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Abstract

In many applications researchers are typically interested in testing for inequality con-
straints in the context of linear fixed effects and mixed effects models. Although there
exists a large body of literature for performing statistical inference under inequality con-
straints, user friendly statistical software for implementing such methods is lacking, espe-
cially in the context of linear fixed and mixed effects models. In this article we introduce
CLME, a package in the R language that can be used for testing a broad collection of
inequality constraints. It uses residual bootstrap based methodology which is reasonably
robust to non-normality as well as heteroscedasticity. The package is illustrated using two
data sets. The package also contains a graphical interface built using the shiny package.

Keywords: distribution free, linear inequality constraints, linear fixed effects models, linear
mixed effects models, order restricted inference, residual bootstrap, R.

1. Introduction

Inequality constraints arise naturally in many applications. For example, to evaluate if a
chemical is a toxin, a toxicologist may conduct a dose-response study to determine if the mean
response is monotonic in dose. More precisely, suppose θi, i ≥ 2, are the mean responses of
a chemical corresponding to p dose groups. In this case the null and alternative hypotheses
of interest are H0 : θ1 = θ2 = . . . = θp, and Ha : θ1 ≤ θ2 ≤ . . . θp, with at least one
strict inequality (known as the simple order constraint), respectively. Sometimes, when the
doses exceed the maximum tolerated dose (MTD), it may result in a dose-related toxicity
and the monotonicity is violated causing down-turn at some (unknown) dose i (Simpson and
Margolin 1986). In such cases, researchers are interested in testing for an umbrella alternative
Hai : θ1 ≤ θ2 . . . ≤ θi−1 ≤ θi ≤ θi+1 ≥ . . . ≥ θp, with at least one strict inequality.

In a multi-center rat uterotophic assay conducted by the OECD (Organization for Economic
Cooperation and Development), researchers were interested in studying the effect of exposure
to estrogen like compounds in the uterine weights of pre-pubertal rats. They were interested in
testing if the mean uterine weights of animals exposed to estrogen like compounds increased in
comparison to the uterine weights of control animals (Kanno et al. 2003). Thus the alternative
hypothesis of interest is Ha : θ1 ≤ θi, i ≥ 2, with at least one strict inequality, known as the
simple tree order. Here θ1 is the mean of the control group and θi, i ≥ 2, are the means of
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the treatment groups.

In cancer trials, it is common for researchers to be interested in evaluating a cocktail of two or
more experimental drugs in combination, each tried at low, medium and high doses. In such
cases, the typical order restriction of interest is the loop order denoted by {θcontrol,control ≤
θcontrol,low ≤ θcontrol,medium ≤ θhigh,high}

⋃
{θcontrol,control ≤ θlow,control ≤ θmedium,control ≤

θhigh,high}, where θa,b denotes the mean response corresponding to ath dose of the first treat-
ment and bth dose of the second treatment. The above null and alternative hypotheses can
in general be expressed as H0 : Cθ = c and Ha : Cθ ≥ c, respectively, where A is a suitable
matrix of zeros, ones and negative ones of appropriate order, θ = (θ1, θ2, . . . , θp)

> and c is a
suitable vector of known scalars, for example a vector of zero’s. Some examples of C and c
are provided later, and an illustration of some common orders is given in Figure (1).
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Figure 1: Illustration of order restrictions. Each circle represents a parameter of interest.
Inequalities between two parameters (i.e. circles) are provided by the lines. The vertical axis
denotes relative magnitude of connected parameters. No relationship (either <, =, or >) is
known among parameters that are not connected. A nodal parameter is a parameter whose
order relationship with every other parameter is known a priori or given by the hypothesis
that is is being tested. For example, θ3 is the nodal parameter in the umbrella orders.

It is of common interest to perform statistical inference under inequality constraints, such as
those described above, in a linear mixed effects model setting, especially in the context of
repeated measures design where a researcher may be interested in detecting trends. However,
despite the existence of a large body of literature on constrained inference spanning over five
decades and three books on testing for order restrictions (Barlow et al. 1972; Robertson et al.
1988; Silvapulle and Sen 2005), it was only recently that researchers developed methods for
performing constrained inference in linear mixed effects models (Davidov and Rosen 2011;
Rosen and Davidov 2011; Farnan et al. 2014). While Davidov and Rosen (2011) and Rosen
and Davidov (2011) developed likelihood ratio based methods, Farnan et al. (2014) developed
a residual bootstrap based method that is designed to be robust to non-normality as well as
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to heteroscedasticity. Furthermore, Farnan’s methodology allows for modeling categorical as
well as continuous covariates.

Surprisingly, not even the popular statistical analysis program SAS (SAS Institute Inc. 2011)
has the capability to perform tests under general inequality constraints in a linear fixed effects
model, let alone in the context of mixed effects models. As demonstrated in Farnan et al.
(2014), statistical methods that are specifically designed for testing inequality constraints
are expected to enjoy substantially higher power than the usual omnibus procedures (e.g.,
ANOVA) which are designed for two-sided alternatives. This observation, together with the
fact that there does not exist a general software for performing statistical tests under linear
inequality constraints in linear mixed effects models, motivates the current work. In this paper
we introduce an R package, called CLME (‘Constrainted Linear Mixed Effects’) based on the
distribution-free residual bootstrap methodology developed in Farnan et al. (2014). There are
several packages in R which offer constrained fixed effects models, including glmc (Chaudhuri
et al. 2006) and ic.infer (Grömping 2010), but neither of these appear to offer support for
mixed models; the present work fills this void. Furthermore, since the methodology is based
on residual bootstrap, CLME does not depend on normality or homogeneity of variances for
the residuals or random effects.

The rest of the paper is organized as follows: Section 2 provides a brief description of the
constrained inference for linear mixed effects (LME) models presented by Farnan et al. (2014).
Section 3 describes the contents of the package CLME along with implementation details.
Section 4 provides some illustrative examples using the package, and Section 5 concludes the
paper with a summary and some comments on planned developments of CLME.

2. Linear mixed effect models under inequality constraints

Let

Y = X1θ1 + X2θ2 + Uξ + ε (1)

denote a linear mixed effects (LME) model where Y is the N × 1 response vector, X1 is a
design matrix of order N × p1 and θ1 is the corresponding p1 × 1 vector of coefficients (often
treatment effects). X2 is an N × p2 a known matrix of covariates, θ2 is the p2 × 1 vector of
regression coefficients, and U is a N × c matrix of known constants (random effects). For
simplicity we write X = (X1 : X2) and U =

(
U1 : U2 : . . . , : Ucq

)
, where : denotes column-

binding and Ui is an N × ci matrix, with
∑q

i=1 ci = c. We also denote θ =
(
θ>1 , θ

>
2

)>
and

p = p1 + p2.

The random vector ξ =
(
ξ>1 , ξ

>
2 , . . . , ξ

>
q

)>
is c×1, where each ξi is a ci×1 vector corresponding

to Ui, for i = 1, . . . , q. The elements of ξ are independently distributed with mean 0 and
covariance matrix T = diag

(
τ21 Ic1 , τ

2
2 Ic2 , . . . , τ

2
q Icq

)
. The residual term ε is similarly defined

with mean 0 and covariance matrix Σ = diag
(
σ21In1 , σ

2
2In2 , . . . , σ

2
kInk

)
, where i = 1, . . . , k

and
∑k

i=1 ni = N.

Although the above model description and the methodology implemented in CLME allows for
fairly general settings, in many applications one may not require the full available flexibility.
For example, in most applications it may be sufficient to assume that T = τ2I, instead of the
general heteroscedastic structure for T described above.

Let C be an r × p matrix so that Cθ represents the linear combinations which are subject to
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inequality constraints specified by the alternative hypothesis. Thus the hypotheses of interest
are given by:

Ho : Cθ = 0 versus Ha : Cθ ≥ 0, (2)

such that at least one of the r inequalities is strict. Farnan et al. (2014) suggested the pool
adjacent violators algorithm (‘PAVA’) to implement the order constraints (isotonization). We
depart from their methodology in that we use the package isotone (de Leeuw et al. 2009)
for isotonization, and in particular the function activeSet. In some cases using active set
methodology leads to the same results as using PAVA; though using active sets is a more
general approach and enables easy specification of complex order restrictions. This also
enables access to a number of solvers for activeSet, including least squares, least absolute
deviation, and others.

CLME is designed to implement two general classes of statistical tests. The likelihood ratio
type (LRT) statistic (Davidov and Rosen 2011) is the default setting, but the user may instead
choose the Williams’ type test statistic (Williams 1971, 1977; Peddada et al. 2001). In both
cases, to keep the methodology robust to non-normality and potential heteroscedasticity, the
p values are evaluated using the residual bootstrap methodology developed in Farnan et al.
(2014). Thus, although the likelihood ratio type statistic is motivated by the likelihood ratio
principle under the normality assumption, it does not use the normal theory based asymptotic
distribution for the test statistic. Hence we use the phrase ‘likelihood ratio type test’ rather
than ‘likelihood ratio test’.

Using simulations, Farnan et al. (2014) demonstrated that the Williams’ type test enjoys
higher power than the likelihood ratio type statistic for simple alternative hypothesis; hence
it may be preferred over the likelihood ratio type statistic in such cases. In general the
Williams’ type test statistic is of the form:

W = max

[Bθ̃1]�
[√

diag
{
BVar(θ̂)B>

}]−1 , (3)

where � denote the Schur-product of vectors, i.e. a� b = (a1b1, a2b2, . . . , arbr)
>, θ̃1 denotes

the estimator of θ1 under the inequality constraint of interest, and θ̂1 denotes the uncon-
strained estimator of θ1 (e.g., the MLE). For a given order restriction specified by C, the
contrast matrix B is derived from the largest hypothesized difference(s); in the simple order
this is the difference between θ1 and θp1 .

3. Contents of CLME

In this section we describe the functions included in CLME and some notes on their imple-
mentation. We start by describing the main function of the package, clme. Afterwards, we
detail some of the secondary functions which users may find useful.

3.1. Main function

The main function of CLME is clme. This function implements the order restricted residual
bootstrap test described in Farnan et al. (2014). Among the arguments listed below, only
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the formula and the dataset are required. A series of flowcharts are provided in the appendix
(Figures (5)-(7)) to guide a user through specification of the arguments for clme.

formula a formula expression; the constrained effect(s) must come before any unconstrained
effects.

data data frame containing the variables in the model.

gfix optional vector of group levels for residual variances. Data should be sorted by this
value.

constraints list containing the constraints.

nsim optional number of bootstrap samples to use for significance testing.

tsf function to calculate the test statistic.

tsf.ind function to calculate the test statistic for individual contrasts.

mySolver solver to use in isotonization (passed to activeSet).

verbose logical, prints iteration step. Argument can be vector of multiple logicals; successive
elements are passed to further functions.

seed set the seed for the random number generator (RNG).

levels list to manually specify labels for constrained coefficients.

ncon the number of constrained terms in the formula; the first ncon terms are constrained.

... space for additional arguments.

Several of the arguments to clme require further explanation.

Constraints The argument constraints is a list describing the order restrictions using
the following elements:

order text string specifying the type of order. Allowed values are ‘simple’, ‘umbrella’, and
‘simple.tree’.

node numeric indicating which element of θ1 is the node.

decreasing logical indicating decreasing order. For simple orders, a decreasing order im-
plies a downward trend. For umbrella or simple tree orders, a decreasing order implies
a decrease from the node. See Figure (1) for an illustration.

A matrix describing the order restrictions in C.

B matrix of coefficients defining the Williams type statistic (only necessary if Williams’ type
test is desired).
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The values of A and B use the same format as the argument isomat from the function
activeSet in package isotone: each is a matrix with two columns where the rows define
a specific constraints. For example, A and B are shown below for the decreasing umbrella
order with p1 = 5 and a node at θ1,3 (the third element of θ1).

A =


1 2
2 3
4 3
5 4


and,

B =

[
1 3
5 3

]
The alternative hypothesis is Ha : θ1 ≤ θ2 ≤ θ3 ≥ θ4 ≥ θ5. The first row of A defines the
constraint θ1 ≤ θ2, the second row defines the constraint θ2 ≤ θ3, and so on. The entries of the
rows are the coefficient indices, and the parameter indexed in the left column is hypothesized
to be less than or equal to that indexed by the right column. The B matrix is similarly
structured, but defines only the contrasts for the largest hypothesized difference(s). Under
the umbrella order, this will be the node compared to the first an last values; the specific
form of the Williams’ type statistic from Equation 3 is:

W = max


θ̃3 − θ̃1√

Var
(
θ̂3 − θ̂1

) , θ̃3 − θ̃5√
Var

(
θ̂3 − θ̂5

)
 ,

hence the B matrix holds the contrasts θ̃3 − θ̃1 and θ̃3 − θ̃5.
Not all of the elements of constraints are necessary. There are three general formats by
which to pass the constraints to clme.

Specific Defaults One may specify only the elements order, node, and decreasing. In
this case the program will call an internal function to generate the values of A and B.
Allowed values for order are ‘simple’, ‘umbrella’, and ‘simple.tree’; also, the node may
be omitted for simple orders. Each of the three elements may also be vector-valued
(e.g., order=c(‘simple’,‘umbrella’)) to test multiple orders.

Custom constraints Alternatively, the list of constraints may contain A directly. This is
particularly useful for specifying custom order restrictions such as loop orders or block
orders. When a custom A is passed, the program will ignore any values of order, node,
and decreasing. If the Williams’ type test is selected, a custom B is also needed.

Unspecified Finally, constraints may be left unspecified. In this case the program will
search for both simple and umbrella orders with all possible nodes, both increasing and
decreasing orders. As with the first case, the program will estimate the order using the
maximum test statistic of all the tested orders.

When testing multiple orders the test statistic is taken as the maximum of all the tested
orders, and the program will note the order which produced this value as the estimated order.
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The bootstrap null distribution of the test statistic is constructed from all the order patterns
under consideration, not just the estimated order (that is, for each bootstrap sample, the test
statistic is computed for all candidate orders, and the maximum is taken). For reproducibility,
one may use seed argument to set the seed for the pseudo-random number generator.

Test Statistic: tsf and tsf.ind The argument tsf is a function which computes the
desired global test statistic. This defaults to lrt.stat, the LRT statistic. Alternatively one
may select the Williams’ type statistic from Equation 3 by setting tsf=w.stat. The related
argument tsf.ind computes the test statistic to test the individual constraints. The Williams
type test, w.stat.ind, is default. These two arguments are analogous to the global F test and
pairwise t tests in the context of analysis of variance. For other test statistics, the user may
submit a custom function function for tsf and/or tsf.ind. We refer to the documentation
of lrt.stat for more details on the format of custom test statistic functions.

The output from any custom tsf should be numeric. Output with length greater than 1
corresponds to multiple global hypotheses being tested. This should not be used for testing
each individual constraint from the A matrix, as these are calculated separately using the
tsf.ind argument. If desired, the test statistic function should also specify the names at-
tribute of the test statistic, for example naming the contrast. An example of testing multiple
global hypotheses is shown in section 4.2, a reanalysis of data from the Fibroid Growth Study
(Peddada et al. 2008).

Homogeneity of Variances: gfix The model described in section 2 permits a large
degree of flexibility. In particular, both ξ (if random effects are included) and ε may be
modeled under the assumption of homogeneity or heterogeneity of variances. Currently, each
random effect term is modeled with a separate variance component. The argument gfix

defines groups for the residual variance(s). By default, the data are modeled with a single
residual variance. If gfix is supplied, then each group of gfix is modeled with a separate
residual variance. For example if the constrained effect is the variable x1, defined as treatment
groups, then gfix=x1 will produce a residual variance for each treatment group.

The output of clme is a list with elements:

theta vector of estimates of fixed-effects coefficients, θ.

theta.null vector of estimates of θ under the null hypothesis.

ssq estimate of the residual variance(s), σ2i , i = 1, . . . , k.

tsq estimate of the random effect variance component(s), τ2i , i = 1, . . . , q.

cov.theta the covariance matrix of the unconstrained estimates of θ.

ts.glb test statistic for the global hypothesis.

ts.ind vector of test statistics for each of the constraints (each row of A).

mySolver the solver used in activeSet.

p.value p value for the global hypothesis.
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p.value.ind Vector of p values for each of the constraints.

constraints List containing the constraints (A) and the contrast for the global test (B).

dframe data frame containing the variables in the model.

residuals matrix containing residuals. For mixed models three types of residuals are given.

random.effects predicted values of the random effects.

gfix group sample sizes for residual variances.

gran group sizes for random effect variance components.

formula the formula used in the model.

call the function call.

order list describing the specified constraints.

P1 the number of constrained parameters.

3.2. Secondary functions

The function clme calls several other functions in the course of its evaluation. The three
primary ones are: clme_em, clme_resids, and resid_boot. These three functions perform
an integral role for clme and may be of use as independent functions outside of normal
use, such as bootstrapping the residuals but not necessarily running the EM algorithm and
obtaining the test statistic. Only resid_boot is described here; all output from clme_em and
most of the output from clme_resids can be obtained simply by running clme with nsim=0.

Residual Bootstrap The function resid_boot obtains the bootstrap samples Y∗ of the
data response vector. The arguments to this function are:

formula a formula expression, the constrained effect should be the first term on the right-
hand side.

data data frame containing the variables in the model.

gfix optional vector of group levels for residual variances.

null.resids logical, whether to generate bootstrap samples under the null hypothesis. De-
faults to TRUE.

eps estimates of residuals.

xi predicted values of the random effects.

theta vector of fixed-effects coefficients.

ssq vector of residual variance estimate(s).
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tsq vector of random effect variance component(s).

cov.theta covariance matrix of the unconstrained fixed effects estimates.

seed set the seed for the RNG

nsim number of bootstrap samples to generate (M).

mySolver the solver to pass to activeSet.

... space for additional arguments.

The required arguments are formula and data, these are used to obtain the model matrices.
If provided, the values of theta, ssq, tsq, eps and xi will be used for bootstrapping; any of
these that are missing will be estimated. Regardless of whether theta is provided or estimated,
if null.resids=TRUE, then theta will be projected onto the space of the null hypothesis. To
generate bootstraps with a specific theta, set null.resids=FALSE. The output of resid_boot
is a matrix of size N ×M , where each column is a bootstrap sample Y∗ of the data vector Y.

3.3. Other package contents

Shiny application The shiny package (RStudio and Inc. 2014) offers the ability to develop
a graphical user interface (GUI) which implements CLME. A GUI developed in shiny can be
run locally or deployed online. This is particularly beneficial to researchers who are not as
familiar with R, or programming in general, but wish to use the methods described here. The
package CLME includes a shiny application to run clme. After installing the package, a user
may run the command shiny_clme() to call the GUI and begin using CLME without any
need for further programming.

The data should be a CSV file with the first row being a header. Variables are identified
using their column letter or number (e.g., 1 or A). Multiple variables may be separated by
a comma (e.g., 1,2,4 or A,B,D), a range of variables may be defined with a dash (e.g., 1-4
or A-D), or a combination of the two can be used. These values should be set to ‘None’ to
indicate no covariates or random effects. Group levels for the constrained effect may not be
read into R with the correct order; an extra column may contain the ordered group levels (it
may therefore have different length than the rest of the dataset).

Methods The function clme outputs an object of the S3 class clme. The methods available
for this class are briefly described in Table (1).

4. Sample Implementation

In this section we demonstrate the use of CLME by applying it to two real-world data sets.
Some of the analyses mimic those performed in the original papers but in the context of
order-restricted inference. Other analyses are intended to exhibit certain features of the
package or compare the available options. We emphasize that these analyses are intended
not as a scientific reanalysis, but as an illustration. Consequently some modeling choices, the
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Generic name Description

AIC Computes Akaike information criterion.
as Coerces an object to class clme.
confint Computes individual confidence intervals for fixed effects parameters. Intervals are centered at the constrained estimates, but use standard errors of the unconstrained estimates.
fixef Extracts estimates fixed-effects coefficients, θ.
formula Extracts the formula for the model.
is Tests if an object is of class clme

logLik Computes the log-likelihood under the assumption of Normality.
model.frame Data frame with the variables in the model.
model.matrix The fixed-effects design matrix.
nobs Number of observations.
plot Produces a plot of the constrained coefficients and denotes statistical significance.
print A basic printout of the model results.
ranef Extracts predictions of the random effects.
residuals Extract various types of residuals.
sigma The residual variance(s).
summary A more detailed printout of model results.
VarCorr Estimates of variance components.
vcov The variance-covariance matrix of the fixed-effects estimates.

Table 1: List of methods currently defined for objects of class clme.

assumption of homogeneity of variances in particular, are not thoroughly investigated. The
data analyzed are included in the package as the datasets rat.blood and fibroid.

4.1. Hematologic parameters from Sprague-Dawley rats

In a recent study on the effect the amount of time a sample is stored has on various hema-
tological parameters, Cora et al. (2012) conducted a time course study using blood samples
drawn from Sprague-Dawley rats. Blood samples from 11 female and 11 male rats were kept
at either room temperature 21 ◦C (the control group) or refrigerated at 3 ◦C for 6, 24, 48
or 72 hours (see Cora et al. (2012) for more details). Although the authors obtained data
on a variety of hematological variables in this repeated measure time course study, we shall
focus on hematocrit (HCT) and the white blood cell (WBC) count over time. In the case of
HCT we shall illustrate some of the options of CLME while testing for simple order with an
increasing trend in time. In the case of WBC we test for simple tree order the mean WBC
count in the freezer group was at least as high as that of the 0 hour.

First, we load the package and the data.

> library("CLME")

> data(rat.blood)

Hematocrit We illustrate CLME using three different settings. In the first case (Case A)
we test the following hypotheses:

H0 : θ1 = θ2 = θ3 = θ4 = θ5
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Vs.
HaA : θ1 ≤ θ2 ≤ θ3 ≤ θ4 ≤ θ5, (A)

with at least one strict inequality, here θi is the mean corresponding to either 0, 6, 24, 48 or
72 hours. In the second case (Case B), we test for a union of umbrella alternatives. If the
null hypothesis is rejected then the algorithm selects the pattern that has largest value of test
statistic:

H0 : θ1 = θ2 = θ3 = θ4 = θ5

Vs.

HaB :


5⋃

i=1

θ1 ≤ θ2 ≤ . . . ≤ θi ≥ . . . ≥ θ5 ∪
5⋃

i=1

θ1 ≥ θ2 ≥ . . . ≥ θi ≤ . . . ≤ θ5.

 (B)

Thus in (B) the order is unspecified but limited to either umbrella or inverted umbrella orders.
Note that simple orders (increasing or decreasing) are a special case of umbrella orders, where
the peak is the first or last parameter. The peak or the trough of each umbrella is specified
using the specification of node. Case (C) is a repeat of case (A), but there we will assume
heteroscedasticity of variances between the time groups.

We initially use the default arguments as far as possible. We use the gender of the rat and
the storage temperature of the sample as covariates. The R code to test case (A) is provided
below along with the results.

> const <- list(order = "simple", node = 1, decreasing = FALSE)

> hct1 <- clme(hct ~ time + temp + sex + (1|id), data = rat.blood, seed = 42,

+ constraints = const, levels = list(2, levels(rat.blood$time)))

> summary(hct1)

Linear mixed model subject to order restrictions

Formula: hct ~ time + temp + sex + (1 | id) - 1

Order specified: increasing simple order

log-likelihood: -1564

AIC: 3147

BIC: 3160

(log-ikelihood, AIC, BIC computed under normality)

Global test:

Contrast Statistic p-value

Bootstrap LRT 0.17 0.0020

Individual constraints:

Contrast Estimate Statistic p-value

6 Hour - 0 Hour 1.342 4.862 0.0000

24 Hour - 6 Hour 0.086 0.399 0.1480

48 Hour - 24 Hour 0.180 0.829 0.0550
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72 Hour - 48 Hour 0.150 0.693 0.1070

Variance components:

Source Variance

id 2.2006

Residual 1.0314

Fixed effect coefficients (theta):

Estimate Std. Err 95% lower 95% upper

0 Hour 40.9121 0.5226 39.888 41.936

6 Hour 42.2542 0.5055 41.263 43.245

24 Hour 42.3405 0.5055 41.350 43.331

48 Hour 42.5201 0.5055 41.529 43.511

72 Hour 42.6701 0.5055 41.679 43.661

tempRT 0.5023 0.1531 0.202 0.802

sexMale -1.8333 0.6804 -3.167 -0.500

Std. Errors and confidence limits based on unconstrained covariance matrix

Parameters are ordered according to the following factor levels:

0 Hour, 6 Hour, 24 Hour, 48 Hour, 72 Hour

> plot(hct1, ci=TRUE, legend="bottomright", inset=0.08)

We find strong evidence (p = 0.002) of an increasing pattern in mean HCT. The coefficients
are plotted in Figure (2) with indications of significance for the individual contrasts.

To test case (B) we simply need to omit the constraints from the call to clme. The code and
results are given below.

> hct2 <- clme(hct ~ time + temp + sex + (1|id), data = rat.blood, seed = 42,

+ levels = list(2, levels(rat.blood$time)))

> summary(hct2)

Linear mixed model subject to order restrictions

Formula: hct ~ time + temp + sex + (1 | id) - 1

Order estimated: increasing simple order

log-likelihood: -1564

AIC: 3147

BIC: 3160

(log-ikelihood, AIC, BIC computed under normality)

Global test:

Contrast Statistic p-value

Bootstrap LRT 0.17 0.0070
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Figure 2: Plot of estimated coefficients of mean hematocrit (HCT) from Case (A). The model
assumed an increasing simple order and homogeneity of variances across treatment groups.
Solid lines denote no significant difference, while dashed lines denote statistical significance.

Individual constraints:

Contrast Estimate Statistic p-value

6 Hour - 0 Hour 1.342 4.862 0.0000

24 Hour - 6 Hour 0.086 0.399 0.1480

48 Hour - 24 Hour 0.180 0.829 0.0550

72 Hour - 48 Hour 0.150 0.693 0.1070

Variance components:

Source Variance

id 2.2006

Residual 1.0314

Fixed effect coefficients (theta):

Estimate Std. Err 95% lower 95% upper

0 Hour 40.9121 0.5226 39.888 41.936

6 Hour 42.2542 0.5055 41.263 43.245

24 Hour 42.3405 0.5055 41.350 43.331

48 Hour 42.5201 0.5055 41.529 43.511

72 Hour 42.6701 0.5055 41.679 43.661



14 CLME: An R package for constrained LME models

tempRT 0.5023 0.1531 0.202 0.802

sexMale -1.8333 0.6804 -3.167 -0.500

Std. Errors and confidence limits based on unconstrained covariance matrix

Parameters are ordered according to the following factor levels:

0 Hour, 6 Hour, 24 Hour, 48 Hour, 72 Hour

Observe that the alternative hypothesis in (B) is much larger than the alternative hypothesis
in (A). Thus, while the conclusions of tests for (A) and (B) are the same: that the parameters
satisfy an increasing simple order, the p value associated with (B) is larger because the
alternative hypothesis in (B) is larger than the alternative in (A).

Accounting for heteroscedasticity is simple in CLME. For example, suppose we wish to model
each of the time points with a different residual variance. To do this we pass the time groups
as the argument gfix, as shown below. We will call this case (C).

> hct3 <- clme(hct ~ time + temp + sex + (1|id), data = rat.blood, seed = 42,

+ gfix = rat.blood$time, constraints = const,

+ levels = list(2, levels(rat.blood$time)))

> summary( hct3 )

Linear mixed model subject to order restrictions

Formula: hct ~ time + temp + sex + (1 | id) - 1

Order specified: increasing simple order

log-likelihood: -1629

AIC: 3284

BIC: 3303

(log-ikelihood, AIC, BIC computed under normality)

Global test:

Contrast Statistic p-value

Bootstrap LRT 0.266 0.0010

Individual constraints:

Contrast Estimate Statistic p-value

6 Hour - 0 Hour 1.326 4.937 0.0000

24 Hour - 6 Hour 0.086 0.465 0.1250

48 Hour - 24 Hour 0.180 0.902 0.0430

72 Hour - 48 Hour 0.150 0.823 0.0890

Variance components:

Source Variance

id 2.13092

0 Hour 1.22617

6 Hour 0.54469
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24 Hour 0.97074

48 Hour 0.77105

72 Hour 0.69144

Fixed effect coefficients (theta):

Estimate Std. Err 95% lower 95% upper

0 Hour 40.9258 0.5032 39.940 41.912

6 Hour 42.2521 0.4625 41.346 43.159

24 Hour 42.3385 0.4729 41.412 43.265

48 Hour 42.5180 0.4681 41.601 43.435

72 Hour 42.6680 0.4661 41.754 43.582

tempRT 0.5341 0.1273 0.285 0.784

sexMale -1.8511 0.6345 -3.095 -0.608

Std. Errors and confidence limits based on unconstrained covariance matrix

Parameters are ordered according to the following factor levels:

0 Hour, 6 Hour, 24 Hour, 48 Hour, 72 Hour

White Blood Cell Count Using the white blood cell count data of Cora et al. (2012),
we now illustrate our package for testing a simple tree order. Here the nodal parameter is
taken to be the population mean corresponding to the 0 hour group. Since boxplots of the
residuals (not shown) suggested the variances were potentially equal across the groups, we
assume homogeneity of variances. For illustration, in this example we use the Williams’ type
test statistic. The code and results are below, and the coefficients are plotted in Figure (3).

> const <- list( order="simple.tree" , node=1 , decreasing=FALSE)

> wbc <- clme(wbc ~ time + temp + sex + (1|id), data = rat.blood, seed = 42,

+ constraints = const, levels = list(2, levels(rat.blood$time)),

+ tsf = w.stat )

> summary(wbc)

Linear mixed model subject to order restrictions

Formula: wbc ~ time + temp + sex + (1 | id) - 1

Order specified: increasing tree order with node at 1

log-likelihood: -1624

AIC: 3266

BIC: 3279

(log-ikelihood, AIC, BIC computed under normality)

Global test:

Contrast Statistic p-value

72 Hour - 0 Hour 5.207 0.0000

Individual constraints:
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Contrast Estimate Statistic p-value

6 Hour - 0 Hour 0.000 0.000 1.0000

24 Hour - 0 Hour 0.409 2.240 0.0120

48 Hour - 0 Hour 0.574 3.150 0.0000

72 Hour - 0 Hour 0.949 5.207 0.0000

Variance components:

Source Variance

id 1.51920

Residual 0.45017

Fixed effect coefficients (theta):

Estimate Std. Err 95% lower 95% upper

0 Hour 5.4262 0.4007 4.641 6.212

6 Hour 5.4262 0.3910 4.660 6.193

24 Hour 5.8348 0.3910 5.068 6.601

48 Hour 6.0007 0.3910 5.234 6.767

72 Hour 6.3757 0.3910 5.609 7.142

tempRT -0.1947 0.1011 -0.393 0.004

sexMale 1.8229 0.5336 0.777 2.869

Std. Errors and confidence limits based on unconstrained covariance matrix

Parameters are ordered according to the following factor levels:

0 Hour, 6 Hour, 24 Hour, 48 Hour, 72 Hour

> plot(wbc, legend="topleft", inset=0.08)

Our results are consistent with those of Cora et al. (2012), but we have in addition detected
the 0 hour - 48 hour and 0 hour - 24 hour contrasts as being significant, which were not
identified by Cora et al. (2012). There does appear to be an increasing pattern over time, but
the differences from control are not statistically significant until sufficient time has passed.

As an alternative to Williams’ type test, we repeated the analysis using the LRT (results
not provided) and discovered that the LRT did not reject the null hypothesis at the 5%
level of significance (p = 0.252). This discrepancy between Williams’ type and LRT is not
surprising in view of the simulation study reported in Farnan et al. (2014), which indicated
that Williams’ type test can be more powerful than LRT in some cases.

4.2. Fibroid growth rates

Peddada et al. (2008) investigated growth rate of of uterine leiomyomata (fibroids) in black
and white women. Since fibroids are hormonally mediated and there is a drop in estrogen
levels as women age, it may be reasonable to hypothesize a reduction in fibroid growth rates.
Interestingly, Peddada et al. (2008) reported that for white women the rate of growth of
fibroids decreased with age (i.e. simple order with decreasing pattern), whereas they did not
find any reduction in the average growth rate of fibroids with age for black women. They
defined the three age groups as follows: Young (< 35), Middle (35 − 44), and Old (≥ 45).
We shall now re-analyze their data using the methodology available in our package CLME
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Figure 3: Plot of estimated coefficients of white blood cell (WBC) count. Solid lines denote
no significant difference, while dashed lines denote statistical significance.

where the alternative hypothesis for women of each race group is a decreasing simple order.
Note that for confidentiality, we use a subset of the data from the Fibroid Growth Study,
excluding cases which may be personally identifiable, particularly those with only one fibroid
analyzed in the study. This subset of the data represents 240 fibroids on 54 women. The
original analysis in Peddada et al. (2008) represented 262 fibroids on 72 women.

The interest in this case is to test for a simple order for each race using a linear mixed effects
model. This analysis serves as a useful illustration of customizing the order restrictions,
because it cannot be performed with the default settings of CLME. First we load the data
and perform some manipulations to get a factor that we can use. We define the variable
race.age to encode the interaction of the race and age variables; with six levels ordered as:
young black, middle-age black, older black, young white, middle-age white, and older white.

> data(fibroid)

> race.age <- factor(paste0( fibroid$race, ".", fibroid$age ) ,

+ levels=c("Black.Yng", "Black.Mid", "Black.Old",

+ "White.Yng", "White.Mid", "White.Old") )

> fibroid$race.age <- race.age

We performed our analysis adjusting for the initial fibroid volume as a covariate, which was
grouped into three categories: < 14, 14− 65cm3, ≥ 65cm3 with the < 14 category taken to be
the baseline. To deal with repeated measurements, we took subject ID as the random effect.
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> initVol <- rep( "small" , nrow(fibroid) )

> idx1 <- (14000 <= fibroid$vol & fibroid$vol < 65000)

> idx2 <- (65000 <= fibroid$vol)

> initVol[idx1] <- "medium"

> initVol[idx2] <- "large"

> fibroid$initVol <- factor( initVol, levels=c("small", "medium", "large") )

For the interaction between the Age and Race terms, we require constraints which define a
decreasing simple order over age for both blacks and whites, but do not impose any order
restriction between blacks and whites. We do this as follows:

> const <- list()

> const$A <- cbind( 2:6 , 1:5 )[-3,]

> const$B <- rbind( c(3,1), c(6,4) )

> const

$A

[,1] [,2]

[1,] 2 1

[2,] 3 2

[3,] 5 4

[4,] 6 5

$B

[,1] [,2]

[1,] 3 1

[2,] 6 4

To understand the construction of these matrices, recall the parameter vector θ1 is ordered as:
young black, middle-age black, older black, young white, middle-age white, and older white.
The groups of the constrained effect are transformed into column indicators, meaning there
will be six parameters: (θY B, θMB, θOB, θYW , θMW , θOW ) , where YB denotes ”young black,”
MB denotes ”middle-aged black,” and so on. Hence, the first three elements of θ correspond
to the blacks, and the last three elements correspond to the whites.

The A matrix must define the proper order restriction on these elements. The first row defines
the constraint θMB ≤ θY B, the first row defines the constraint θOB ≤ θMB. The second two
rows define similar constraints for the white women. None of the rows define a restriction
between any of the first three elements (blacks) and any of the last three elements (whites);
hence there is no order restriction imposed between the two races.

To test for a decreasing simple order for both blacks and whites, we must also define a function
to compute the Williams’ type test statistic of Farnan et al. (2014) for both blacks and whites
separately. While the matrix of contrasts is provided above, by default the Williams’ type
test will take the maximum and report a single test statistic. We require a test statistic for
each of these contrasts. This is similar to the function w.stat.ind which calculates the test
statistics for the individual constraints. However, submitting tsf=w.stat.ind will test all of
the constraints in the matrix constA instead of the contrasts in constB. To correct this, we
make a small modification to w.stat.ind.
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> w.blk.wht <- function (theta, cov.theta, B, A, ...) {

+ stats <- vector("numeric", length = nrow(B))

+ ctd <- diag(cov.theta)

+ stats <- apply(B, 1, FUN = function(a, theta, cov, ctd) {

+ std <- sqrt(ctd[a[1]] + ctd[a[2]] - 2 * cov.theta[a[1], a[2]])

+ (theta[a[2]] - theta[a[1]])/std

+ }, theta = theta, cov = cov.theta, ctd = ctd)

+ names(stats) <- c("Black.Yng - Black.Old",

+ "White.Yng - White.Old" )

+ return(stats)

+ }

All we have done is replace calls to A with calls to B; this will accomplish our goal of producing
a global test for both blacks and whites individually.

We are then ready to run the analysis. For simplicity, we assume homogeneity of variances.
Results of the analysis are shown in Figure (4). The code for this figure is given below, since
it cannot be produced through CLME.

> fib <- clme(lfgr ~ race.age + initVol + (1|id), data = fibroid, seed = 42,

+ constraints = const, tsf = w.blk.wht,

+ levels = list(10, levels(race.age)) )

> summary( fib )

Linear mixed model subject to order restrictions

Formula: lfgr ~ race.age + initVol + (1 | id) - 1

Custom order constraints were provided

log-likelihood: -2638

AIC: 5296

BIC: 5313

(log-ikelihood, AIC, BIC computed under normality)

Global tests:

Contrast Statistic p-value

Black.Yng - Black.Old 1.116 0.1880

White.Yng - White.Old 2.270 0.0150

Individual constraints:

Contrast Estimate Statistic p-value

Black.Yng - Black.Mid 8.752 1.454 0.0580

Black.Mid - Black.Old 0.000 0.000 1.0000

White.Yng - White.Mid 10.391 1.217 0.0640

White.Mid - White.Old 7.703 1.059 0.0830

Variance components:
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Source Variance

id 107.58

Residual 419.15

Fixed effect coefficients (theta):

Estimate Std. Err 95% lower 95% upper

Black.Yng 21.471 5.087 11.501 31.441

Black.Mid 12.719 3.910 5.055 20.383

Black.Old 12.719 6.277 0.416 25.023

White.Yng 21.795 6.746 8.573 35.016

White.Mid 11.403 5.751 0.132 22.674

White.Old 3.700 4.872 -5.848 13.249

initVolmedium -4.720 3.201 -10.995 1.554

initVollarge -3.641 3.854 -11.194 3.912

Std. Errors and confidence limits based on unconstrained covariance matrix

Parameters are ordered according to the following factor levels:

Black.Yng, Black.Mid, Black.Old, White.Yng, White.Mid, White.Old

> theta <- fib$theta

> pvals <- fib$p.value.ind

> plot( x = 1, y = 0, col = 0, ylim = c(-6,22), xlim = c(0.9,3.1), xlab = "",

+ ylab = "Estimated Coefficient" , xaxt = "n")

> axis(side=1, at=1:3,

+ labels=c("Young (<35)" , "Middle aged (35-44)" , "Older (>45)") )

> for( y1 in seq(-15,25,5) ){

+ lines( x=c(0,7), y=c(y1,y1), col="grey", lty=2 )

+ }

> points(c(1,2), theta[1:2], col=1, type="l", lwd=2 , lty=1+(pvals[1]<0.05) )

> points(c(2,3), theta[2:3], col=1, type="l", lwd=2 , lty=1+(pvals[2]<0.05) )

> points(c(1,2), theta[4:5], col=3, type="l", lwd=2 , lty=1+(pvals[3]<0.05) )

> points(c(2,3), theta[5:6], col=3, type="l", lwd=2 , lty=1+(pvals[4]<0.05) )

> points( 1:3 , theta[1:3], col=1, cex=1.5 , pch=21, bg="white" )

> points( 1:3 , theta[4:6], col=3, cex=1.5 , pch=24, bg="white")

> legend("bottom", lty=c(1,1), pch=c(21,24), col=c(1,3), pt.bg=0, pt.cex=1.1,

+ lwd=2, inset=0.03, legend=c("Blacks ", "Whites") , cex=0.9)

The global tests found significant evidence of a decreasing simple order for white women
(p = 0.0150) but not for black women (p = 0.1880). In particular, fibroid growth in older white
women was found to be less than that of younger women. Neither of the individual constrasts
for the white women (Young-Middle and Middle-Old) were significant at the α = 0.05 level.
The significant decreasing trend confirms the conclusions of Peddada et al. (2008).

5. Summary

In this paper we have introduced the R package CLME for performing statistical tests under
linear inequality constraints. It allows the user to choose either the likelihood ratio type



Casey M. Jelsema, Shyamal Peddada 21

−
5

0
5

10
15

20

E
st

im
at

ed
 C

oe
ffi

ci
en

t

Young (<35) Middle aged (35−44) Older (>45)

●

● ●

● Blacks    
Whites

Figure 4: Plot of estimated coefficients of 6-month mean fibroid growth by race and age group.
Black lines with circles correspond to Blacks, green lines with triangles correspond to Whites.
Growth rates for each fibroid were averaged over the 2-4 time points. None of the individual
constraints were significant. The global tests found a significant decreasing trend for white
women, but not for black women.

statistic or Williams’ type statistic. Since it is based on the residual bootstrap methodology it
is not dependant on any Normality assumption. As demonstrated in the paper, the package is
simple to implement with default settings (section 4.1), and more complex hypotheses (section
4.2) can be accommodated with relatively little effort.

Due to the flexibility and distribution-free nature of the model, as well as the ease of use,
we anticipate that many researchers may benefit from using the order-restricted model im-
plemented in CLME instead of standard ANOVA models. Other than this package, there
does not appear to be any software which offers constrained inference for linear mixed effects
models.

While the current release is stable, the authors have an interest in further developing the
functionality of CLME. There are many potential improvements that we foresee. On the
methodological side these include: adding more models, such as logistic models; implement-
ing an automated choice of the number of bootstrap samples (see Jiang and Salzman 2012);
allowing for correlated random effects; and adding the ability to perform power or sample
size calculations. Furthermore, the software does not currently allow for complex covariance
structures for the variance components, such as the AR(1) process, although it may be ex-
tended to accommodate such structures. Other projected developments include enabling the
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program to take advantage of parallel processing to speed up the repetitive calculations for
each bootstrap sample. Finally, as noted, the shiny offers the ability to create apps, making
complex models easily available to researchers without the need to write R codes. The in-
cluded app can be run locally, but shiny apps can be hosted on a server and deployed online.
A well-designed and web-based application could put the power and flexibility of CLME at
a researcher’s fingertips. Future developments include improving the app and deploying it
online.
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A. Flowcharts to determine arguments

Define data frame  
and formula. 

Determine constraints. 

Determine homogeneity 
argument: gfix. 

Define test statistic functions: 
tsf and tsf.ind. 

Run clme() with  
selected inputs. 

Main Workflow 

Determine homogeneity argument:  
gfix. 

Assume homogeneity of  
variances for residuals? 

Leave gfix blank 
(defaults to NULL. 

Set gfix to be factor 
containing group 

membership. 

Return to main workflow. 

No Yes 

Figure 5: Main flowchart to determine arguments (left) and flowchart to determine groups
for residual variance (right).
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Determine constraints. 

Set constraints=list() 
and specify as elements A and 

Anull. If needed, also specify B.  
All should be matrices. 

Leave constraints 
blank, all default orders 

tested. 

Test one (or more) of the default orders? 
Simple , umbrella , or simple tree? 

To test multiple default orders, each element 
may be a vector of corresponding type. All 
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Any element may be left blank. All default 
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Anything known about  
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Set constraints=list() 
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  node    = numeric scaler 
  decreasing = logical 

No Yes 
No 
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Figure 6: Flowchart to determine constraints.
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Define function for test statistic: 
 tsf and tsf.ind. 

Use likelihood ratio 
type test statistic for 

global test? 

Leave tsf blank. 

Use Williams type test 
statistic for individual 

contrast tests? 

Set tsf to specified function 
(w.stat is included, other 
test stats must be manually 

programmed) 

Leave tsf.ind blank. Return to main workflow. 

Set tsf.ind to specified 
function (no alternatives 

included by default) 

Yes 

Yes 

No 

No 

Figure 7: Flowcharts to determine arguments defining the test statistic.
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