
Modeling dependence with C- and D-vine copulas:

The R-package CDVine

Eike Christian Brechmann
Technische Universität München

Ulf Schepsmeier
Technische Universität München

Abstract

Dependence modeling using copulas is very common nowadays. While other multivari-
ate copulas suffer from rather inflexible structures, vine copulas overcome such limitations
and are able to model complex dependency patterns by benefiting from the rich variety
of bivariate copulas. This article presents the R-package CDVine which provides func-
tions and tools for statistical inference of canonical vine (C-vine) and D-vine copulas. It
contains tools for bivariate exploratory data analysis and for bivariate copula selection as
well as for selection of pair-copula families in a vine. Models can be estimated either se-
quentially or by joint maximum likelihood estimation. Sampling algorithms and graphical
methods are also included.

Keywords: multivariate copula, bivariate copula, canonical vine, D-vine, statistical inference,
maximum likelihood estimation, R.

1. Introduction

In recent years copula modeling has become increasingly popular in many fields of application.
Standard references on copula theory include the books by Joe (1997) and Nelsen (2006). The
most fundamental theorem, which constitutes the important role of copulas for describing
dependence in statistics, is the theorem of Sklar (1959). It establishes the link between
multivariate distribution functions and their univariate margins.

Let F be a d-dimensional distribution function with margins F1, ..., Fd. Then there exists a
copula C such that for all x = (x1, ..., xd)

′ ∈ (R ∪ {−∞,∞})d,

F (x) = C(F1(x1), ..., Fd(xd)). (1)

C is unique if F1, ..., Fd are continuous. Conversely, if C is a copula and F1, ..., Fd are distribu-
tion functions, then the function F defined by (1) is a joint distribution function with margins
F1, ..., Fd. In particular C can be interpreted as the distribution function of a d-dimensional
random variable on [0, 1]d with uniform margins. Corresponding densities will be denoted by
a small letter c.

While this motivates us to speak of the copula of continuous random variables X = (X1, ..., Xd) ∼
F , the problem in practical applications is how to identify this copula. For the bivariate case,
a rich variety of copula families is available and well-investigated (cp. Joe 1997; Nelsen 2006).
However, in arbitrary dimension, the choice of adequate families is rather limited. Standard
multivariate copulas such as the multivariate Gaussian or Student-t as well as exchangeable

2 Modeling dependence with C- and D-vine copulas

Archimedean copulas lack the flexibility of accurately modeling the dependence among larger
numbers of variables. Generalizations of these offer some improvement, but typically be-
come rather intricate in their structure and hence exhibit other limitations such as parameter
restrictions.

Vine copulas do not suffer from any of these problems. Initially proposed by Joe (1996) and
developed in more detail in Bedford and Cooke (2001, 2002) and in Kurowicka and Cooke
(2006), vines are a flexible graphical model for describing multivariate copulas built up using
a cascade of bivariate copulas, so-called pair-copulas. Their “statistical breakthrough” was
due to Aas, Czado, Frigessi, and Bakken (2009) who described statistical inference techniques
for the two classes of canonical (C-) and D-vines.

These are derived as iterative pair-copula constructions, where the d(d−1)/2 pair-copulas can
be arranged in d−1 trees (acyclic connected graphs with nodes and edges). In the first C-vine
tree, the dependence with respect to one particular variable, the first root node, is modeled
using bivariate copulas for each pair. Conditioned on this variable, pairwise dependencies
with respect to a second variable are modeled, the second root node. In general, a root node
is chosen in each tree and all pairwise dependencies with respect to this node are modeled
conditioned on all previous root nodes, i.e., C-vine trees have a star structure. This gives
the following decomposition of a multivariate density, the C-vine density w.l.o.g. root nodes
1, ..., d (otherwise nodes can be relabeled),

f(x) =
d∏

k=1

fk(xk)×
d−1∏
i=1

d−i∏
j=1

ci,i+j|1:(i−1)(F (xi|x1, ..., xi−1), F (xi+j |x1, ..., xi−1)|θi,i+j|1:(i−1)),

(2)
where fk, k = 1, ..., d, denote the marginal densities and ci,i+j|1:(i−1) bivariate copula densities
with parameter(s) θi,i+j|1:(i−1) (in general ik : im means ik, ..., im). Here, the outer product
runs over the d−1 trees and root nodes i, while the inner product refers to the d−i pair-copulas
in each tree i = 1, ..., d− 1.

Similarly, D-vines are also constructed by choosing a specific order of the variables. Then in
the first tree, the dependence of the first and second variable, of the second and third, of the
third and fourth, and so on, is modeled using pair-copulas, i.e., if we assume the order 1, ..., d,
we model the pairs (1, 2), (2, 3), (3, 4), etc. In the second tree, conditional dependence of the
first and third given the second variable (the pair (1, 3|2)), the second and fourth given the
third (the pair (2, 4|3)), and so on, is modeled. In the same way, pairwise dependencies of
variables a and b are modeled in subsequent trees conditioned on those variables which lie
between the variables a and b in the first tree, e.g., the pair (1, 5|2, 3, 4). That is each D-
vine tree has a path structure. This then leads to the D-vine density which also conveniently
decomposes a d-dimensional density (as above the order is w.l.o.g. chosen as 1, ..., d; otherwise
nodes can be relabeled):

f(x) =

d∏
k=1

fk(xk)×

d−1∏
i=1

d−i∏
j=1

cj,j+i|(j+1):(j+i−1)(F (xj |xj+1, ..., xj+i−1), F (xj+i|xj+1, ..., xj+i−1)|θj,j+i|(j+1):(j+i−1)).

(3)

Eike Christian Brechmann, Ulf Schepsmeier 3

2

1 3

4

5

1,2

1,3

1,4

1,5
T1

1,3

1,2 1,4

1,5

2,3|1

2,4|1

2,5|1 T2

2,3|1 2,4|1

2,5|1

3,4|12

3,5|12 T3

3,4|12 3,5|12
4,5|123

T4

1 2 3 4 5
1,2 2,3 3,4 4,5

T1

1,2 2,3 3,4 4,5
1,3|2 2,4|3 3,5|4

T2

1,3|2 2,4|3 3,5|4
1,4|23 2,5|34

T3

1,4|23 2,5|34
1,5|234

T4

Figure 1: Examples of five-dimensional C- (left panel) and D-vine trees (right panel) with
edge indices.

Again the outer product runs over the d− 1 trees, while the pairs in each tree are designated
by the inner product.

The crucial question for inference is how to obtain the conditional distribution functions
F (x|v) for an m-dimensional vector v. For a pair-copula term in tree m+1, this can easily be
established using the pair-copulas of the previous trees 1, ...,m and by sequentially applying
the relationship

h(x|v,θ) := F (x|v) =
∂Cxvj |v−j (F (x|v−j), F (vj |v−j)|θ)

∂F (vj |v−j)
, (4)

where vj is an arbitrary component of v and v−j denotes the (m − 1)-dimensional vector v
excluding vj (Joe 1996). Further Cxvj |v−j is a bivariate copula distribution function with pa-
rameter(s) θ specified in tree m. The notation of the h-function is introduced for convenience
(cp. Aas et al. 2009).

By allowing arbitrary bivariate copulas for each pair-copula term in the decompositions (2)
and (3), the multivariate copulas obtained from C- and D-vine structures, so-called C- and D-
vine copulas, constitute very flexible models, since bivariate copulas can easily accommodate
complex dependence structures such as asymmetric dependence or strong joint tail behavior
(cp. Joe, Li, and Nikoloulopoulos 2010). Examples of five-dimensional C- and D-vine trees
are shown in Figure 1. Here, the order of root nodes in the C-vine is 1, ..., 5, which also is the
order of the first D-vine tree. Edge labels show the indices of the corresponding pair-copula
terms.

Since Aas et al. (2009), C- and D-vine copulas have been very successful in many applica-
tions, see, e.g., Schirmacher and Schirmacher (2008), Chollete, Heinen, and Valdesogo (2009),
Heinen and Valdesogo (2009), Mendes, Semeraro, and Leal (2010), and Czado, Schepsmeier,
and Min (2011) as well as Min and Czado (2010), Min and Czado (2011), Smith, Min, Czado,
and Almeida (2010), and Hofmann and Czado (2010) who take a Bayesian approach. Com-
parison studies of multivariate copulas showing the good performance of vine copulas are Berg
and Aas (2009) and Fischer, Köck, Schlüter, and Weigert (2009). Recent overviews about
the vine methodology can be found in Czado (2010) and Kurowicka and Joe (2011), which
includes further applications and theory.

4 Modeling dependence with C- and D-vine copulas

So far publicly available and reliable software for C- and D-vine copula inference has been
lacking. Only the software tool “Uncertainty analysis with Correlations” (UNICORN, http:
//risk2.ewi.tudelft.nl/oursoftware/3-unicorn) includes some functionality for vines
but only to a rather limited extent. We therefore try to fill this gap with the package CDVine
for the statistical software R (R Development Core Team 2011). It includes functions for
statistical inference of C- and D-vine copulas as well as, due to the underlying pair-copula
structure, tools for bivariate data analysis. Some other R-packages for copula modeling are
available on the Comprehensive R Archive Network (CRAN, http://cran.r-project.org/):
the comprehensive package copula described in Yan (2007) and Kojadinovic and Yan (2010b),
the packages fCopulae (Wuertz et al. 2009) and QRMlib (McNeil and Ulman 2010) and
finally the package nacopula (Hofert and Maechler 2010) for so-called nested Archimedean
copulas, a generalization of Archimedean copulas. Furthermore, our package depends on the
packages igraph (Csardi 2010) for illustrations of vine trees and mvtnorm (Genz et al. 2011),
which provides efficient implementations of multivariate Gaussian and Student-t distributions.
These will be loaded (if not already loaded) when loading the package CDVine by

R> library("CDVine")

In the following, we assume that this has been done.

The remainder of the paper is structured as follows. In Section 2 we discuss methods for
bivariate data analysis, while those for statistical inference of C- and D-vine copulas are
treated in Section 3. An illustrative example is presented in Section 4. Section 5 concludes
and provides an outlook to further software implementations of the vine copula methodology.

2. Bivariate data analysis methods

Since C- and D-vine copulas as pair-copula constructions are based on bivariate copulas as
building blocks, CDVine includes a range of tools for bivariate data analysis and inference
of bivariate copula families. We hence discuss these methods before turning to functions for
statistical inference of C- and D-vine copulas in Section 3.

In the following we further assume that the data we are working with is in [0, 1] and has
approximately uniform margins, so-called copula data. For general data sets this is typically
established either by non-parametrically transforming the data with the empirical marginal
distribution functions or by choosing (and fitting) appropriate marginal distributions and
then applying the parametric distribution functions to the data (cp. Sklar’s Theorem (1)).

To allow for reproducibility of the results, we preliminarily fix a seed.

R> set.seed(10)

2.1. Bivariate copula families

The CDVine package provides a wide range of bivariate copula families from the two major
classes of elliptical and Archimedean copulas (cp. Joe 1997; Nelsen 2006). Elliptical copulas
are directly obtained by inverting Sklar’s Theorem (1). Given a bivariate distribution function
F with invertible margins F1 and F2, then

C(u1, u2) = F (F−11 (u1), F
−1
2 (u2)),

http://risk2.ewi.tudelft.nl/oursoftware/3-unicorn
http://risk2.ewi.tudelft.nl/oursoftware/3-unicorn
http://cran.r-project.org/

Eike Christian Brechmann, Ulf Schepsmeier 5

is a bivariate copula for u1, u2 ∈ [0, 1]. C is called elliptical if F is elliptical. The most famous
examples, which are also implemented in CDVine, are the bivariate Gaussian copula

C(u1, u2) = Φρ

(
Φ−1(u1),Φ

−1(u2)
)
,

and the bivariate Student-t copula

C(u1, u2) = tρ,ν
(
t−1ν (u1), t

−1
ν (u2)

)
,

with dependence parameter ρ ∈ (−1, 1) and degrees of freedom parameter ν > 1 for the
Student-t copula. Φρ denotes the bivariate standard normal distribution function with corre-
lation parameter ρ and Φ−1 the inverse of the univariate standard normal distribution func-
tion. Similarly, tρ,ν is the bivariate Student-t distribution function with correlation parameter
ρ and ν degrees of freedom, while t−1ν denotes the inverse univariate Student-t distribution
function with ν degrees of freedom. Both copulas are obviously symmetric and hence lower
and upper tail dependence coefficients are the same.

Bivariate Archimedean copulas, on the other hand, are defined as

C(u1, u2) = ϕ[−1](ϕ(u1) + ϕ(u2)),

where ϕ : [0, 1]→ [0,∞] is a continuous strictly decreasing convex function such that ϕ(1) = 0
and ϕ[−1] is the pseudo-inverse

ϕ[−1](t) =

{
ϕ−1(t), 0 ≤ t ≤ ϕ(0),
0, ϕ(0) ≤ t ≤ ∞.

ϕ is called the generator function of the copula C (see Nelsen 2006, for further details).

In CDVine we implemented the most common single parameter Archimedean families such as
the Clayton, Gumbel, Frank and Joe. Furthermore, the packages provides functionality for
four Archimedean copula families with two parameters, namely the Clayton-Gumbel, the Joe-
Gumbel, the Joe-Clayton and the Joe-Frank. Following Joe (1997) we simply refer to them
as BB1, BB6, BB7 and BB8, respectively. Their more flexible structure allows for different
non-zero lower and upper tail dependence coefficients. As boundary cases they include the
Clayton and Gumbel, the Joe and Gumbel, the Joe and Clayton as well as the Joe and Frank
copulas, respectively.

To each family we assigned a number which is called by the argument family in many
functions (see the respective first columns of Tables 1 and 2). Corresponding parameters
are called by the arguments par and par2, where par2 is needed for the degrees of freedom
parameter of the Student-t copula as well as for the δ-parameter of the BB1, BB6, BB7 and
BB8 copulas. By default par2 is set to zero. The used notation and properties (relationship
of parameter(s) to Kendall’s τ as well as to lower and upper tail dependence coefficients; see
Joe 1996; Nelsen 2006, for further details) are shown in Table 1 for bivariate elliptical and in
Table 2 for bivariate Archimedean copulas, respectively.

In addition to these families, we also implemented rotated versions of the Clayton (3), Gumbel
(4), Joe (6) and the BB families (7,8,9,10). When rotating them by 180 degrees, one
obtains the corresponding survival copulas, while rotation by 90 and 270 degrees allows for
the modeling of negative dependence which is not possible with the standard non-rotated

6 Modeling dependence with C- and D-vine copulas

No. Elliptical distribution Parameter range Kendall’s τ Tail dependence

1 Gaussian ρ ∈ (−1, 1) 2
π arcsin(ρ) 0

2 Student-t ρ ∈ (−1, 1), ν > 1 2
π arcsin(ρ) 2tν+1

(
−
√
ν + 1

√
1−ρ
1+ρ

)
Table 1: Denotation and properties of bivariate elliptical copula families included in CDVine.

No. Name Generator Parameter Kendall’s τ Tail dependence

function range (lower, upper)

3 Clayton 1
θ
(t−θ − 1) θ > 0 θ

θ+2
(2−1/θ, 0)

4 Gumbel (− log t)θ θ ≥ 1 1− 1
θ

(0, 2− 21/θ)

5 Franka − log[e
−θt−1
e−θ−1

] θ ∈ R \ {0} 1− 4
θ

+ 4D1(θ)
θ

(0, 0)

6 Joeb − log[1− (1− t)θ] θ > 1
2θ−4+2γ+2 log 2+Ψ(1

θ
)+Ψ(2+θ

2θ
)

θ−2
(0, 2− 21/θ)

7 BB1 (t−θ − 1)δ θ > 0, δ ≥ 1 1− 2
δ(θ+2)

(2−1/(θδ), 2− 21/δ)

8 BB6 (− log[1− (1− t)θ])δ θ ≥ 1, δ ≥ 1 1 + 4
∫ 1

0

(
− log(−(1− t)θ + 1) (0, 2− 21/(θδ))

× (1−t−(1−t)−θ+t(1−t)−θ)
δθ

)
dt

9 BB7c [1− (1− t)θ)]−δ − 1 θ ≥ 1, δ > 0 1− 2
δ(2−θ) + 4

θ2δ
B(2−θ

θ
, δ + 2) (2−1/δ, 2− 21/θ)

10 BB8 − log
[

1−(1−δt)θ

1−(1−δ)θ

]
θ ≥ 1, 0 < δ ≤ 1 1 + 4

∫ 1

0

(
− log

(
(1−tδ)θ−1

(1−δ)θ−1

)
(0,0d)

× 1−tδ−(1−tδ)−θ+tδ(1−tδ)−θ
θδ

)
dt

Table 2: Denotation and properties of bivariate Archimedean copula families included in
CDVine.

aD1(θ) =
∫ θ

0

c/θ
exp(x)−1

dx (Debey function)
bγ = limn→∞(

∑n
i=1

1
i
− logn) ≈ 0.57721 (Euler’s constant), Ψ(x) = d

dx
log(Γ(x)) (Digamma function)

cB(x, y) =
∫ 1

0
tx+1(t− 1)y−1dt (Beta function)

dExcept for δ = 1, then the upper tail dependence coefficient is 2− 21/θ.

versions. In particular, the distribution functions C90, C180 and C270 of a copula C rotated
by 90, 180 and 270 degrees, respectively, are given as follows:

C90(u1, u2) = u2 − C(1− u1, u2),
C180(u1, u2) = u1 + u2 − 1 + C(1− u1, 1− u2),
C270(u1, u2) = u1 − C(u1, 1− u2).

To the survival copulas of the Clayton, Gumbel, Joe and the BB copulas the numbers 13, 14,
16, 17, 18, 19 and 20 are assigned, while rotation by 90 degrees is indicated by the numbers
23, 24, 26, 27, 28, 29 and 30 and families 33, 34, 36, 37, 38, 39 and 40 correspond to rotation
by 270 degrees. For example, family 24 is a Gumbel copula rotated by 90 degrees, while 16

denotes the Joe survival copula. Note that the parameter ranges of copulas rotated by 90 and
270 degrees are on the negative scale (cp. Table 2), e.g., the parameter of a rotated Gumbel
copula (90/270 degrees) has to be smaller than −1.

By 0 we denote the independence copula, which is a boundary case of the implemented
bivariate copulas, e.g., for the elliptical copulas with ρ = 0 and the Frank copula with θ → 0.
As a reminder of the coding of the copula families the function BiCopName transforms a copula

Eike Christian Brechmann, Ulf Schepsmeier 7

u1
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8 0.9

u2

0.1

0.2
0.3

0.4
0.5

0.6
0.7
0.8
0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Copula CDF

u1
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8 0.9

u2
0.1

0.2
0.3

0.4
0.5

0.6
0.7
0.8
0.9

1
2
3
4
5
6
7
8
9

10

11

Copula PDF

Figure 2: CDF and PDF of a bivariate Student-t copula with dependence parameter ρ = 0.7
and 4 degrees of freedom.

family name to its number analogue and vice versa.

The cumulative distribution functions (CDF’s) and probability density functions (PDF’s) of
the bivariate copula families can be found in the books of Joe (1997) and Nelsen (2006) and are
implemented in CDVine as the functions BiCopCDF and BiCopPDF, respectively. The example
code illustrates the CDF and the PDF of a Student-t copula (family = 2) with dependence
parameter ρ = 0.7 (par = 0.7) and 4 degrees of freedom (par2 = 4). Perspective plots are
shown in Figure 2.

R> u1 = seq(0.02, 0.98, by = 0.02)

R> u2 = seq(0.02, 0.98, by = 0.02)

R> copCDF = matrix(0, 49, 49)

R> copPDF = matrix(0, 49, 49)

R> for (i in 1:49) for (j in 1:49) copCDF[i, j] = BiCopCDF(u1 = u1[i],

+ u2 = u2[j], family = 2, par = 0.7, par2 = 4)

R> for (i in 1:49) for (j in 1:49) copPDF[i, j] = BiCopPDF(u1 = u1[i],

+ u2 = u2[j], family = 2, par = 0.7, par2 = 4)

Conditional bivariate distribution functions, the so-called h-functions defined in (4), can be
evaluated using the function BiCopHfunc. For bivariate copula data u1 and u2 and given
bivariate copula family (family) and parameter(s) (par and par2) it returns the h-functions
of u2 given u1 in the first and of u1 given u2 in the second argument. The function call
for a bivariate Frank copula (family = 5) with parameter θ = 6 (par = 6) is as follows,
where u1 = 0.7 and u2 = 0.4 and first h(u2|u1,θ) (hfunc1) and then h(u1|u2,θ) (hfunc2) are
returned.

R> BiCopHfunc(u1 = 0.7, u2 = 0.4, family = 5, par = 6)

$hfunc1

[1] 0.1338

8 Modeling dependence with C- and D-vine copulas

$hfunc2

[1] 0.8771

To account for the relationship between bivariate copula parameter(s) and Kendall’s τ and vice
versa, the package CDVine contains the functions BiCopPar2Tau and BiCopTau2Par. However
note that the inverse relationship (Kendall’s τ to copula parameter(s)) is only well-defined
for one parameter bivariate copulas, i.e., the families 1,3,4,5,6 and the rotated versions
of the one parameter Archimedean copulas. The following code calculates the Kendall’s τ
corresponding to a bivariate Gaussian copula with parameter ρ = 0.7 and vice versa.

R> tau1 = BiCopPar2Tau(family = 1, par = 0.7)

[1] 0.4936

R> BiCopTau2Par(family = 1, tau = tau1)

[1] 0.7

The relationship between the copula parameter(s) and the tail dependence coefficients as
tabulated in Tables 1 and 2 is implemented in the function BiCopPar2TailDep. The usage of
this function for a BB1 copula with parameters θ = 0.8 and δ = 1.5 is as follows:

R> BiCopPar2TailDep(family = 7, par = 0.8, par2 = 1.5)

$lower

[1] 0.5612

$upper

[1] 0.4126

Simulation of general bivariate copula families can easily be established using the proba-
bility integral transform. For this, let C be the bivariate copula under consideration with
parameter(s) θ. Further, let v1 and v2 be two uniform samples. Then u = (u1, u2)

′ given by

u1 = v1,

u2 = h−1(v2|u1,θ),

with the h-function as defined in (4), is a sample from the bivariate copula C with uniform
margins.

This is implemented in the function BiCopSim which returns a sample of size N for given
bivariate copula family and parameter(s). To illustrate rotated bivariate Archimedean cop-
ulas, we simulate samples of size N = 500 from Clayton copulas rotated by 0, 90, 180 and
270 degrees, respectively. Parameters are chosen according to Kendall’s τ values of 0.5 for
positive dependence (family = 3 and 13) and −0.5 for negative dependence (family = 23

and 33).

Eike Christian Brechmann, Ulf Schepsmeier 9

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 degrees

u1

u2

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

90 degrees

u1

u2

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

180 degrees

u1

u2

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

270 degrees

u1

u2

Figure 3: Samples from Clayton copulas rotated by 0, 90, 180 and 270 degrees with parameters
corresponding to Kendall’s τ values of 0.5 for positive dependence and −0.5 for negative
dependence.

R> dat0 = BiCopSim(N = 500, family = 3, par = BiCopTau2Par(family = 3,

+ tau = 0.5))

R> dat90 = BiCopSim(N = 500, family = 23, par = BiCopTau2Par(family = 23,

+ tau = -0.5))

R> dat180 = BiCopSim(N = 500, family = 13, par = BiCopTau2Par(family = 13,

+ tau = 0.5))

R> dat270 = BiCopSim(N = 500, family = 33, par = BiCopTau2Par(family = 33,

+ tau = -0.5))

Corresponding scatter plots are shown in Figure 3.

2.2. Tools for bivariate exploratory data analysis

When analyzing (bivariate) data, the true copula describing the dependence is however always
unknown. Hence, we require tools to determine an appropriate bivariate copula family to
describe the observed dependence pattern. CDVine provides graphical as well as analytical
tools.

Graphical tools

One of the most common graphical tools beside the standard scatter plot is the contour plot.
BiCopMetaContour either plots a bivariate contour plot corresponding to a bivariate meta
distribution with specified margins (out of a set of possible margins; one common distribu-
tion for both margins) and specified copula family and parameter(s) or creates an empirical
contour plot based on bivariate copula data. The choice of margins for BiCopMetaContour

is summarized in Table 3, where additional parameters for the margins can be set by the
argument margins.par. Standard normal margins are chosen as default, since they allow for
direct comparisons to multivariate normal shapes and bring out characteristic features such
as sharpe corners which indicate tail dependence.

The following example shows an empirical contour plot (contours based on an estimated bivari-
ate density) as well as theoretical contour plots (contours based on the theoretical bivariate
density) with standard normal and Gamma margins for a Gumbel copula with parameter
θ = 2, where no data is needed for the theoretical contour plots. The additional arguments
bw, size and levels define the bandwidth, number of grid points and contour levels used.
The resulting plots are shown in Figure 4.

10 Modeling dependence with C- and D-vine copulas

Distribution margins margins.par

Uniform "unif" -
Standard normal "norm" (default) -
Student-t "t" degrees of freedom
Exponential "exp" rate
Gamma "gamma" (shape, scale)

Table 3: Possible margins for BiCopMetaContour.

Empirical with N=1000

 0.01

 0.05

 0.1

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Standard normal margins

 0.01

 0.05

 0.1

 0.15

 0.2

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Gamma margins

 0.005

 0.01

 0.03

 0.05

 0.07

 0.09

0 1 2 3 4 5

0
1

2
3

4
5

Figure 4: Left panel: empirical contour plot with standard normal margins for simulated data
(N = 1000) of a Gumbel copula with parameter θ = 2. Middle and right panel: meta Gumbel
copula distribution with standard normal and Gamma margins with shape parameter 1.5 and
scale parameter 0.75. The Gumbel copula parameter is θ = 2.

R> par(mfrow = c(1, 3), cex.main = 2, cex.lab = 1.5, cex.axis = 1.5)

R> dat = BiCopSim(N = 1000, family = 4, par = 2)

R> BiCopMetaContour(u1 = dat[, 1], u2 = dat[, 2], bw = 2, size = 100,

+ levels = c(0.01, 0.05, 0.1, 0.15, 0.2), par = 0, family = "emp",

+ main = "Empirical with N=1000")

R> BiCopMetaContour(u1 = NULL, u2 = NULL, bw = 1, size = 100, levels = c(0.01,

+ 0.05, 0.1, 0.15, 0.2), family = 4, par = 2, main = "Standard normal margins")

R> BiCopMetaContour(u1 = NULL, u2 = NULL, bw = 1, size = 100, family = 4,

+ par = 2, margins = "gamma", margins.par = c(1.5, 0.75), levels = c(0.005,

+ 0.01, 0.03, 0.05, 0.07, 0.09), main = "Gamma margins")

While contour plots are rather general tools, there also exist specialized graphical tools to
investigate bivariate copula dependence directly. Kendall’s plot (K-plot) and the χ-plot (or
chi-plot) for detecting dependence are well-described in Genest and Favre (2007). The cor-
responding functions in CDVine are BiCopKPlot and BiCopChiPlot, respectively. Examples
of both can be found in Figure 7 of Section 4.

Genest and Rivest (1993) introduced a further method—the λ-function. The λ-function is
characteristic for each copula family and defined as

λ(v,θ) := v −K(v,θ),

where K(v,θ) := P (C(U1, U2|θ) ≤ v) is Kendall’s distribution function for a copula C with
parameter(s) θ, v ∈ [0, 1] and (U1, U2) distributed according to C with uniform margins. For

Eike Christian Brechmann, Ulf Schepsmeier 11

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

v

λ(
v)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

Joe copula

v

λ(
v)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

v

λ(
v)

Figure 5: Left panel: empirical λ-function for simulated data (N = 1000) of a Joe copula with
parameter θ = 2. Middle panel: theoretical λ-function of a Joe copula with parameter θ = 2.
Right panel: both plots combined. The dashed lines in the two rightmost panels are bounds
corresponding to independence and comonotonicity (λ = 0), respectively.

Archimedean copulas the λ-function is explicitly given in terms of the generator function ϕ
and its derivative ϕ′ (see Genest and Rivest 1993, for more details):

λ(v,θ) =
ϕ(v)

ϕ′(v)
.

In BiCopLambda we implemented the λ-function for the copula families 1 - 10. However
note that for the bivariate Gaussian and Student-t copulas no closed form expressions of the
theoretical λ-functions exist. Therefore they are simulated based on samples of size 1000. The
plot of the theoretical λ-function also shows the bounds of the λ-function corresponding to
independence and comonotonicity (λ = 0). For rotated bivariate copulas one can transform
the input arguments u1 and/or u2 in order to use the λ-function. For copulas rotated by 90
degrees u1 has to be set to 1-u1, for 270 degrees u2 to 1-u2 and for 180 degrees u1 and u2

to 1-u1 and 1-u2, respectively. Then λ-functions of the corresponding non-rotated copula
families can be considered.

Comparing empirical to theoretical λ-functions gives an indication which copula family might
be appropriate to describe the observed dependence (cp. Section 4). An illustrative example
for the Joe copula with parameter θ = 2 is shown here: we first produce a plot of the empirical
λ-function, then of the theoretical one, and finally a plot showing both (see Figure 5).

R> dat = BiCopSim(N = 1000, family = 6, par = 2)

R> par(mfrow = c(1, 3), cex.main = 2, cex.lab = 1.5, cex.axis = 1.5)

R> BiCopLambda(u1 = dat[, 1], u2 = dat[, 2])

R> BiCopLambda(family = 6, par = 2)

R> BiCopLambda(u1 = dat[, 1], u2 = dat[, 2], family = 6, par = 2)

Analytical tools

In addition to the graphical tools we implemented a range of analytical tools, too, where the
numerical output of the plotting functions (set PLOT = FALSE) can of course also be considered
as analytical. Typically a good start of a bivariate data analysis is an independence test, in

12 Modeling dependence with C- and D-vine copulas

particular if the strength of dependence appears to be rather small. In this regard Genest
and Favre (2007) propose the use of a simple bivariate independence test based on Kendall’s
τ . The test exploits the asymptotic normality of the test statistic

T :=

√
9N(N − 1)

2(2N + 5)
|τ̂ |,

where N is the number of observations and τ̂ the empirical Kendall’s τ of the data. The
p-value of the null hypothesis of bivariate independence hence is

p-value = 2× (1− Φ (T)) .

Test statistic and p-value are computed by the function BiCopIndTest.

A copula goodness-of-fit test based on Kendall’s process for bivariate data, as investigated
by Genest and Rivest (1993), is implemented in the function BiCopGofKendall. It computes
the Cramér-von Mises and Kolmogorov-Smirnov test statistics as well as the corresponding
estimated p-values by bootstrapping (the default are B = 100 bootstrap samples; note that, if
B is chosen rather large, computations may take very long). For rotated copulas the input ar-
guments are transformed and the goodness-of-fit procedure for the corresponding non-rotated
copula is used (cp. the discussion of the λ-function above). Using the simulated data of the
Joe copula from above we get:

R> gof = BiCopGofKendall(u1 = dat[, 1], u2 = dat[, 2], family = 5)

R> gof$p.value.CvM

[1] 0

R> gof$p.value.KS

[1] 0

A second goodness-of-fit test implemented in CDVine is based on a scoring approach. Given
a set of bivariate copula families, the function BiCopVuongClarke performs for each possible
pair of families the asymptotic tests by Vuong (1989) and by Clarke (2007). The Vuong
as well as the Clarke test compare two models against each other and based on their null
hypothesis, allow for a statistically significant decision among the two models (see below).
In the goodness-of-fit test proposed by Belgorodski (2010) this is used for bivariate copula
selection. It compares a bivariate copula model 0 to all other possible bivariate copula models
under consideration in order to determine which family fits the data better than the other
families. If copula model 0 is favored over another copula model, a score of ”+1” is assigned
and similarly a score of ”-1” if the other copula model is determined to be superior. No score
is assigned, if the respective test cannot discriminate between two copula models. The total
score is the sum of the scores from all pairwise comparisons.

The Vuong and the Clarke tests are suitable to compare two models, which are non-nested.
Both are likelihood ratio based and related to the common Kullback-Leibler information
criterion, which measures the distance between two statistical models. In the following let
c1 and c2 be two competing bivariate copula densities with estimated parameters θ̂1 and

Eike Christian Brechmann, Ulf Schepsmeier 13

θ̂2, respectively. For the Vuong test we then compute the standardized sum, ν, of the log

differences of their pointwise likelihoods mi := log
[
c1(ui,1,ui,2|θ̂1)

c2(ui,1,ui,2|θ̂2)

]
for observations ui,j , i =

1, ..., N, j = 1, 2, i.e.,

ν =
1
n

∑N
i=1mi√∑N

i=1 (mi − m̄)2
. (5)

Vuong (1989) showed that ν is asymptotically standard normal. We hence prefer copula
model 1 to copula model 2 at level α if

ν > Φ−1
(

1− α

2

)
.

Similarly, if ν < −Φ−1
(
1− α

2

)
, we choose model 2. If, however, |ν| ≤ Φ−1

(
1− α

2

)
, no decision

among the models is possible, that is the null hypothesis that both models are statistically
equivalent cannot be rejected (H0 : E(mi) = 0 ∀i = 1, .., N).

The null hypothesis of statistical indistinguishability in the Clarke test, on the other hand, is

H0 : P (mi > 0) = 0.5 ∀i = 1, .., N.

The intuition behind this null hypothesis is, that under statistical equivalence of the two
models the log-likelihood ratios of the single observations are uniformly distributed around
zero and in expectation 50% of the log-likelihood ratios are greater than zero. The test
statistic

B =
N∑
i=1

1(0,∞)(mi), (6)

where 1 is the indicator function, was proposed by Clarke (2007) and is distributed Bino-
mial with parameters N and p = 0.5. Based on this, critical values can easily be obtained
(see Clarke 2007). Model 1 is interpreted as statistically equivalent to model 2 if B is not
significantly different from the expected value Np = N

2 .

Both test statistics (5) and (6) can be corrected for the number of parameters used in the
models, either using the Akaike or the parsimonious Schwarz correction, which correspond to
the penalty terms of the AIC (Akaike 1973) and the BIC (Schwarz 1978), respectively. These
can be specified using the argument correction, while the significance level of the tests is
set by level.

An example of this scoring goodness-of-fit test will be given in the Section 4. For given
marginally uniform data u1 and u2 and a set of copula families to compare, as specified by
the argument familyset, the function call is as follows:

R> BiCopVuongClarke(u1, u2, familyset, correction, level)

Commonly used alternative criteria to discriminate among models are the above-mentioned
AIC and BIC. They are however less reliable when non-nested models are compared. By
correcting the log-likelihood for the number of parameters used in a model, they allow for
an efficient comparison based on single numbers, namely among a class of models the model
with smallest AIC/BIC is chosen. We implemented this selection procedure in the function
BiCopSelect which estimates copula parameters for a given set of families to choose from

14 Modeling dependence with C- and D-vine copulas

(familyset) using maximum likelihood estimation (cp. the discussion of BiCopEst in Section
2.3) and then selects the family based on the AIC (default) or the BIC. Furthermore, a
preliminary independence test (cp. the description of BiCopIndTest above) can be performed
to accommodate that an independence copula might be appropriate for the given bivariate
data anyway. The function returns the selected bivariate copula family and the estimated
parameter(s).

We use one more time the simulated data of the Joe copula from above to select among all
implemented bivariate copula families (familyset = NA) with a preliminary independence
test (indeptest = TRUE) at significance level 5% (level = 0.05). The function returns the
selected bivariate copula family (family) and the corresponding estimated copula parameters
(par and par2).

R> cop1 = BiCopSelect(u1 = dat[, 1], u2 = dat[, 2], familyset = NA,

+ indeptest = TRUE, level = 0.05)

R> cop1$family

[1] 6

R> cop1$par

[1] 1.967

2.3. Estimation of bivariate copula families

Having selected an appropriate bivariate copula family for given observations, e.g., using
the graphical and analytical tools discussed above, the corresponding copula parameter(s)
has/have to be estimated. This can be established using the function BiCopEst which per-
forms either a method of moments (inversion of Kendall’s τ (method = "itau"); compare
Tables 1 and 2 and the function BiCopTau2Par) or maximum likelihood estimation (MLE;
method = "mle"). Note again that the inversion of Kendall’s τ is however not available for
all bivariate copula families but only for the one parameter ones. If possible, starting values
for the MLE are obtained by inversion of Kendall’s τ , while optimization is performed using
the L-BFGS-B algorithm for constraint optimization to account for the parameter ranges (cp.
Tables 1 and 2). Furthermore, standard errors for both estimation methods are provided, too
(if se = TRUE). For MLE standard errors are based on inversion of the Hessian matrix, while
for inversion of Kendall’s τ they are obtained as described in Kojadinovic and Yan (2010a).

As noted above, CDVine always assumes that marginally uniform data is given. The MLE
used here therefore corresponds to the inference functions from margins (IFM; Joe 1997) or
maximum pseudo likelihood method (MPL; Genest, Ghoudi, and Rivest 1995) depending on
whether the transformation to [0, 1] was parametric or rank based.

To stabilize numerical computations, upper bounds for the degrees of freedom parameter of
the Student-t copula as well as for the parameters of the BB copulas (in absolute values)
can be specified using the arguments max.df for the Student-t copula and max.BB for the BB
copulas. The default values are based on experience and work quite well in most cases. In
certain circumstances, lower or higher values might however be sensible to improve results.

Eike Christian Brechmann, Ulf Schepsmeier 15

In particular, if the degrees of freedom parameter of the Student-t copula is estimated to be
quite large (as a rule of thumb 20-30 degrees of freedom can already be regarded as “large”),
the Student-t is very similar to the Gaussian copula and therefore it is preferable to work
with the Gaussian because it has only one parameter and is thus more efficient when doing
inference. A corresponding warning message is returned when running the following example
with simulated data from a Gaussian copula with parameter ρ = 0.7.

R> dat = BiCopSim(N = 1000, family = 1, par = 0.7)

R> BiCopEst(u1 = dat[, 1], u2 = dat[, 2], family = 1, method = "mle",

+ se = TRUE)

$par

[1] 0.6949

$par2

[1] 0

$se

[1] 0.01343

$se2

[1] 0

R> BiCopEst(u1 = dat[, 1], u2 = dat[, 2], family = 2, method = "mle",

+ se = TRUE, max.df = 30)

$par

[1] 0.6946

$par2

[1] 30

$se

[1] 0.014

$se2

[1] NA

Warning:

In MLE_intern(cbind(u1, u2), c(theta1, delta), family = family, :

Degrees of freedom of the t-copula estimated to be larger than 30.

Consider using the Gaussian copula instead.

3. Statistical inference of C- and D-vine copulas

16 Modeling dependence with C- and D-vine copulas

Having discussed techniques for bivariate data analysis, we now turn to the main part of
CDVine: methods for statistical inference of C- and D-vine copulas. Before discussing es-
timation and model selection, the coding of C- and D-vines is introduced. Finally, some
numerical issues are discussed.

3.1. Specification of C- and D-vine copula models and data simulation

As discussed in the introduction (Section 1), one has to select an order of the variables when
specifying C- and D-vine copulas. For the D-vine, the order of the variables in the first tree
has to be chosen and for the C-vine, the root nodes for each tree need to be determined.
Functions for inference of C- and D-vine copulas in the CDVine package assume that the
order of the variables in the data set under investigation exactly corresponds to this C- or
D-vine order. E.g., in a C-vine the first column of a data set is the first root node, the second
column the second root node, etc.. According to this order arguments have to be provided to
functions for C- and D-vine copula inference. After choosing which vine type we are working
with (type = 1 or "CVine" denotes a C-vine, while type = 2 or "DVine" corresponds to a
D-vine), the copula families (family) and parameters (par and par2) have to be specified as
vectors of length d(d − 1)/2, where d is the number of variables. In a C-vine, the entries of
this vector correspond to the following pairs and associated pair-copula terms

(1, 2), (1, 3), (1, 4), ..., (1, d), (Tree 1)

(2, 3|1), (2, 4|1), ..., (2, d|1,), (Tree 2)

(3, 4|1, 2), (3, 5|1, 2), ..., (3, d|1, 2), (Tree 3)

...,

(d− 1, d|1, ..., d− 2). (Tree d− 1)

Similarly, the pairs of a D-vine are specified in the following order:

(1, 2), (2, 3), (3, 4), ..., (d− 1, d), (Tree 1)

(1, 3|2), (2, 4|3), ..., (d− 2, d|d− 1), (Tree 2)

(1, 4|2, 3), (2, 5|3, 4), ..., (d− 3, d|d− 2, d− 1), (Tree 3)

...,

(1, d|2, ..., d− 1). (Tree d− 1)

As an example consider the following four-dimensional C-vine copula model involving the
pair-copula terms c12, c13, c14, c23|1, c24|1 and c34|12:

R> type = 1

R> family = c(1, 3, 6, 2, 1, 5)

R> par = c(0.5, 1.3, 2.1, -0.3, 0.2, 1.7)

R> par2 = c(0, 0, 0, 3, 0, 0)

In particular, the pair-copula c2,3|1 is a Student-t with dependence parameter ρ = −0.3 and
3 degrees of freedom, while pair c3,4|1,2 in the last tree is modeled by a Frank copula with
parameter θ = 1.7.

The strength of dependence modeled by each pair-copula term can be illustrated by trans-
forming the parameter(s) of each pair-copula term into the corresponding Kendall’s τ value
(cp. BiCopPar2Tau):

Eike Christian Brechmann, Ulf Schepsmeier 17

R> CDVinePar2Tau(family = family, par = par, par2 = par2)

[1] 0.3333 0.3939 0.3763 -0.1940 0.1282 0.1837

To simulate from a vine copula specification, the function CDVineSim can be used. The
corresponding algorithms are given in Aas et al. (2009). They are based on the same idea
as the bivariate simulation described in Section 2.1. As an example we simulate N = 500

samples from the four-dimensional C-vine copula model defined above.

R> dat = CDVineSim(N = 500, family = family, par = par, par2 = par2,

+ type = type)

R> head(dat)

[,1] [,2] [,3] [,4]

[1,] 0.50748 0.33433 0.55270 0.54163

[2,] 0.08514 0.09035 0.10338 0.09657

[3,] 0.61583 0.49753 0.72094 0.60271

[4,] 0.11351 0.34688 0.12842 0.23596

[5,] 0.05190 0.08701 0.08575 0.50173

[6,] 0.86472 0.78956 0.83610 0.78675

3.2. Estimation

Having decided the structure of the C- or D-vine to be used, one has to select pair-copula
families for each (conditional) pair of variables as described in Section 2.2 or using the function
CDVineCopSelect. Based on BiCopSelect, this function selects for a given copula data set
(data) and vine type (type), appropriate bivariate copula families from a set of possible
copula families (familyset) according to the AIC (default) or the BIC. As in BiCopSelect

preliminary independence tests can also be performed for each (conditional) pair to obtain
more parsimonious models. The function call is:

R> CDVineCopSelect(data, familyset, type, selectioncrit, indeptest,

+ level)

This copula selection proceeds tree by tree, since the conditional pairs in trees 2, ..., d − 1
depend on the specification of the previous trees through the h-functions (see Section 1).
Hence, initially C- and D-vine copula models are typically fitted sequentially by proceeding
iteratively tree by tree and thus only involving bivariate estimation for each individual pair-
copula term (see, e.g., Czado et al. (2011) for a detailed description of sequential estimation
in C-vines). This can be established using the function CDVineSeqEst which internally calls
the function BiCopEst described in Section 2.3. Therefore, estimation can be carried out
using inversion of Kendall’s τ or MLE (method = "itau" or "mle"), standard errors can be
computed (se = TRUE or FALSE) and upper bounds for the Student-t degrees of freedom and
BB copula parameters can be set by max.df and max.BB. For a given marginally uniform
data set (data) and pair-copula families (family) specified as described above, the function
is then called as follows:

18 Modeling dependence with C- and D-vine copulas

R> CDVineSeqEst(data, family, type, method, se, max.df, max.BB)

A detailed example will be given in Section 4. Note that the estimated parameters returned
by CDVineCopSelect correspond to sequential estimates obtained by bivariate MLE for the
parameter of each pair-copula.

Even though these sequential estimates often provide a good fit, one typically is interested in
maximizing the (log-)likelihood of a vine copula specification (cp. (2) and (3)) for observations
u = (uk,j)k=1,...,N, j=1,...,d:

� The C-vine log-likelihood with parameter set θCV is given by

`CV (θCV |u) =

N∑
k=1

d−1∑
i=1

d−i∑
j=1

log[ci,i+j|1:(i−1)(Fi|1:(i−1), Fi+j|1:(i−1)|θi,i+j|1:(i−1))],

where Fj|i1:im := F (uk,j |uk,i1 , ..., uk,im) and the marginal distributions are uniform, i.e.,
fk(uk) = 1[0,1](uk). Note that Fj|i1:im depends on the parameters of pair-copula terms
in tree 1 up to tree im.

� Similarly, the D-vine log-likelihood with parameter set θDV is:

`DV (θDV |u) =

N∑
k=1

d−1∑
i=1

d−i∑
j=1

log[cj,j+i|(j+1):(j+i−1)(Fj|(j+1):(j+i−1), Fj+i|(j+1):(j+i−1)|θj,j+i|(j+1):(j+i−1))].

The log-likelihood of a vine copula for given data (data), pair-copula families (family) and
parameters (par and par2) can be obtained using the function CDVineLogLik which imple-
ments the algorithms given in Aas et al. (2009).

R> CDVineLogLik(data, family, par, par2, type)

Using these log-likelihood calculations, we can now estimate parameters jointly using MLE—in
contrast to the pairwise sequential estimation discussed above. This can be established using
the function CDVineMLE with arguments for the given data (data), the pair-copula families
(family) and corresponding starting values for the parameters (start and start2), the vine
type (type) as well as the maximum number of iterations of the optimizer (maxit), where the
L-BFGS-B algorithm for constraint optimization problems is again used here. Upper bounds
for the Student-t degrees of freedom and BB copula parameters can also be set by max.df

and max.BB. Starting values, if not provided, are obtained using the function CDVineSeqEst.
The function call is then as follows:

R> CDVineMLE(data, family, start, start2, type, maxit, max.df, max.BB)

Note again that here MLE corresponds to the IFM and MPL methods depending on the
marginal transformations of the data. More details on the estimation of vine copulas can
found in Aas et al. (2009), Hobæk Haff (2010) and Czado et al. (2011).

Eike Christian Brechmann, Ulf Schepsmeier 19

3.3. Selection among vine copula models

Having fitted different vine copula models to a given data set, one typically is interested in
determining the “best” model in terms of one or more criteria. Besides the classical AIC and
BIC, implemented in CDVineAIC and CDVineBIC, two such criteria are the Vuong and the
Clarke tests described in Section 2.2. They allow for pairwise comparisons of two competing
models, e.g., a C- and a D-vine copula model, and can be performed using the functions
CDVineVuongTest and CDVineClarkeTest. In these functions, models have to be specified
as usual. Model1.family, Model1.par, Model1.par2 and Model1.type for the first model
and similarly for the second model. For each model an order of the variables has to be given,
since the orders of C-vine root nodes or of the nodes in the first D-vine tree may be chosen
differently in the two models. The arguments Model1.order and Model2.order therefore
specify these orders corresponding to the respective vine type. As output, both functions
return test statistics with and without correction for the number of parameters as well as
corresponding p-values.

R> CDVineVuongTest(data, Model1.order, Model2.order, Model1.family,

+ Model2.family, Model1.par, Model2.par, Model1.par2, Model2.par2,

+ Model1.type, Model2.type)

CDVineClarkeTest is called similarly.

Furthermore, obtained vine specifications can be illustrated using the function CDVineTreePlot

which plots one or all trees of a specified vine model (either tree = "ALL" or a tree number in
{1, ..., d− 1}). If no parameters are provided, these are obtained using sequential estimation,
where arguments for CDVineSeqEst can be specified. The trees are plotted using the igraph
package with individually chosen edge labels. As edge labels the user is free to combine the
following information in a vector or choose edge.labels = FALSE for no edge labels:

� "family": pair-copula family names (default),

� "par": pair-copula parameters,

� "par2": second pair-copula parameters,

� "theotau": theoretical Kendall’s τ values corresponding to pair-copula families and
parameters, or

� "emptau": empirical Kendall’s τ values, which are available only if data for sequential
estimation is provided.

Positions of the nodes are either determined automatically (default) or can be set by the
argument P which gives x- and y-coordinates of the nodes. Node labels can be specified by
the argument names.

R> CDVineTreePlot(data, family, par, par2, names, type, method,

+ max.df, max.BB, tree, edge.labels, P)

20 Modeling dependence with C- and D-vine copulas

3.4. Implementation and numerical issues

In order to speed up computations we impemented the major parts of the algorithms in C. In
particular, the MLE is considerably faster by coding the log-likelihood of C- and D-vine copula
models in C. We also implemented the method by Knight (1966) for efficiently computing the
empirical Kendall’s tau.

Even more important is the question of numerical stability. As noted in Section 2.3, it is
advisable to set prudent upper bounds for the estimation of the degrees of freedom parameter
of the Student-t copula as well as of the BB1, BB6, BB7 and BB8 copula parameters. In
general, the user should be careful when working with parameters that correspond to ex-
treme choices of Kendall’s τ , that is Kendall’s τ values close to −1, 0 and 1. This may for
example lead to problems in sequential estimation of pair-copulas in higher order trees of
C- and D-vines. For such pair-copulas, dependence is typically rather small and inevitable
rounding errors are amplified, so that weak negative dependence might be observed even if
the dependence should actually be positive. If this pair is modeled by a copula family that
can only accommodate positive dependence such as the standard Clayton, Gumbel or Joe
copulas, the sequential estimation will abort. In such a case, it may be helpful to identify the
“problematic” term by setting progress = TRUE in CDVineSeqEst and then check the copula
choice for example using BiCopSelect. A simple countermeasure is often to simply set this
pair-copula term to a Gaussian copula because copulas close to independence are rather sim-
ilar anyway. Alternatively, running CDVineCopSelect also estimates parameters sequentially
and chooses appropriate pair-copula families so that no such problems will occur.

When estimating copula parameters, mostly some bounds have to be set in order to respect the
parameter ranges (cp. Tables 1 and 2). This has been done based on experience and extensive
stability tests. Similarly, copula data is bounded to the interval [10−10, 1 − 10−10] because
values too close to 0 or 1 lead to severe numerical problems. Apart from that, additional
measures have been taken to improve the stability, but we will not go into the details here.

4. Example: Major world stock indices

As an example we choose the worldindices data set which is included in the package CDVine.
This data set contains transformed standardized residuals of daily log returns of major world
stock indices in 2009 and 2010 (396 observations). The considered indices are the leading stock
exchanges of the six largest economies in the world: the US American S&P 500 (ˆGSPC),
the Japanese Nikkei 225 (ˆN225), the Chinese SSE Composite Index (ˆSSEC), the German
DAX (ˆGDAXI), the French CAC 40 (ˆFCHI) and the British FTSE 100 Index (ˆFTSE). Each
time series is filtered using an ARMA(1,1)-GARCH(1,1) model with Student-t innovations and
standardized residuals are transformed non-parametrically to copula data using the respective
empirical distribution function.

R> data(worldindices)

For a first impression of the data Figure 6 shows a pairs plot with scatter plots above and
contour plots with standard normal margins below the diagonal. In particular among the
European indices there is evidently strong dependence, while the dependence to the two
Asian indices is rather weak.

Eike Christian Brechmann, Ulf Schepsmeier 21

^GSPC

0.0 0.2 0.4 0.6 0.8 1.0

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

● ●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

● ●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 0.01

 0.05

 0.1

^N225

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

● ●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

● ●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●

● ●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

 0.01

 0.01
 0.05

 0.1

 0.01

 0.05

 0.1 ^SSEC
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 0.01

 0.01
 0.05

 0.1

 0.01

 0.05

 0.1

 0.01

 0.01

 0.05

 0.1
^GDAXI

●●
●

●●

●

●

●

●

● ●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●

●

● ●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

 0.01

 0.05

 0.1

 0.01

 0.05

 0.1

 0.01

 0.05

 0.1

 0.01

 0.01

 0.05

 0.1

 0.15

^FCHI

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 0.01

 0.05

 0.1

 0.01

 0.05

 0.1

0.0 0.2 0.4 0.6 0.8 1.0

 0.01

 0.05

 0.1

 0.01

 0.01

 0.05

 0.1

0.0 0.2 0.4 0.6 0.8 1.0

 0.01

 0.05

 0.1

 0
.1

5 ^FTSE

Figure 6: Pairs plot of the worldindices data set with scatter plots above and contour plots
with standard normal margins below the diagonal. Axes of the contour plots range from −3
to 3 other than indicated here. (Compare the documentation of the R-function pairs for
details on how to obtain such a plot.)

To illustrate the usefulness of our functions and their handling we will perform a detailed
exploratory data analysis (EDA) of one particular variable pair and specify a C-vine copula
model including copula selection, sequential estimation and MLE as well as log-likelihood
computations and plotting of C-vine trees. The specification of a D-vine copula model is
not explicitly discussed here, but could be covered in essentially the same way. Such a D-
vine copula model is then compared to the selected C-vine copula model at the end of our
presentation.

Using the C-vine structure selection criterion described by Czado et al. (2011) we determine
ˆFCHI as the first root node (C-vine tree with strongest dependencies in terms of absolute
empirical values of pairwise Kendall’s τ ’s). We now exemplarily show the EDA for the pair
(ˆFCHI,ˆFTSE) using the graphical tools BiCopMetaContour (see row 6, column 5 of Figure
6), BiCopKPlot, BiCopChiPlot and BiCopLambda, and the analytical tools BiCopIndepTest,
BiCopVuongClarke and BiCopSelect in order to choose the best fitting copula.

22 Modeling dependence with C- and D-vine copulas

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

K−plot

W1:n

H

xxxx
xxxxx
xxxxxx

xx
xxxx

xxxxxx
xxx

x
xxxxxxx
xxxx

xxxx
xxxx

xx
xxx

xxxxx
xxx

xxxx
xxx
xxxxxxxxxxxxxx

xxxx
xxxxxx

xxxxx
xxxxxxxxxxxxxxxxx

xxxxxx
xxxx
xxxxxxxx

xx
xxxx
xxxxx

xxxx
xxxx
xxxxxx xxx

xxxxx
xxx

x
xxxxxxxx

xxx
xxxxxxxxxx

xx
xxxxx

xxxxx
xx

xx
xxxxx

xxxxx
xxxx
xx
xxx
xx

xx
x
xxxxx

xxxx
xx
xx
xxxxxx

xxxxxx
xxxx
x
xxx
xx
xxx

xxxxxxx
xx
xxx

xxxx
xxxx

xx
xxx

xxxxx
xxx

x
xxxx

xxxxxx
xx

xxxx
xx

xx
xxx

xxx
xxx

x
xxxx

xxx
xxxxx

x
xx

xxxxxxxxxxxxxxxxxxxxxx
x

xx xx x x x x x x
x

x x x x x x
x x x x x x x

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●● ●
●

●

●●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●● ●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

● ● ●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●●

●
●

●
●

●

●

●

●

●

●

●
● ●

●

●●

●
●

●
●

●●

●

●
●

●●●
●

●

●

●●

●
●

●

●

●

●●

●
● ●

●

●

● ●

●

● ●●
● ●●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

● ●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●
●

●●
●

●●●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Chi−plot

λ

χ

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

Lambda−function

v

λ(
v)

Figure 7: Left panel: K-plot. Middle panel: chi-plot. Right panel: empirical λ-function (black
line), theoretical λ-function of a Student-t copula with parameters estimated using BiCopEst

(grey line) as well as independence and comonotonicity limits (dashed lines).

R> par(mfrow = c(1, 3), cex.main = 2, cex.lab = 1.5, cex.axis = 1.5)

R> BiCopKPlot(worldindices[, 5], worldindices[, 6], main = "K-plot")

R> BiCopChiPlot(worldindices[, 5], worldindices[, 6], xlim = c(-1,

+ 1), ylim = c(-1, 1), main = "Chi-plot")

R> param = BiCopEst(worldindices[, 5], worldindices[, 6], 2)

R> BiCopLambda(worldindices[, 5], worldindices[, 6], family = 2,

+ par = param$par, par2 = param$par2, main = "Lambda-function")

The scatter plot in row 5, column 6 of Figure 6 as well as the K- and chi-plots in Figure 7 show
that the variables are strongly positively dependent. Evidence of symmetric tail dependence is
also visible. The empirical contour plot confirms these properties which are characteristic for
a Student-t copula. Additionally, the corresponding theoretical contour plot of the bivariate
Student-t copula (not shown here) has a similar shape as the empirical one in Figure 6. The
λ-function in the right panel supports our choice.

The following pro forma independence test with a p-value of zero confirms the strong depen-
dence.

R> BiCopIndTest(worldindices[, 5], worldindices[, 6])$p.value

[1] 0

The scoring test based on the Vuong and Clarke tests strongly tends to a Gaussian, Student-t
or (survival) BB1 copula, where the Student-t is also selected using the AIC.

R> BiCopVuongClarke(worldindices[, 5], worldindices[, 6], familyset = c(1:10,

+ 13, 14, 16:20))

1 2 3 4 5 6 7 8 9 10 13 14 16 17 18 19 20

Vuong 13 13 -11 4 0 -13 13 2 2 -9 -11 3 -13 13 1 2 -9

Clarke 13 16 -12 6 2 -12 13 4 1 -8 -12 4 -12 8 2 -4 -9

Eike Christian Brechmann, Ulf Schepsmeier 23

R> BiCopSelect(worldindices[, 5], worldindices[, 6], familyset = c(1:10,

+ 13, 14, 16:20))$family

[1] 2

Such an EDA or other selection methods as for example goodness-of-fit tests (BiCopGofKendall
or the one based on the empirical copula process proposed by Genest and Rémillard (2008)
and implemented in the package copula) can directly be used to select each pair-copula of
the first C-vine tree (all pairs involving ˆFCHI). Based on these pair-copula families and the
according estimated parameters, one can then use h-functions (4) to calculate inputs of the
pair-copulas of the second C-vine tree and specify them. This procedure is iterated tree by
tree.

By selecting all further C-vine root nodes as described in Czado et al. (2011) the root node
order in the data set is determined as ˆFCHI, ˆN225, ˆGDAXI, ˆSSEC and finally ˆGSPC.
Copula families (according to this order) are chosen as 9 (c12), 2 (c13), 2 (c14), 19 (c15), 19
(c16), 0 (c23|1), 34 (c24|1), 1 (c25|1), 0 (c26|1), 0 (c34|12), 1 (c35|12), 0 (c36|12), 0 (c45|123), 4
(c46|123), 0 (c56|1234), where bivariate independence tests have been used to identify possibly
independent conditional variable pairs.

R> order = c(5, 2, 6, 4, 3, 1)

R> dat = worldindices[, order]

R> family = c(9, 2, 2, 19, 19, 0, 34, 1, 0, 0, 1, 0, 0, 4, 0)

Using the function CDVineSeqEst with method = "mle" we get the following sequential esti-
mates of the pair-copula parameters.

R> seqPar = CDVineSeqEst(dat, family = family, type = 1, method = "mle")

$par

[1] 1.1425 0.9388 0.9631 1.1070 1.9827 0.0000 -1.0904 0.2794 0.0000

[10] 0.0000 0.1120 0.0000 0.0000 1.1030 0.0000

$par2

[1] 0.3014 13.4802 14.0548 0.1806 1.1203 0.0000 0.0000 0.0000 0.0000

[10] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Although sequential estimation typically provides quite good parameter estimates, they can
be improved by a joint MLE.

R> mlePar = CDVineMLE(dat, family = family, start = seqPar$par,

+ start2 = seqPar$par2, type = 1)

$par

[1] 1.1331 0.9389 0.9624 1.1081 1.9961 0.0000 -1.0864 0.2794 0.0000

[10] 0.0000 0.1120 0.0000 0.0000 1.1049 0.0000

24 Modeling dependence with C- and D-vine copulas

$par2

[1] 0.3136 13.4803 14.0551 0.1757 1.1132 0.0000 0.0000 0.0000 0.0000

[10] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

$loglik

[1] 1186

$counts

function gradient

35 35

$convergence

[1] 0

$message

[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

CDVineMLE returns the parameters found, the optimized log-likelihood as well as information
about the optimization. A direct comparison of the log-likelihoods using CDVineLogLik shows
the slight improvement of the jointly estimated parameters over the sequential ones in terms
of the log-likelihood.

R> CDVineLogLik(dat, family = family, par = seqPar$par, par2 = seqPar$par2,

+ type = 1)$loglik

[1] 1185.55

R> CDVineLogLik(dat, family = family, par = mlePar$par, par2 = mlePar$par2,

+ type = 1)$loglik

[1] 1185.62

Finally we illustrate the C-vine trees using the function CDVineTreePlot. Because of limited
space in this manuscript we only plot the first tree in Figure 8 (cp. to Figure 1 which was
produced in LATEX).

R> P = CDVineTreePlot(data = NULL, family = family, par = mlePar$par,

+ par2 = mlePar$par2, names = colnames(dat), type = 1, tree = 1,

+ edge.labels = c("family", "theotau"))

Similarly we also fitted a D-vine copula model with order of variables order_dvine, pair-
copula families family_dvine and corresponding parameters par_dvine and par2_dvine. In
order to determine the better fitting vine copula model for the worldindices data set, we
perform a Vuong test comparing both models.

Eike Christian Brechmann, Ulf Schepsmeier 25

Tree 1

BB7,0.19

t,0.78

t,0.82

SBB7,0.13

SBB7,0.51

^FCHI

^N225

^FTSE

^GDAXI

^SSEC

^GSPC

Figure 8: First tree of the specified C-vine for the worldindices data set with pair-copula
families and Kendall’s τ values corresponding to pair-copula parameters as edge labels.

R> CDVineVuongTest(worldindices, Model1.order = order, Model2.order = order_dvine,

+ Model1.family = family, Model2.family = family_dvine,

+ Model1.par = mlePar$par, Model2.par = par_dvine,

+ Model1.par2 = mlePar$par2, Model2.par2 = par2_dvine,

+ Model1.type = 1, Model2.type = 2)

$statistic

[1] 0.2818

$statistic.Akaike

[1] 0.2818

$statistic.Schwarz

[1] 0.2818

$p.value

[1] 0.7781

$p.value.Akaike

[1] 0.7781

$p.value.Schwarz

[1] 0.7781

26 Modeling dependence with C- and D-vine copulas

The test statistics close to zero (irrespective of the correction considered) and the large p-
values indicate that the C- and the D-vine copula models for the worldindices data set
cannot be distinguished statistically. Results from a Clarke test between both models, which
are not shown here, confirm this.

To summarize, the above analysis showed strong positive dependencies among the European
stock indices, where the French CAC 40 was determined to be central for explaining the
overall dependence observed in the data. Further, we found evidence of medium to strong
tail dependence as well as of some asymmetries in the dependence structure. Based on the
data we could however not discriminate among fitted C- and D-vine copula models, where it
should be noted that both models provide additional insights due to their specific structures.

5. Conclusion and outlook

In this paper, we present the R-package CDVine for statistical inference of C- and D-vine
copulas and demonstrate its use and usefulness in a substantial example. For the first time,
the CDVine package provides extensive functionality for vine copula inference and related
data analysis. In the future, we are planning to extend this to the more general class of
regular vines as defined in Kurowicka and Cooke (2006). Inference and model selection of
these are treated in Dißmann, Brechmann, Czado, and Kurowicka (2011) and Brechmann,
Czado, and Aas (2010), while a large scale financial application can be found in Brechmann
and Czado (2011). Further possible extensions are Bayesian inference and model selection
techniques as used in Min and Czado (2010) and Min and Czado (2011).

6. Acknowledgment

A first version of CDVine was based on and inspired by code from Daniel Berg (Norwegian
Computing Center; http://www.danielberg.no) provided by personal communication. We
further acknowledge substantial contributions by our working group at Technische Universität
München, in particular by Carlos Almeida and Aleksey Min. In addition, we like to thank
Shing (Eric) Fu, Feng Zhu, Guang (Jack) Yang, and Harry Joe for providing their imple-
mentation of the method by Knight (1966). We are especially grateful to Harry Joe for his
contributions to the implementation of the bivariate Archimedean copulas. Numerical stabil-
ity tests were performed on a Linux cluster supported by DFG grant INST 95/919-1 FUGG.
Both authors gratefully acknowledge the support of the TUM Graduate School’s International
School of Applied Mathematics. Ulf Schepsmeier is further supported by the BMBF program
“Mathematik für Innovationen in Industrie und Dienstleistungen”, Eike Brechmann by a grant
from Allianz Deutschland AG.

References

Aas K, Czado C, Frigessi A, Bakken H (2009). “Pair-copula constructions of multiple depen-
dence.” Insurance: Mathematics and Economics, 44(2), 182–198.

Akaike H (1973). “Information theory and an extension of the maximum likelihood princi-

http://www.danielberg.no

Eike Christian Brechmann, Ulf Schepsmeier 27

ple.” In BN Petrov, F Csaki (eds.), Proceedings of the Second International Symposium on
Information Theory Budapest, Akademiai Kiado, pp. 267–281.

Bedford T, Cooke RM (2001). “Probability density decomposition for conditionally dependent
random variables modeled by vines.” Annals of Mathematics and Artificial intelligence, 32,
245–268.

Bedford T, Cooke RM (2002). “Vines - a new graphical model for dependent random vari-
ables.” Annals of Statistics, 30, 1031–1068.

Belgorodski N (2010). Selecting pair-copula families for regular vines with application to
the multivariate analysis of European stock market indices. Master’s thesis, Technische
Universität München.

Berg D, Aas K (2009). “Models for construction of higher-dimensional dependence: A com-
parison study.” European Journal of Finance, 15, 639–659.

Brechmann EC, Czado C (2011). “Extending the CAPM using pair copulas: The Regular
Vine Market Sector model.” Submitted for publication.

Brechmann EC, Czado C, Aas K (2010). “Truncated regular vines and their applications.”
Submitted for publication.

Chollete L, Heinen A, Valdesogo A (2009). “Modeling international financial returns with a
multivariate regime switching copula.” Journal of Financial Econometrics, 7, 437–480.

Clarke KA (2007). “A Simple Distribution-Free Test for Nonnested Model Selection.” Political
Analysis, 15(3), 347–363.

Csardi G (2010). igraph: Network analysis and visualization. R package version 0.5.5-1, URL
http://CRAN.R-project.org/package=igraph.

Czado C (2010). “Pair-copula constructions of multivariate copulas.” In P Jaworski, F Du-
rante, W Härdle, T Rychlik (eds.), Copula Theory and Its Applications. Springer, Berlin.

Czado C, Schepsmeier U, Min A (2011). “Maximum likelihood estimation of mixed C-vines
with application to exchange rates.” To appear in Statistical Modelling.

Dißmann J, Brechmann EC, Czado C, Kurowicka D (2011). “Selecting and estimating regular
vine copulae and application to financial returns.” Submitted for publication.

Fischer M, Köck C, Schlüter S, Weigert F (2009). “An empirical analysis of multivariate
copula models.” Quantitative Finance, 9(7), 839–854.

Genest C, Favre AC (2007). “Everything you always wanted to know about copula modeling
but were afraid to ask.” Journal of Hydrologic Engineering, 12, 347–368.

Genest C, Ghoudi K, Rivest LP (1995). “A semiparametric estimation procedure of depen-
dence parameters in multivariate families of distributions.” Biometrika, 82, 543–552.

Genest C, Rémillard B (2008). “Validity of the parametric bootstrap for goodness-of-fit
testing in semiparametric models.” Annales de l’Institut Henri Poincaré: Probabilités et
Statistiques, 44, 1096–1127.

http://CRAN.R-project.org/package=igraph

28 Modeling dependence with C- and D-vine copulas

Genest C, Rivest LP (1993). “Statistical inference procedures for bivariate Archimedean
copulas.” Journal of the American Statistical Association, 88(423), 1034–1043.

Genz A, et al. (2011). mvtnorm: Multivariate Normal and t Distributions. R package version
0.9-96, URL http://CRAN.R-project.org/package=mvtnorm.

Heinen A, Valdesogo A (2009). “Asymmetric CAPM dependence for large dimensions: The
Canonical Vine Autoregressive Model.” CORE discussion papers 2009069, Université
catholique de Louvain, Center for Operations Research and Econometrics (CORE).

Hobæk Haff I (2010). “Estimating the parameters of a pair-copula construction.” Submitted
for publication.

Hofert M, Maechler M (2010). nacopula: Nested Archimedean Copulas. R package version
0.4-3, URL http://CRAN.R-project.org/package=nacopula.

Hofmann M, Czado C (2010). “Assessing the VaR of a portfolio using D-vine copula based
multivariate GARCH models.” Submitted for publication.

Joe H (1996). “Families ofm-variate distributions with given margins andm(m−1)/2 bivariate
dependence parameters.” In L Rüschendorf, B Schweizer, MD Taylor (eds.), Distributions
with fixed marginals and related topics, pp. 120–141. Institute of Mathematical Statistics,
Hayward.

Joe H (1997). Multivariate Models and Dependence Concepts. Chapman & Hall, London.

Joe H, Li H, Nikoloulopoulos AK (2010). “Tail dependence functions and vine copulas.”
Journal of Multivariate Analysis, 101(1), 252–270.

Knight WR (1966). “A computer method for calculating Kendall’s tau with ungrouped data.”
Journal of the American Statistical Association, 61(314), 436–439.

Kojadinovic I, Yan J (2010a). “Comparison of three semiparametric methods for estimating
dependence parameters in copula models.” Insurance: Mathematics and Economics, 47(1),
52–63.

Kojadinovic I, Yan J (2010b). “Modeling Multivariate Distributions with Continuous Margins
Using the copula R Package.” Journal of Statistical Software, 34(9), 1–20. URL http:

//www.jstatsoft.org/v34/i09/.

Kurowicka D, Cooke RM (2006). Uncertainty Analysis with High Dimensional Dependence
Modelling. John Wiley, Chichester.

Kurowicka D, Joe H (2011). Dependence Modeling: Vine Copula Handbook. World Scientific
Publishing Co., Singapore.

McNeil A, Ulman S (2010). QRMlib: Provides R-language code to examine Quantitative
Risk Management concepts. R package version 1.4.5, URL http://CRAN.R-project.org/

package=QRMlib.

Mendes BVdM, Semeraro MM, Leal RPC (2010). “Pair-copulas modeling in finance.” Finan-
cial Markets and Portfolio Management, 24(2), 193–213.

http://CRAN.R-project.org/package=mvtnorm
http://CRAN.R-project.org/package=nacopula
http://www.jstatsoft.org/v34/i09/
http://www.jstatsoft.org/v34/i09/
http://CRAN.R-project.org/package=QRMlib
http://CRAN.R-project.org/package=QRMlib

Eike Christian Brechmann, Ulf Schepsmeier 29

Min A, Czado C (2010). “Bayesian inference for multivariate copulas using pair-copula con-
structions.” Journal of Financial Econometrics, 8(4), 511–546.

Min A, Czado C (2011). “Bayesian model selection for multivariate copulas using pair-copula
constructions.” Canadian Journal of Statistics, 39(2), 239–258.

Nelsen RB (2006). An Introduction to Copulas. 2nd edition. Springer, Berlin.

R Development Core Team (2011). R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.

R-project.org.

Schirmacher D, Schirmacher E (2008). “Multivariate dependence modeling using pair-
copulas.” Technical report, Society of Acturaries: 2008 Enterprise Risk Management Sym-
posium, April 14-16, Chicago.

Schwarz G (1978). “Estimating the Dimension of a Model.” The Annals of Statistics, 6(2),
461–464.

Sklar A (1959). “Fonctions de répartition à n dimensions et leurs marges.” Publications de
l’Institut de Statistique de L’Université de Paris, 8, 229–231.

Smith M, Min A, Czado C, Almeida C (2010). “Modeling longitudinal data using a pair-
copula decomposition of serial dependence.” Journal of the American Statistical Associa-
tion, 105(492), 1467–1479.

Vuong QH (1989). “Ratio Tests for Model Selection and Non-Nested Hypotheses.” Econo-
metrica, 57(2), 307–333.

Wuertz D, et al. (2009). fCopulae: Rmetrics - Dependence Structures with Copulas. R package
version 2110.78, URL http://CRAN.R-project.org/package=fCopulae.

Yan J (2007). “Enjoy the joy of copulas: With a package copula.” Journal of Statistical
Software, 21(4), 1–21. URL http://www.jstatsoft.org/v21/i04/.

Affiliation:

Eike Christian Brechmann, Ulf Schepsmeier
Lehrstuhl für Mathematische Statistik
Zentrum Mathematik
Technische Universität München
85748 Garching b. München, Germany
E-mail: brechmann@ma.tum.de, schepsmeier@ma.tum.de
URL: http://www-m4.ma.tum.de/pers/

http://www.R-project.org
http://www.R-project.org
http://CRAN.R-project.org/package=fCopulae
http://www.jstatsoft.org/v21/i04/
mailto:brechmann@ma.tum.de
mailto:schepsmeier@ma.tum.de
http://www-m4.ma.tum.de/pers/

	Introduction
	Bivariate data analysis methods
	Bivariate copula families
	Tools for bivariate exploratory data analysis
	Graphical tools
	Analytical tools

	Estimation of bivariate copula families

	Statistical inference of C- and D-vine copulas
	Specification of C- and D-vine copula models and data simulation
	Estimation
	Selection among vine copula models
	Implementation and numerical issues

	Example: Major world stock indices
	Conclusion and outlook
	Acknowledgment

