There are 156 spectra in this set.
The y-axis unit is Absorbance.

The frequency scale runs from 501.4261 to 3596.768 Wavenumbers
There are 1242 frequency (x-axis) data points.
The frequency resolution is 1.9286 Wavenumbers/point.

This data set is not continuous along the frequency axis.
Here are the data chunks:

beg.freq end.freq size beg.indx end.indx
1 501.4261 1797.420 1295.994 1 673
2 2501.3450 3596.768 1095.423 674 1242

The spectra are divided into 4 groups:

group no. color symbol alt.sym
1 GC 16 dodgerblue4d 2 b
2 GE 35 purpled 15 d
3 TC 68 red3 1 a
4 TE 37 forestgreen 3 c

**x* Note: this data is an S3 object of class 'Spectra'

The sumSpectra command is optional, but confirms that there are now one fewer spectra in the set. You could also
re-grep for the sample name to verify that it is not found. If you wanted to remove sample TE2, and you tried to remove
it this way, you would end up removing 10 spectra, as the string "TE2" occurs in quite a few places. You can check this
in advance with the grep function itself:

> TE2 <- grep("TE2", CuticleIR$names)
> CuticleIR$names[TE2] # gives the name(s) that contain "TE2"

[1] IITE2|| IITE2OII "TE21II IITE22" IITE23II IITE24II llTE25|l IITE26I| IITE27|| IITE28II
[11] "TE29"

> TE2 # gives the corresponding indicies
[1] 131 132 133 134 135 136 137 138 139 140 141
This is what is meant by "grep is greedy”. In this situation, you have three choices:

1. You could manually remove the problem samples (> str(CuticleIR) would give you an idea of how to do that;
see also below under Hierarchical Cluster Analysis).

2. removeSample also accepts indices of samples, so you could grep as above, note the index of the sample you
actually want to remove, and use that in rem.sam.

3. If you know a bit about grep, you can pass a more sophisticated search pattern to rem.sam. For instance, in the
example above where we wanted to remove TE2, but "caught” some other sample names, you could change the
search pattern as follows, which tells grep to find a string that ends in TE2 (so it could still begin with xyzTE2 and
be found):
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> newTE2 <- grep("TE2\\>", CuticleIR$names)
> CuticleIR$names[newTE2] # gives the name(s) found

[1] WTEQ"
> newTE2 # gives the corresponding indices
[1]1 131

You can also take advantage of this greediness. For instance, using rem.sam = c("TC") would remove all the samples
in this category, regardless of any other characters in the string, as long as T and C are next to each other (this goes
back to planning your experiments, and how clever you were in naming your samples).

2.2.3 Identifying & Removing Regions of No Interest

Many spectra will have regions that should be removed. It may be an uninformative, interfering peak like the water peak
in 'H NMR, or the CO5 peak in IR. Or, there may be regions of the spectra that simply don’t have much information —
they contribute a noisy baseline and not much else. An example would be the region from about 1,800 or 1,900 cm™ to
about 2,500 cm™ in IR, a region where there are typically no peaks except for the CO; stretch, and rarely (be careful!)
alkyne stretches.

Finding these regions might be pretty simple, a matter of inspection coupled with your knowledge of spectroscopy.
Another approach is to use the function specSurvey to examine the entire set of spectra. This function computes
the standard deviation of the intensities at a particular frequency across the data set, and plots this against frequency.
Regions where there is not much variation in the intensity will show up as unvarying baseline, and these regions are
candidates for removal. Example 5] demonstrates the process.

Compare this to the figure produced by check4Gaps (Example; you'll see that the gap region is rendered by specSurvey
by connecting the endpoints of each data chunk, producing what appears to be a region of little interest. All other areas
have varying standard deviations, with the OH peak dominating, and no regions seem uninteresting, so let's keep them
for now. However, if you wanted to remove certain peaks, the function removeFreq is the tool to use. In the CuticleIR
data set, the water peak (above about 3,100 cm™) varies quite a bit, and may be just an artifact. We could remove as
follows, ending with sumSpectra to verify what you wanted to happen, happened. Note that there are fewer frequency
points now.

> noOH <- removeFreq(CuticleIR, rem.freq = CuticleIR$freq > 3100)
> sumSpectra(noOH)

Kelly's Complete IR Data Set, Summer 2009

There are 157 spectra in this set.
The y-axis unit is Absorbance.

The frequency scale runs from 501.4261 to 3099.199 Wavenumbers
There are 984 frequency (x-axis) data points.
The frequency resolution is 1.9286 Wavenumbers/point.

This data set is not continuous along the frequency axis.
Here are the data chunks:

beg.freq end.freq size beg.indx end.indx
1 501.4261 1797.420 1295.994 1 673
2 2501.3450 3099.199 597.854 674 984

The spectra are divided into 4 groups:

group no. color symbol alt.sym
1 GC 16 dodgerblue4d 2 b
GE 35 purple4 15 d

3 TC 69 red3 1 a
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Example 5: Checking for Regions of No Interest

> specSurvey(CuticleIR, method = "iqr", title = "Cuticle IR Spectra")
Cuticle IR Spectra

A
M
A

I
1000 2000 3000

Wavenumbers

11
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Example 6: Verifying removeFreq Worked as Desired
> plotSpectra(noOH, title = "Cuticle IR Spectra, No Hydroxyl Peak?",

+ which = c¢(10, 40, 100, 140 , 150),
+ yrange = c(0, 5), offset = 0.8, lab.pos = 2000, xlim = c(500, 3600))

Cuticle IR Spectra, No Hydroxyl Peak?

M TE39

TE28

Absorbance

500 1000 1500 2000 2500 3000 3500

Wavenumbers

4 TE 37 forestgreen 3 C

**xx Note: this data is an S3 object of class 'Spectra'

You could also plot the new spectra if desired, to make absolutely certain you removed what you wanted. In this case,
we can make the point more strongly by plotting with x1im corresponding to the original data range, not that of the
modified spectra, as shown in Example [} We indeed did accomplish what we set out to do, though we might consider
trimming off more frequencies, perhaps down to 3,000 cm™. You could also run check4Gaps as another check.

2.3 Data Pre-Processing Options

There are a number of data pre-processing options available for your consideration. The main choices are whether to
normalize the data, whether to bin the data, and whether to scale the data. Data scaling is handled by the PCA routines,
see Section[2.5] Normalization is handled by the normSpectra function. Usually one normalizes data in which the sample
preparation procedure may lead to differences in concentration, such as body fluids that might have been diluted during
handling, or that vary due to the physiological state of the organism studied. The CuticleIR data set is taken using an
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ATR device in which the leaves are pinned against the IR analyzer, and no dilution is possible, so normalization probably
isn't really appropriate. Currently, there is only one means of normalizing, and that is to divide each point (frequency) in
a spectrum by the sum of all points in that spectrum. Other means of normalizing can be readily added if they affect all
points in the same way. Normalization is accomplished by:

> normCIR <- normSpectra(CuticleIR)

But remember, this doesn’'t make sense for this data set. The literature contains a number of useful discussions about
normalization issues.[2] [4H7]

Another type of pre-processing that you may wish to consider is binning or bucketing, in which groups of frequencies are
collapsed into one frequency value, and the corresponding intensities are summed. There are two reasons for doing this.
One is to compact the data, but the algorithms in R are quite fast, and data sets of the size of CuticleIR don't slow it
down much. The other reason is to compensate for shifts in very narrow peaks from sample to sample. This is typically
done in 'H NMR because changes in dilution, ionic strength, or pH can cause slight shifts. Spectra with broad, rolling
peaks won't have this problem (UV-Vis for example). The function binBuck is your friend:

Compare the results here with the sumSpectra of the full data set (Section In particular note that the frequency
resolution has gone down due to the binning process. ChemoSpec uses the simplest of binning algorithms: after perhaps
dropping a few points (with a warning) to make your data set divisible by the specified bin.ratio, data points are replaced
by the average frequency and the sum of the grouped intensities. Depending upon the fine structure in your data and the
bin.ratio this might cause important peaks to be split between different bins. There are more sophisticated binning
algorithms in the literature that try to address this, but none are currently implemented in ChemoSpec.[8] 9]

2.4 Hierarchical Cluster Analysis

Hierarchical cluster analysis (HCA from now on) is a clustering method (surprise!) in which "distances” between samples
are calculated and displayed in a dendrogram (a tree-like structure; these are also used in evolution and systematics
where they are called cladograms). The details behind HCA can be readily found elsewhere (Chapter 6 of [2] is a good
choice). With ChemoSpec you have access to any of the methods available in R function hclust; for more details, type
7hclust at the console. To demonstrate, let's first remove some samples from CuticlelIR so the resulting plot is a bit
less cluttered. Then we'll carry out the HCA itself. The sample removal will be done manually; this process and the
results are shown in Example [7]

The result is a dendrogram. The vertical scale represents the numerical distance between samples. For this data set,
there is no obvious clustering by group. Note that the function hcaScores does the same kind of analysis using the
results of PCA, rather than the raw spectra. It is discussed in the next section.

2.5 Principal Components Analysis

Principal components analysis (PCA from now on) is the real workhorse of exploratory data analysis. It makes no
assumptions about group membership, but clustering (possibly in high dimensions) of the resulting sample scores can be
very helpful in understanding your data. The theory and practice of PCA is covered well elsewhere (Chapter 3 of [2] is
an excellent choice). Here, we'll concentrate on using the PCA methods in ChemoSpec. Briefly however, you can think
of PCA as determining the minimum number of components necessary to describe a data set, in effect, removing noise.
Think of a typical spectrum: some regions are clearly just noise. Further, a typical spectroscopic peak spans quite a few
frequency units as the peak goes up, tops out, and then returns to baseline. Any one of the points in a particular peak
describe much the same thing, namely the intensity of the peak. Plus, each frequency within a given peak envelope is
correlated to every other frequency in the envelope (they rise and fall in unison as the peak changes size from sample to
sample). PCA can look "past” all the noise and correlation in the data set, and boil the entire data set down to essentials.
Unfortunately, the principal components that are uncovered in the process don't correspond to anything concrete, usually.
Again, you may wish to consult a more detailed treatment!

Table [T] gives an overview of the options available in ChemoSpec, and the relevant functions.

There's quite a bit of choice here; let's work through an example and illustrate, or at least mention, the options as we
go. Keep in mind that it's up to you to decide how to analyze your data. Most people try various options, and follow
the ones that lead to the most insight. But the decision is yours!
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A SAMPLE EXPLORATION

Example 7: Manual Removal of Samples Followed by HCA

keep <- seq(1, 157, 6) # select every 6th spectrum

someCIR <- CuticlelR # make a copy of the original data

someCIR$names <- someCIR$names[keep] # modify each piece manually
someCIR$colors <- someCIR$colors [keep]

someCIR$groups <- someCIR$groups [keep]

someCIR$sym <- someCIR$sym[keep]

someCIR$alt.sym <- someCIR$alt.sym[keep]

someCIR$data <- someCIR$datalkeep,] # samples in rows, freq in columns
chkSpectra(someCIR, confirm = TRUE) # make sure we didn't screw it up!

You must be awesome: These spectra look just dandy!

>

hcaSpectra(someCIR, title = "Every 6th Sample of CuticleIR")

Every 6th Sample of CuticleIR: HCA Analysis
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2 A SAMPLE EXPLORATION

Table 1: Principal Components Analysis Options & Functions

PCA options scaling options function
classical PCA no scaling, autoscaling, Pareto scaling | classPCA
robust PCA no scaling, median absolute deviation | robPCA
Diagnostics

OD plots pcaDiag

SD plots pcaDiag
Choosing the correct no. of PCs

scree plot plotScree
bootstrap analysis (classical PCA only) pcaBoot
Score plots plotting options

2D plots robust or classical confidence ellipses | plotScores
3D plots

—static 3D plots plotScores3D
—interactive 3D plots plotScoresRGL
—interactive multivariate plots plotScoresG
Loading plots

loadings vs frequencies plotLoadings
loadings vs other loadings plot2Loadings
s-plot (correlation vs covariance) sPlotSpectra
Other

HCA of PCA scores hcaScores
ANOVA-PCA aovPCA

15



2 A SAMPLE EXPLORATION 16

The first step is to carry out the PCA. You have two main options, either classical methods, or robust methods. Classical
methods use all the data you provide to compute the scores and loadings. Robust methods focus on the core or heart of
the data, which means that some samples may be downweighted. This difference is important, and the results from the
two methods may be quite different, depending upon your the nature of your data. The differences arise because PCA
methods (both classical and robust) attempt to find the components that explain as much of the variance in the data set
as possible. If you have a sample that is genuinely corrupted, for instance due to sample handling, its spectral profile may
be very different from all other samples, and it can legitimately be called an outlier. In classical PCA, this one sample
will contribute strongly to the variance of the entire data set, and the PCA scores will reflect that (it is sometimes said
that scores and loadings follow the outliers). With robust PCA, samples with rather different characteristics do not have
as great an influence, because robust measures of variance, such as the median absolute deviation, are used.

Note that as of ChemoSpec 1.46, neither classPCA nor robPCA carry out any normalization by samples. You need to
decide if you want to normalize the samples, and if so, use normSpectra.

Besides choosing to use classical or robust methods, you also need to choose a scaling method. For classical PCA,
your choices are no scaling, autoscaling, or Pareto scaling. In classical analysis, if you don't scale the data, large peaks
contribute more strongly to the results. If you autoscale, then each peak contributes equally to the results (including noise
"peaks”). Pareto scaling is a compromise between these two. For robust PCA, you can choose not to scale, or you can
scale according to the median absolute deviation. Median absolute deviation is a means of downweighting more extreme
peaks. The literature has plenty of recommendations about scaling options appropriate for the type of measurement
(instrument) as well as the nature of the biological data set.[2] [4H7, [10]

There is not enough space here to illustrate all possible combinations of options; Example [8] and Example [9] show the use
and results of classical and robust PCA without scaling, followed by plotting of the first two PCs (we'll discuss plotting
options momentarily). You can see from these plots that the robust and classical methods have produced rather different
results, not only in the overall appearance of the plots, but in the amount of variance explained by each PC.

Since we've plotted the scores to see the results, let's mention a few features of plotScores which produces a 2D plot
of the results (we'll deal with 3D options later). Note that an annotation is provided in the upper left corner of the plot
that describes the history of this analysis, so you don't lose track of what you are viewing. The tol argument controls
what fraction of points are labeled with the sample name. This is a means of identifying potential outliers. The ellipse
argument determines if and how the ellipses are drawn (the 95% confidence interval is used).

You can choose "none" for no ellipses, "cls" for classically computed confidence ellipses, "rob" for robustly computed
ellipses, or "both" if you want to directly compare the two. Note that the use of classical and robust here has nothing
to do with the PCA algorithm — it's the same idea however, but applied to the 2D array of scores produced by PCA.
Points outside the ellipses are more likely candidates for outlier status.

Plots such as shown in Examples [§ and [9] can give you an idea of potential outliers, but ChemoSpec includes more
sophisticated approaches. The function pcaDiag can produce two types of plots that can be helpful (Examples|10|and
. The meaning and interpretation of these plots is discussed in more detail in Varmuza and Filzmoser, Chapter 3.[2]
NOTE: There is some sort of problem with the OD plot as you can plainly see. I'll be working on it!

Depending upon your data, and your interpretation of the results, you may decide that some samples should be discarded,
in which case you can use removeSample as previously described, then repeat the PCA analysis. The next step for most
people is to determine the number of PCs needed to describe the data. This is usually done with a scree plot as shown
in Example [I2 In this case, it's clear that most of the variance can be described by one PC! We'll pursue that more in
a bit.

If you are using classical PCA, you can also get a sense of the number of PCs needed via a bootstrap method, as shown
in Example [I3] Note that this method is iterative and takes a bit of time. Comparing these results to the scree plot,
you'll see that the bootstrap method suggests that 2 PCs would not always be enough to reach the 95% level, while the
scree plot suggests that 2 PCs is sufficient.

Now let's turn to viewing scores in 3D. There are currently 3 options in ChemoSpec: plotting using lattice graphics,
which produces a static plot that you have to adjust manually, and two interactive plots, one based on package rgl
and one based upon package rggobi which in turn uses the program GGobi. Probably the best place to start is with
plotScoresRGL. It it well suited to exploring your data, and can be printed out in high quality. However, the nature of
the GL graphics device means that the title and the legend move with the data, so this may not give a hardcopy suitable
for publications. This interactive plot cannot be invoked in this document, but here are the necessary commands:



2 A SAMPLE EXPLORATION

Example 8: How to Carry Out Classical PCA

> class <- classPCA(CuticleIR, choice = "noscale")
> plotScores(CuticleIR, title = "Cuticle IR Spectra", class,
+ pcs = ¢(1,2), ellipse = "rob", tol = 0.01)

PC2 score (2%)
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Cuticle IR Spectra: PCA Score Plot
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2 A SAMPLE EXPLORATION

Example 9: How to Carry Out Robust PCA

> robust <- robPCA(CuticleIR, choice = '"noscale")
> plotScores(CuticleIR, title = "Cuticle IR Spectra", robust,
+ pcs = ¢(1,2), ellipse = "rob", tol = 0.01)

PC2 score (2.7%)

Cuticle IR Spectra: PCA Score Plot

I1median/noscale/robust
—— robust ellipses by group
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2 A SAMPLE EXPLORATION

Example 10: Diagnostics: Orthogonal Distances

> diagnostics <- pcaDiag(CuticleIR, class, pcs = 2, plot = "OD")

Possible PCA Outliers based on Orthogonal Distance
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Kelly's Complete IR Data Set, Summer 2009
centered/noscale/classical 2 PCs
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2 A SAMPLE EXPLORATION

Example 11: Diagnostics: Score Distances

> diagnostics <- pcaDiag(CuticleIR, class, pcs = 2, plot = "SD")

Possible PCA Outliers based on Score Distance
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2 A SAMPLE EXPLORATION

Example 12: Creating a Scree Plot

> plotScree(class, title = "Cuticle IR Spectra'")

Cuticle IR Spectra: Scree Plot
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2 A SAMPLE EXPLORATION

Example 13: Conducting Bootstrap Analysis for No. of PCs

> out <- pcaBoot(CuticleIR, pcs = 5, choice = "noscale")

Bootstrap Analysis of Number of PCs
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Example 14: One Way to Plot Scores in 3D

> plotScores3D(CuticlelR, class, title = "Cuticle IR Spectra')

Cuticle IR Spectra: PCA Score Plot

PC1 (98%) PC3 (0.15%)

PC2 (2%)

GC GE TC TE

Kelly's Complete IR Data Set, Summer 2009

> plotScoresRGL(CuticleIR, class, title = "Cuticle IR Spectra",
+ leg.pos = "A", t.pos = "B") # not run - it's interactive!

For full details, of course take a look at the manual page, ?plotScoresRGL. If you want a similar and probably more
publication-worthy plot, you can use plotScores3D as shown in Example [I4]

Finally, you can install the program GGobi and the package rggobi and use plotScoresG to produce an different
interactive plot. This is actually the most powerful analysis tool, as GGobi is not restricted to 3 dimensions, and can
use projection pursuit methods to find interesting views of your data. With an additional package, DescribeDisplay,
you can create very nice plots of your data. Note that at this writing (July 28, 2011), GGobi has been described as
on "life support” and it seems there might be a new program in development to replace it. However, you can find a
working version at software.rc.fas.harvard.edu/mirrors/R/| (and related mirrors) thanks to Simon Urbanek. Note that the
communication between plotScoresG and GGobi does not quite work as described earlier under the discussion of the
color schemes; this will not be fixed until the future of GGobi is certain.

> plotScoresG(CuticleIR, class) # not run - it's interactive!

In addition to the scores, PCA also produces loadings which tell you how each variable (frequencies in spectral applications)
affect the scores. Examining these loadings can be critical to interpreting your results. Example [15| gives an example.
You can see that the hydroxyl peak above 3,000 cm™ has a large effect on PC 1, and it is this peak that is responsible for


http://software.rc.fas.harvard.edu/mirrors/R/
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Example 15: Creating a Loading Plot

> plotLoadings(CuticleIR, class, title = "Cuticle IR Spectra",
+ loads = c(1, 2), ref = 1)

Cuticle IR Spectra: Loadings Plot
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Wavenumbers
centered/noscale/classical

PC 1 explaining over 90% of the variance (mentioned earlier). It would be of interest to eliminate this peak, and repeat
the PCA, but analysis of specific data is not our goal here.

You can also plot one loading against another, using function plot2Loadings (Example . This is typically not too
useful for spectroscopic data, since many of the variables are correlated (as they are parts of the same peak, hence the
serpentine lines in the figure). The most extreme points on the plot, however, can give you an idea of which peaks
(frequencies) serve to differentiate a pair of PCs, and hence, drive your data clustering.

However, a potentially more useful approach is to use an s-plot to determine which variables have the greatest influence.
A standard loadings plot (plotLoadings) shows you which frequency ranges contribute to which principal components,
but the plot allows the vertical axis to be free. Unless you look at the y axis scale, you get the impression that the
loadings for principal component 1 etc. all contribute equally. The function sPlotSpectra plots the correlation of each
frequency variable with a particular score against the covariance of that frequency variable with the same score. The
result is an s-shaped plot with the most influential frequency variables in the upper right hand quadrant. An example is
shown in Example [L7] This method was reported in Wiklund et. al.[11]

Finally, you can blend the ideas of PCA and HCA. Since PCA eliminates the noise in a data set (after you have selected
the important PCs), you can carry out HCA on the PCA scores, since the scores represent the cleaned up data. The
result using the CuticleIR data set are not much better than doing HCA on the raw spectra, so we won't illustrate it,



2 A SAMPLE EXPLORATION

Example 16: Plotting One Loading vs. Another

> plot2Loadings(CuticleIR, class, title = "Cuticle IR Spectra",
+ loads = c¢(1, 2), tol = 0.002)

PC2 (2%) loadings
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2 A SAMPLE EXPLORATION

Example 17: s-Plot to Identify Influential Frequencies

> spt <- sPlotSpectra(CuticleIR, class, title = "Cuticle IR Spectra", pc = 1)
Cuticle IR Spectra: s—Plot
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2 A SAMPLE EXPLORATION

Example 18: aovPCA breaks the data into a series of submatrices

Raw Grand
Data Mean
Means for
Means for each level
each level of
of factor 2 factor 1 x
factor 2

Means for
+ each level +
of factor 1
+ Residual
Error

Example 19: Submatrices are composed of rows which are averages of each factor level

original data

lllllll

|—>IIIIII

but the command would be:

> hcaScores(CuticleIR, class, scores

+ method = "complete")

2.6 ANOVA-PCA

group membership

c(1:5), title

factor matrix

Y

= "Cuticle IR Spectra",

27

Harrington et. al.[12] (and a few others[I3]) have demonstrated a method which combines traditional ANOVA with PCA.
Standard PCA is blind to class membership, though one generally colors the points in a score plot using the known class
membership. ANOVA-PCA uses the class membership to divide the original centered data matrix into submatrices. Each
submatrix corresponds to a particular factor, and the rows of the submatrix have been replaced by the average spectrum
of each level of the factor. The original data set is thought of as a sum of these submatrices plus residual error. The
residual error is added back to each submatrix and then PCA is performed. This is conceptually illustrated in Examples ??

and[19

ANOVA-PCA has been implemented in ChemoSpec via the functions aovPCA, aovPCAscores and aovPCAloadings.
The method is shown in Example [20] The idea here is that if a factor is significant, there will be separation along PC1
in a plot of PC1 vs PC2. That's not the case in this example, by the way.



2 A SAMPLE EXPLORATION

Example 20: aovPCA on the CuticlelR Data Set

# Split the existing "groups" element of the Spectra object

# into two new factors with two levels each

n.groups <-list(genotype = c("G", "T"), treatment = c("C", "E"))
NewIR <- splitSpectraGroups(CuticleIR, n.groups)

# run aovPCA & plot the first score plot

mats <-aovPCA(NewIR, fac = c("genotype", "treatment"))

apcal <- aovPCAscores(NewIR, mats, plot = 1, ellipse = "rob")

PC2 score (2.3%)
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2.7 Model-Based Clustering Using mclust

PCA and HCA are techniques which are unsupervised and have no underlying model. HCA computes distances between
pairs of spectra and agglomeratively groups these in an iterative fashion until the dendrogram is complete. PCA seeks out
components that maximize the variance. While in PCA one often (and ChemoSpec does) displays the samples coded by
their group membership, this information is not actually used in PCA; any apparent correspondence between the sample
group classification and the clusters found is accidental in terms of the computation, but of course, this is what one
hopes to find!

mclust is a model-based clustering package that takes a different approach.[14] [I5]. mclust assumes that there are
groups within your data set, and that those groups are multivariate normally distributed. Using an iterative approach,
mclust samples various possible groupings within your data set, and uses a Bayesian Information Criterion (BIC) to
determine which of the various groupings it finds best fits the data distribution. mclust looks for groups that follow
certain constraints, for instance, one constraint is that all the groups found must have a spherical distribution of data
points, while another allows for ellipsoidal distributions. See the paper by Fraley and Raftery[15] for more details. The
basic idea however is that mclust goes looking for groups in your data set, and then you can compare the groupings
it finds with the groupings you know to be true. ChemoSpec contains several functions that interface with and extend
mclust functions. Let's demonstrate using a subset of the CuticleIR data set (we'll use only the T genotypes to make
it easier to see what's going on, and we'll change the color scheme too):

> data(CuticleIR)

> G.only <- removeSample(CuticleIR, rem.sam = c("TE", "TC"))
> G.only <- conColScheme(G.only, new = c("red", "blue"))

> sumSpectra(G.only)

Kelly's Complete IR Data Set, Summer 2009

There are 51 spectra in this set.
The y-axis unit is Absorbance.

The frequency scale runs from 501.4261 to 3596.768 Wavenumbers
There are 1242 frequency (x-axis) data points.
The frequency resolution is 1.9286 Wavenumbers/point.

This data set is not continuous along the frequency axis.
Here are the data chunks:

beg.freq end.freq size beg.indx end.indx
1 501.4261 1797.420 1295.994 1 673
2 2501.3450 3596.768 1095.423 674 1242

The spectra are divided into 2 groups:

group no. color symbol alt.sym
1 GC 16 red 2 b
2 GE 35 blue 15 d

**x* Note: this data is an S3 object of class 'Spectra'

Now let's do a PCA and plot the scores using plotScores. The code and results are seen in Example 21} where you can
see that the two groups overlap slightly, and there are some widely-scattered points in each group. Next, we'll let mclust
have a go at it. Remember that mclust doesn't know about your group assignments, it just looks at the data. In this
case, mclust first uses the BIC to determine which model best fits your data; these results are shown in Example
Next, Example [23] shows the 3 groups that mclust finds in the data which actually is composed of 2 groups. Visually
comparing the score plot in Example 2I] with the mclust results in Example [23] you'll see that most of the rogue points
have been collected into their own group, and the majority of the the true group members appear to form their own
clusters. We need not guess however, as mclust will map the true groups onto the groups it has found. Points in error are
X-ed out. These results can be seen in Example[24] From this plot, you can see that mclust is reasonably correct about



3 FUNCTIONS THAT ARE NOT DISCUSSED BUT PROBABLY SHOULD BE!

Example 21: PCA on a Subset of CuticlelR

> G.only.pca <- classPCA(G.only)
> plotScores(G.only, G.only.pca, title = "Two Genotypes (Controls)",
+ ellipse = '"rob")

Two Genotypes (Controls): PCA Score Plot

centered/noscale/classical
—— robust ellipses by group

PC2 score (3.1%)
-0.2 00 02 04 06 08
|

-0.4
I

-0.6
I

Key
GC
GE

PC1 score (95%)

30

group membership; it appears to be taking a robust approach but in fact that is just an illusion in this case (sometimes

outliers really drag the main body of good points around).

You can also do a similar analysis in 3D, using mclust3dSpectra. This function uses mclust to find the groups, but
then uses non-mclust functions to draw confidence ellipses. This function uses rgl graphics so it cannot demonstrated

here, but after doing the PCA as described in the examples, the commands would be:

> mclust3dSpectra(G.only, G.only.pca) # not run - it's interactive!

You have all the options here that you do with plotScoresRGL, namely, classical, robust or no ellipses, control of the

ellipse details, and labeling of extreme points.

| hope you have enjoyed this tour of the features of ChemoSpec!

3 Functions That Are Not Discussed But Probably Should Be!

The help files of course do apply in the meantime. ..



3 FUNCTIONS THAT ARE NOT DISCUSSED BUT PROBABLY SHOULD BE!

Example 22: mclust Chooses an Optimal Model
> model <- mclustSpectra(G.only, G.only.pca, plot = "BIC",

+ title = "Two Genotypes (Controls)")

Two Genotypes (Controls): How Many Clusters?
Mclust optimal model: EEV
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Example 23: mclust’s Thoughts on the Matter

> model <- mclustSpectra(G.only, G.only.pca, plot = "proj",
+ title = "Two Genotypes (Controls)")

Two Genotypes (Controls): Clusters Found by mclust
Mclust optimal model: EEV
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Kelly's Complete IR Data Set, Summer 2009 centered/noscale/classical
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Example 24: Comparing mclust Results to the TRUTH
> model <- mclustSpectra(G.only, G.only.pca, plot = "errors",

+ title = "Two Genotypes (Controls)", truth = G.only$groups)

Two Genotypes (Controls): Misclassifications?
Mclust optimal model: EEV
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Kelly's Complete IR Data Set, Summer 2009 centered/noscale/classical
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Demonstrate analysis of chromatograms
splitSpectraGroups

hypTestScores

A o

hmapSpectra

4 Technical Background

ChemoSpec is written entirely in R, there is no compiled code. Hence, it should be platform independent (please let me
know if you discover otherwise). ChemoSpec uses S3 classes under the hood because frankly they were must faster to
write. Converting to S4 would not be terribly difficult. For the pros and cons of classes and object-oriented programming
in R, see the help archives (search my name for one thread and some really interesting replies from the big dogs).
ChemoSpec employs several different graphics packages - the choice was one of practicality. | find it pretty quick to write
in base graphics, but lattice and ggplot2 do certain things very well, so they were used where appropriate. Even rgl
makes an appearance. In general, | tried to make all the graphics output look similar for consistency.

In understanding the operation of a package, it is useful to know how the functions relate to each other, i.e., which
functions call each other. These relationships are readily visualized with a diagram like Example generated by
function foodweb in package mvbutils[I6].
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took the data included in CuticleIR in the summer of 2009 as part of a preliminary study. Prof. Dan Raftery at Purdue
University provided an NMR data set (not included here) which was very helpful in troubleshooting functions. | am also
grateful to Prof. Peter Filzmoser who answered a number of my questions related to the algorithms in his chemometrics
package.

6 The Competition

Several other packages exist which do some of the same tasks as ChemoSpec, and do other things as well. spectrino
is a GUI interface that runs only under the Windows OS[I7]. It runs as a separate program in communication with R.
It is oriented mainly toward processing and organizing spectral data prior to statistical analysis. hyperspec is a very
nice package that appeared while | was developing ChemoSpec, and it does many of the same things as ChemoSpec,
and a few more. It is written using S4 classes which suggests that Claudia Beleites is a better computer scientist than
me! TIMP is geared toward more sophisticated modeling of time-dependent spectral data sets.[18] Finally, the package
Metabonomic[I9] provides a GUI interface to spectral processing such as baseline correction, as well as a range of
exploratory and supervised statistical methods. Note: my comments here are based on the latest versions | have explored;
newer versions may have considerably more features. Check 'em out for yourself!
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Example 25: Map of Functions in ChemoSpec

> require(mvbutils)
> foodweb(where = "package:ChemoSpec", charlim = 30, cex = 0.75, 1lwd = 1)

/ A\ N
coordProjCS binData seXylgr

pcaBoot plotScree
hmapSpectra aovPCAloadings sumSpectra removeFreq
mclust3dSpectra aovPCA hcaSpectra conColScheme
N\
sPlotSpectra plotScores3D plot2Loadings normSpectra
A\N \WANERN
getManyCsv binBuck hcaScores
/\\ N AN \ A0\
plotSpectra \ aovPCAscores splitSpectraGroups
AVA AN VNN
mclustSpectra specSurvey plotScoresG
Y PANNN N\
pcaDiag plotScoresRGL - hypTestScores
mclust3D plotLoadings / robPCA ™~ removeSample , plotHCA
\ N\ WA\ N
groupNcolor avgFacLvls plotScores seXyMad
71 I N
seXy
[1]

q2rPCA classPCA

makeEllipsoid r2qPCA

\

isWholeNo plotScoresDecoration

sumGroups ]‘ shrinkLeaf
se)l(
check4Gaps \ % plotScoresCor colLeaf

normVec labelExtremes chkSpectra
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