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Introduction

We are often interested to understand the underlying structure of our data. One such way is
to group the data into clusters of similar data points. There are many algorithms that can find
such clusters (e.g. kmeans, hierarchical, sota), and we aggregate their results to arrive at a more
robust result. However, we don’t initially know what the best number of clusters is for the data.
For biological data, we may believe there is a ‘true’ number of clusters with some biological
meaning. We would like to discover the optimal number of clusters k. After discovering this, we
can combine the cluster assignments of each clustering algorithm (with k clusters) to arrive at a
robust clustering. This package allows for both these steps: first identifying the best value of k,
and then combining the cluster assignments from multiple algorithms to identify ‘core’ clusters in
the data.

Tutorial

Let’s start with a small example. We first create an artificial data set with 3 distinct clusters. We
would hope to “discover” that the optimal k = 3.

## create artificial data set with 3 distinct clusters in two dimensions

set.seed (1)

V1 = c(abs(rnorm(20, 2, 20)), abs(rnorm(20, 65, 15)), abs(rnorm(20, 140, 20)))

V2 = c(abs(rnorm(20, 2, 20)), abs(rnorm(20, 65, 15)), abs(rnorm(20, 105, 20)))

data <- t(data.frame(V1i, V2))

colnames(data) <- paste("Sample", 1:ncol(data), sep="")

rownames (data) <- paste("Gene", 1:nrow(data), sep="")

plot(V1, V2, col=rep(c("red", "blue", "black"), each=20), pch=rep(c(0,1,2), each=100),
xlab="x", ylab="y")
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Identifying k

The first step is to run a few clustering algorithms on our data, trying each value of k£ we think is
reasonable. The function COMMUNAL runs the clustering algorithms. The main arguments are the
values of k (number of clusters) to try, and the clustering algorithms to use. The available cluster-
ing algorithms are hierarchical, kmeans, diana, fanny, som, model, sota, pam, clara,
agnes, ccp-hc, ccp-km, ccp-pam, nmf. In this list, nmf corresponds to nmf in package NMF,
ccp-xx corresponds to xx in package ConsensusClusterPlus, and the rest match to the algorithm
of the same name in package clValid. By default, it runs hierarchical and kmeans.

By default, seven different validation measures are evaluated (Connectivity, dunn, wb.ratio, g3,
g2, pearsongamma, avg.silwidth, sindex). Other validation metrics are available as well. Each
of these is a measure of how well a particular clustering separates the data into clusters. With the
exception of “Connectivity”, which is calculated by c1Valid: :connectivity, these are calculated
with fpc::cluster.stats.

These settings can be adjusted with the clus.methods and validation parameters. Here we run
the clustering for each value of k between 2 and 5 inclusive.

> ## run COMMUNAL with defaults

> library (COMMUNAL)

> ks <- seq(2,5)

> result <- COMMUNAL(data=data, ks=ks)

The return value is an object of (reference) class COMMUNAL (same name as the function). The
default print method shows the k’s used, and the original call.



> result
Reference class "COMMUNAL"
ks: 2, 3, 4, 5
Call: COMMUNAL(data = data, ks = ks)
(Use the getClustering method to extract data frame of cluster assignments)

For each algorithm and value of k, the validation measures are computed. They can be accessed
like this.

> str(result$measures)

num [1:8, 1:4, 1:2] 0 0.4491 0.3634 0.0415 0.8807 ...
- attr(x, "dimnames")=List of 3
..$ : chr [1:8] "Connectivity" "dunn" "wb.ratio" "g3"
$ . chr [14] non mgn o ngn ngn
..$ : chr [1:2] "hierarchical" "kmeans"

Let’s visualize these validation scores to pick the optimal value of k. We’re going to use the
results from hierarchical and kmeans clustering, and only consider the validation metrics wb.ratio,
avg.silwidth, and dunn (which are generally the most useful, in our testing). The validation
metrics are standardized and averaged into a single score, such that a higher plotted value is
better. Note that for some metrics, like wb.ratio, a lower value is naturally better; this is
handled internally by pre-multiplying the standardized values by -1 before aggregating the metrics
into a single score.

The plotRange3D function produces a plot of the aggregated validation score for each value of k.
This normally produces a 3D plot using the package “rgl”. Note that in this example we don’t
utilize the third dimension, so we just get the 2D plot. See section Identifying k - additional
tools for an example of how the 3D plot is used. The optimal value of k corresponds to the peak,
in this case at k = 3.

> result.list <- list(list(result), ncol(data))

> goodAlgs <- c('hierarchical', 'kmeans')

> goodMeasures <- c('wb.ratio', 'avg.silwidth', 'dunn')

> values <- plotRange3D(result.list, ks, goodAlgs, goodMeasures)
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Refer to the documentation for additional options for COMMUNAL and more usage examples.

Extracting Core Clusters

After looking at these results, we are satisfied that k = 3 is optimal. The next step is to extract
the cluster assignments for k = 3 with getClustering. It returns a data frame whose rows are
the samples and columns are the clustering algorithm names. Each entry is the cluster assignment
of a sample from the respective algorithm. This is the input used in identifying ‘core’ clusters.

> clusters <- result$getClustering(k=3)
> table(clusters)

kmeans
hierarchical 1 2 3
120 0 O
2 119 0
3 0 020

From the table, you can see that sometimes kmeans and hierarchical clustering disagree, but in
general the clusters fall into three groups of about equal size (just as expected). Now we combine
the results to get final cluster assignments. This shows that the algorithms agree on all but 1 of
the assignments (which ends up in cluster 0)

> # find 'core' clusters
> mat.key <- clusterKeys(clusters, k=3)
> examineCounts (mat.key)



percent.agreement sample.counts percent.remaining.if.removed
[1,] 50 1 0.98
[2,1] 100 59 0.00

> core <- returnCore(mat.key, agreement.thresh=50) # find 'core' clusters

A total of 1 samples were rejected as not robustly clustered.
98.3 7, samples remain.

> table(core) # the 'core' clusters

core
0 1 2 3
1 20 19 20

> head(core) # the cluster assignments

Samplel Sample2 Sample3 Sample4 Sampleb5 Sample6
|I1l| |I1l| |I1l| |I1l| |I1l| |I1l|

Now let’s consider a more involved example of how clusterKeys and returnCore are useful.
Consider the following cluster assignments. Overall the algorithms agree that there are three
clusters, but differ in how they label the clusters. They disagree about the cluster of the last
point.

>k <- 3

> clusters <- data.frame(

+ algl=as.integer(c(1,1,1,1,1,2,2,2,2,2,3,3,3,3,1)),
+ alg2=as.integer(c(1,1,1,1,1,3,3,3,3,3,2,2,2,2,1)),
+ alg3=as.integer(c(3,3,3,3,3,1,1,1,1,1,2,2,2,2,2))
+)

clusterKeys reindexes the labels for each algorithm to make the agreement more apparent.

> mat.key <- clusterKeys(clusters, k)
> mat.key # cluster indices are relabeled

algl alg2 alg3

[1,] 1 1 1
[2,] 1 1 1
[3,] 1 1 1
4,1 1 1 1
[5,] 1 1 1
(6,1 2 2 2
[7,] 2 2 2
[8,] 2 2 2
[9,] 2 2 2
[10,] 2 2 2
[11,] 3 3 3
[12,1] 3 3 3
[13,] 3 3 3
[14,] 3 3 3
[15,] 1 1 3



The next step is to synthesize these into “core” clusters. The clusters are assigned by majority vote.
If not enough algorithms agree, based on a user-defined threshold, the cluster is left undetermined.
examineCounts shows how many samples would be undetermined at various threshold levels.

> examineCounts (mat.key)

percent.agreement sample.counts percent.remaining.if.removed
[1,] 66.66667 1 0.93
[2,1] 100.00000 14 0.00

Now we use a threshold to retrieve the “core” clusters. The default threshold is 50%, meaning that
more than 50% of the algorithms must agree. In this case, if we use the 50% threshold, then all
points are assigned to some cluster.

> core <- returnCore(mat.key, agreement.thresh=50) # find 'core' clusters

A total of O samples were rejected as not robustly clustered.
100 % samples remain.

> table(core) # the 'core' clusters

core
123
654

However, if we require all algorithms to agree, then one point is undetermined (hence labeled as
cluster 0).

> core <- returnCore(mat.key, agreement.thresh=99)

A total of 1 samples were rejected as not robustly clustered.
93.3 7, samples remain.

> table(core) # 0 is undetermined

core
0123
1554

Identifying k£ - additional tools

The third dimension of the validation measure plot is used to show the results of multiple runs of
COMMUNAL on different subsets of the data. Often there are extraneous dimensions which make it
harder to cluster the data. One solution is to only use the dimensions in which the data points
have the highest variance when clustering, since these are the dimensions in which the data are
most separated.

So for each run, we subset the data and cluster using just the x dimensions with the highest
variance. Then the validation scores from all runs are plotted together on a 3D plot. Additionally,
the scores from all the runs are aggregated to get a score for each k, and these are shown in the
2D plot. Ideally the algorithms will work the regardless of the number of dimensions and we’ll
identify a consistently optimal number of clusters. If not, we might get different results, in which
case we’d want to check the cluster assignments and raw validation metrics for further assessment.
The clusterRange function provides a harness to COMMUNAL for this purpose. Here I load some

breast cancer data for 533 tissues and their expression levels of 100 genes. We'll use 50, 70, 85,
and 100 genes (i.e. dimensions) for clustering the tissues.



> data(BRCA.100)

> algs <- c("hierarchical", "kmeans", "agnes")

> measures <- c('wb.ratio', 'dunn’', 'avg.silwidth')

> varRange <- c(50, 70, 85, 100)

> ks <- 2:5

> range.results <- clusterRange(dataMtx=BRCA.100, varRange=varRange,
+ ks = ks,

+ clus.methods = algs,

+ validation = measures)

Now range.results contains the results from running COMMUNAL on the subsetted data. We can
generate the plots using plotRange3D. These indicate that two clusters is best. (As it turns out,
if we cluster using more than 100 genes, we find that the data better separate into 3 clusters.)

> plot.data <- plotRange3D(range.results, ks, algs, measures, filename='snapshot.png')

Mean across all geneRange
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Here is a snapshot of the 3D plot. This shows the results before aggregation into the 2D plot
above. The red dots mark the most concave non-edge point, if the function is concave somewhere,
or the absolute maximum otherwise. The z-axis has labels for Tukey’s five number summary of
all the values. For an interactive 3D example of plotRange3D, you may run this code yourself or
see the help page for plotRange3D.






