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Abstract

This is a short overview of the R add-on package BradleyTerry2, which facilitates the specification and fitting of
Bradley-Terry logit, probit or cauchit models to pair-comparison data. Included are the standard ‘unstructured’ Bradley-
Terry model, structured versions in which the parameters are related through a linear predictor to explanatory variables,
and the possibility of an order or ‘home advantage’ effect or other ‘contest-specific’ effects. Model fitting is either
by maximum likelihood, by penalised quasi-likelihood (for models which involve a random effect), or by bias-reduced
maximum likelihood in which the first-order asymptotic bias of parameter estimates is eliminated. Also provided are a
simple and efficient approach to handling missing covariate data, and suitably-defined residuals for diagnostic checking
of the linear predictor.

Key words: generalized linear model, logistic regression, Jeffreys prior, penalised quasi-likelihood, ranking, tournament
analysis, working residuals

1 Bradley-Terry model
1.1 Introduction
The Bradley-Terry model (Bradley and Terry, 1952) assumes that in a ‘contest’ between any two ‘players’, say player i
and player j (i, j ∈ {1, . . . ,K}), the odds that i beats j is αi/α j, where αi and α j are positive-valued parameters which
might be thought of as representing ‘ability’. For a good general introduction see Agresti (2002). Applications are
many, ranging from experimental psychology to the analysis of sports tournaments to genetics (for example, the allelic
transmission/disequilibrium test of Sham and Curtis (1995) is based on a Bradley-Terry model in which the ‘players’ are
alleles). The model can alternatively be expressed in the logit-linear form

logit[pr(i beats j)] = λi − λ j, (1)

where λi = logαi for all i. Thus, assuming independence of all contests, the parameters {λi} can be estimated by maximum
likelihood using standard software for generalized linear models, with a suitably specified model matrix. The primary
purpose of the BradleyTerry2 package, implemented in the R statistical computing environment (Ihaka and Gentleman,
1996; R Development Core Team, 2003), is to facilitate the specification and fitting of such models, including special
cases in which the ability parameters are related to available explanatory variables through a linear predictor of the form
λi =
∑p

r=1 βr xir + Ui. The logit link can be replaced, if required, by a different symmetric link function (probit or cauchit).

1.2 Example: analysis of journal citations
The following comes from page 448 of Agresti (2002), extracted from the larger table of Stigler (1994). The data are
counts of citations among four prominent journals of statistics and are included the BradleyTerry2 package as the dataset
citations:

> library(BradleyTerry2)
> data(citations)
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> citations

citing
cited Biometrika Comm Statist JASA JRSS-B
Biometrika 714 730 498 221
Comm Statist 33 425 68 17
JASA 320 813 1072 142
JRSS-B 284 276 325 188

Thus, for example, Biometrika was cited 498 times by papers in JASA during the period under study. In order to fit a
Bradley-Terry model to these data using BTm from the BradleyTerry2 package, the data must first be converted to binomial
frequencies. That is, the data need to be organised into pairs (player1, player2) and corresponding frequencies of wins
and losses for player1 against player2. The BradleyTerry2 package provides the utility function countsToBinomial
to convert a contingency table of wins to the format just described:

> citations.sf <- countsToBinomial(citations)
> names(citations.sf)[1:2] <- c("journal1", "journal2")
> citations.sf

journal1 journal2 win1 win2
1 Biometrika Comm Statist 730 33
2 Biometrika JASA 498 320
3 Biometrika JRSS-B 221 284
4 Comm Statist JASA 68 813
5 Comm Statist JRSS-B 17 276
6 JASA JRSS-B 142 325

The binomial response can then be modelled by the difference in player abilities as follows:

> citeModel <- BTm(cbind(win1, win2), journal1, journal2, ~journal,
+ id = "journal", data = citations.sf)
> citeModel

Bradley Terry model fit by glm.fit

Call: BTm(outcome = cbind(win1, win2), player1 = journal1, player2 = journal2,
formula = ~journal, id = "journal", data = citations.sf)

Coefficients:
journalComm Statist journalJASA journalJRSS-B

-2.9491 -0.4796 0.2690

Degrees of Freedom: 6 Total (i.e. Null); 3 Residual
Null Deviance: 1925
Residual Deviance: 4.293 AIC: 46.39

The coefficients here are maximum likelihood estimates of λ2, λ3, λ4, with λ1 (the log-ability for Biometrika) set to zero
as an identifying convention.

The id argument here gives a name to be used for the factor that identified the ‘players’ (here the four journals). The
(necessarily one-sided) model formula

~ journal

here specifies that there is a separate parameter (or ‘ability’) for each level of that factor.
If a different ‘reference’ journal is required, this can be achieved using the optional refcat argument: for example,

making use of update to avoid re-specifying the whole model,

> update(citeModel, refcat = "JASA")

Bradley Terry model fit by glm.fit

Call: BTm(outcome = cbind(win1, win2), player1 = journal1, player2 = journal2,
formula = ~journal, id = "journal", refcat = "JASA", data = citations.sf)

Coefficients:
journalBiometrika journalComm Statist journalJRSS-B

0.4796 -2.4695 0.7485
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Degrees of Freedom: 6 Total (i.e. Null); 3 Residual
Null Deviance: 1925
Residual Deviance: 4.293 AIC: 46.39

— the same model in a different parameterization.
The use of the standard Bradley-Terry model for this application might perhaps seem rather questionable — for exam-

ple, citations within a published paper can hardly be considered independent, and the model discards potentially important
information on self-citation. Stigler (1994) provides arguments to defend the model’s use despite such concerns.

2 Abilities predicted by explanatory variables
2.1 ‘Player-specific’ predictor variables
In some application contexts there may be ‘player-specific’ explanatory variables available, and it is then natural to
consider model simplification of the form

λi =

p∑
r=1

βr xir + Ui, (2)

in which ability of each player i is related to explanatory variables xi1, . . . , xip through a linear predictor with coefficients
β1, . . . , βp; the {Ui} are independent errors. See, for example, Springall (1973) (but note that the error term Ui is omitted
there). Dependence of the player abilities on explanatory variables can be specified via the formula argument, using the
standard S-language model formulae. The difference in the abilities of player i and player j is modelled by

p∑
r=1

βr xir −

p∑
r=1

βr x jr + Ui − U j, (3)

where Ui ∼ N(0, σ2) for all i. The Bradley-Terry model is then a generalized linear mixed model, which the BTm function
currently fits using the penalized quasi-likelihood algorithm of Breslow and Clayton (1993).

As a simple illustration, consider the response-surface model studied by Springall (1973):

> options(show.signif.stars = FALSE)
> data(springall)
> summary(springall.model <- BTm(cbind(win.adj, loss.adj), col,
+ row, ~flav[..] + gel[..] + flav.2[..] + gel.2[..] + flav.gel[..] +
+ (1 | ..), data = springall))

PQL algorithm converged to fixed effects model

Call:
BTm(outcome = cbind(win.adj, loss.adj), player1 = col, player2 = row,

formula = ~flav[..] + gel[..] + flav.2[..] + gel.2[..] +
flav.gel[..] + (1 | ..), data = springall)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.5306 -0.4087 0.2114 0.4454 0.9377

Coefficients:
Estimate Std. Error z value Pr(>|z|)

flav[..] -0.411944 0.065948 -6.246 4.20e-10
gel[..] -0.325776 0.102990 -3.163 0.00156
flav.2[..] 0.015650 0.006372 2.456 0.01404
gel.2[..] 0.105062 0.019983 5.258 1.46e-07
flav.gel[..] 0.023759 0.008414 2.824 0.00475

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 327.945 on 36 degrees of freedom
Residual deviance: 15.468 on 31 degrees of freedom
AIC: 112.98

Number of Fisher Scoring iterations: NA

3



Differences from the fit reported in Springall (1973) are minor, arising from the different treatment of ties: here we have
simply treated a tie as half a ‘win’ for each ‘player’, rather than using the Rao and Kupper (1967) model as Springall
(1973) did.

In Springall (1973), the random effect (specified here via the term (1|..)) was omitted: that is, the quadratic response
surface was assumed to predict ‘ability’ without error. In general such a zero-error assumption will be unrealistic. In this
instance, though, including the random term turns out to make no difference to the results: the variance of the errors {Ui}

is estimated as zero.
The special name “..” appears here as the default identifier for players, in the absence of a user-specified id

argument. The predictor variables in this case are taken from the springall$predictors data frame, whose rows are
indexed by the levels of “..”.

2.2 Missing values
The contest data may include all possible pairs of players and hence rows of missing data corresponding to players paired
with themselves. Such rows contribute no information to the Bradley-Terry model and are simply discarded by BTm .

Where there are missing values in player-specific predictor (or explanatory) variables which appear in the formula, it
will typically be very wasteful to discard all contests involving players for which some values are missing. Instead, such
cases are accommodated by the inclusion of one or more parameters in the model. If, for example, player 1 has one or
more of its predictor values x11, . . . , x1p missing, then the combination of (1) and (3) above yields

logit[pr(1 beats j)] = λ1 −

 p∑
r=1

βr x jr + U j

 ,
for all other players j. This results in the inclusion of a ‘direct’ ability parameter for each player having missing predictor
values, in addition to the common coefficients β1, . . . , βp — an approach which will be appropriate when the missingness
mechanism is unrelated to contest success. The same device can be used also to accommodate any user-specified depar-
tures from a structured Bradley-Terry model, whereby some players have their abilities determined by the linear predictor
but others do not.

For an illustration of this device in action, see example(flatlizards): two of the lizards in that study (lizard096
and lizard099) have some missing covariate data, and those two lizards therefore have their abilities estimated by
separate coefficients.

2.3 Order effect
In certain types of application some or all contests have an associated ‘bias’, related to the order in which items are
presented to a judge or with the location in which a contest takes place, for example. A natural extension of the Bradley-
Terry model (1) is then

logit[pr(i beats j)] = λi − λ j + δz,

where z = 1 if i has the supposed advantage and z = −1 if j has it. (If the ‘advantage’ is in fact a disadvantage, δ will be
negative.) The scores λi then relate to ability in the absence of any such advantage.

As an example, consider the baseball data given in Agresti (2002), p438:

> data(baseball)
> head(baseball)

home.team away.team home.wins away.wins
1 Milwaukee Detroit 4 3
2 Milwaukee Toronto 4 2
3 Milwaukee New York 4 3
4 Milwaukee Boston 6 1
5 Milwaukee Cleveland 4 2
6 Milwaukee Baltimore 6 0

The dataset records the home wins and losses for each baseball team against each of the 6 other teams in the dataset.
The head function is used to show the first 6 records, which are the Milwaukee home games. We see for example that
Milwaukee played 7 home games against Detroit and won 4 of them. The ‘standard’ Bradley-Terry model without a
home-advantage parameter is fitted as before:

> data(baseball)
> baseballModel1 <- BTm(cbind(home.wins, away.wins), home.team,
+ away.team, data = baseball, id = "team")
> summary(baseballModel1)
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Call:
BTm(outcome = cbind(home.wins, away.wins), player1 = home.team,

player2 = away.team, id = "team", data = baseball)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.6539 -0.0508 0.4133 0.9736 2.5509

Coefficients:
Estimate Std. Error z value Pr(>|z|)

teamBoston 1.1077 0.3339 3.318 0.000908
teamCleveland 0.6839 0.3319 2.061 0.039345
teamDetroit 1.4364 0.3396 4.230 2.34e-05
teamMilwaukee 1.5814 0.3433 4.607 4.09e-06
teamNew York 1.2476 0.3359 3.715 0.000203
teamToronto 1.2945 0.3367 3.845 0.000121

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 78.015 on 42 degrees of freedom
Residual deviance: 44.053 on 36 degrees of freedom
AIC: 140.52

Number of Fisher Scoring iterations: 4

The reference team is Baltimore, estimated to be the weakest of these seven, with Milwaukee and Detroit the strongest.
To estimate the home-advantage effect, some re-organisation of the data is needed. The at.home variable is needed

for both the home team and away team, so that it can be differenced as appropriate in the linear predictor.

> baseball$home.team <- data.frame(team = baseball$home.team, at.home = 1)
> baseball$away.team <- data.frame(team = baseball$away.team, at.home = 0)
> baseballModel2 <- update(baseballModel1, formula = ~team + at.home)
> summary(baseballModel2)

Call:
BTm(outcome = cbind(home.wins, away.wins), player1 = home.team,

player2 = away.team, formula = ~team + at.home, id = "team",
data = baseball)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.03819 -0.40577 0.04326 0.61163 2.26001

Coefficients:
Estimate Std. Error z value Pr(>|z|)

teamBoston 1.1438 0.3378 3.386 0.000710
teamCleveland 0.7047 0.3350 2.104 0.035417
teamDetroit 1.4754 0.3446 4.282 1.85e-05
teamMilwaukee 1.6196 0.3474 4.662 3.13e-06
teamNew York 1.2813 0.3404 3.764 0.000167
teamToronto 1.3271 0.3403 3.900 9.64e-05
at.home 0.3023 0.1309 2.308 0.020981

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 78.015 on 42 degrees of freedom
Residual deviance: 38.643 on 35 degrees of freedom
AIC: 137.11

Number of Fisher Scoring iterations: 4

This reproduces the results given on page 438 of Agresti (2002): the home team has an estimated odds-multiplier of
exp(0.3023) = 1.35 in its favour.
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2.4 More general (contest-specific) predictors
The ‘home advantage’ effect is an simple example of a contest-specific predictor. Such predictors are necessarily interac-
tion terms, between aspects of the contest and (aspects of) the two ‘players’ involved.

For more elaborate examples of such effects, see ?chameleons and ?CEMS. The former includes an ‘experience’
effect, which changes through time, on the fighting ability of male chameleons. The latter illustrates a common situation
in psychometric applications of the Bradley-Terry model, where subjects express preference for one of two objects (the
‘players’), and it is the influence on the results of subject attributes that is of primary interest.

As an illustration of the way in which such effects are specified, consider the following model specification taken
from the examples in ?CEMS:

> data(CEMS)
> table8.model <- BTm(outcome = cbind(win1.adj, win2.adj), player1 = school1,
+ player2 = school2, formula = ~.. + WOR[student] * LAT[..] +
+ DEG[student] * St.Gallen[..] + STUD[student] * Paris[..] +
+ STUD[student] * St.Gallen[..] + ENG[student] * St.Gallen[..] +
+ FRA[student] * London[..] + FRA[student] * Paris[..] +
+ SPA[student] * Barcelona[..] + ITA[student] * London[..] +
+ ITA[student] * Milano[..] + SEX[student] * Milano[..],
+ refcat = "Stockholm", data = CEMS)

Here the subjects are students, and the objects (six European management schools) are referenced by “..”. The subject-
specific variables WOR , DEG , etc., are found in the data frame CEMS$students which contains student-specific variables;
the variable LAT, for example, is in the data frame CEMS$schools which contains school-specific variables.

3 Ability scores
The function BTabilities extracts estimates and standard errors for the log-ability scores λ1, . . . , λK . These will either
be ‘direct’ estimates, as in the standard Bradley-Terry model or for players with one or more missing predictor values, or
‘model-based’ estimates of the form λ̂i =

∑p
r=1 β̂r xir for players whose ability is predicted by explanatory variables.

As a simple illustration, team ability estimates in the home-advantage model for the baseball data are obtained by:

> BTabilities(baseballModel2)

ability s.e.
Baltimore 0.0000000 0.0000000
Boston 1.1438027 0.3378422
Cleveland 0.7046945 0.3350014
Detroit 1.4753572 0.3445518
Milwaukee 1.6195550 0.3473653
New York 1.2813404 0.3404034
Toronto 1.3271104 0.3403222

This gives, for each team, the estimated ability when the team enjoys no home advantage.
Similarly, ability estimates (for the nine experimental settings found in springall.predictors) can be obtained

for the response-surface model of Springall (1973):

> BTabilities(springall.model)

PQL algorithm converged to fixed effects model
ability s.e.

1 -0.2415324 0.03750037
2 -1.6167549 0.19347841
3 -2.4398442 0.25061106
4 -0.3840280 0.15891106
5 -1.5197616 0.22979385
6 -2.1033621 0.22747359
7 0.6837863 0.22408367
8 -0.2124585 0.22083284
9 -0.5565702 0.18573246

The ability estimates in an un-structured Bradley-Terry model are particularly well suited to presentation using the
device of quasi variances (Firth and de Menezes, 2004). The qvcalc package (version 0.8-5 or later) contains a function
of the same name which does the necessary work:

6



> library(qvcalc)
> baseball.qv <- qvcalc(BTabilities(baseballModel2))
> plot(baseball.qv, levelNames = c("Bal", "Bos", "Cle", "Det", "Mil", "NY", "Tor"))
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Figure 1: Estimated relative abilities of baseball teams

4 Residuals
There are two main types of residuals available for a Bradley-Terry model object.

First, there are residuals obtained by the standard methods for models of class "glm". These all deliver one residual
for each contest or type of contest. For example, Pearson residuals for the model springall.model can be obtained
simply by

> res.pearson <- round(residuals(springall.model), 3)
> head(cbind(springall$contests, res.pearson))

row col win loss tie win.adj loss.adj res.pearson
1 1 2 2 16 7 5.5 19.5 0.225
2 1 3 0 21 1 0.5 21.5 -1.434
3 1 4 5 10 10 10.0 15.0 -0.649
4 1 5 2 15 7 5.5 18.5 0.133
5 1 6 0 22 2 1.0 23.0 -1.531
6 1 7 12 3 9 16.5 7.5 -0.308

More useful for diagnostics on the linear predictor
∑
βr xir are ‘player’-level residuals, obtained by using the func-

tion residuals with argument type = "grouped". These residuals can then be plotted against other player-specific
variables.

> res <- residuals(springall.model, type = "grouped")

These residuals estimate the error in the linear predictor; they are obtained by suitable aggregation of the so-called ‘work-
ing’ residuals from the model fit. The weights attribute indicates the relative information in these residuals — weight
is roughly inversely proportional to variance — which may be useful for plotting and/or interpretation; for example, a
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large residual may be of no real concern if based on very little information. Weighted least-squares regression of these
residuals on any variable already in the model is null. For example:

> lm(res ~ flav, weights = attr(res, "weights"), data = springall$predictors)

Call:
lm(formula = res ~ flav, data = springall$predictors, weights = attr(res,

"weights"))

Coefficients:
(Intercept) flav
4.117e-09 -8.705e-10

> lm(res ~ gel, weights = attr(res, "weights"), data = springall$predictors)

Call:
lm(formula = res ~ gel, data = springall$predictors, weights = attr(res,

"weights"))

Coefficients:
(Intercept) gel
-3.041e-09 1.260e-09

5 Bias-reduced estimates
Estimation of the Bradley-Terry model in BTm is by default (when there are no random effects in the model) computed
by maximum likelihood, using an internal call to the glm function. An alternative is to fit by bias-reduced maximum
likelihood (Firth, 1993): this requires additionally the brglm package, and is specified by the optional argument br =
TRUE. The resultant effect, namely removal of first-order asymptotic bias in the estimated coefficients, is often quite
small. One notable feature of bias-reduced fits is that all estimated coefficients and standard errors are necessarily finite,
even in situations of ‘complete separation’ where MLEs take infinite values (Heinze and Schemper, 2002).

6 Model search
In addition to update() as illustrated above, methods for the generic functions add1(), drop1() and anova() are
provided. These can be used to investigate the effect of adding or removing a variable, whether that variable is contest-
specific, such as an order effect, or player-specific; and to compare the fit of nested models.

7 Setting up the data
7.1 Contest-specific data
The outcome argument of BTm represents a binomial response and can be supplied in any of the formats allowed by the
glm function. That is, either a two-column matrix with the columns giving the number of wins and losses (for player1),
a factor where the first level denotes a loss and all other levels denote a win, or a binary variable where 0 denotes a loss
and 1 denotes a win. Each row represents either a single contest or a set of contests between the same two players.

Any contest-specific variables should be of the same length as the variables specified in the outcome, player1 and
player2 arguments. Sometimes this is achieved most economically by appropriate indexing: see, for example, ?CEMS,
where student-specific variables are stored in a data frame with one row per student rather than one row per ‘contest’.

An offset in the model can be specified by using the offset argument to BTm .
To use only certain rows of the data in the analysis, the subset argument may be used in the call to BTm . This should

either be a logical vector of the same length as the binomial response, or a numeric vector containing the indices of rows
to be used.

7.2 Player-specific data
Variables indexed by the levels of player1 and player2, i.e., indexed by id , are said to be ‘player-specific’. The safest
approach is to put all potential predictor (explanatory) variables — including factors and any offset term — into a data
frame with one row per (potential) player, and with row names the names of players exactly as used in variables passed to
the player1 and player2 arguments of BTm . Such data frame should then be included in the list specified as the data
argument of BTm to specify where predictors (and any offset) can be found.
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7.3 Converting data from the format required by the earlier BradleyTerry package
The BradleyTerry package described in Firth (2005) required contest/comparison results to be in a data frame with
columns named winner, loser and Freq. The following example shows how xtabs and countsToBinomial can
be used to convert such data for use with the BTm function in BradleyTerry2:

> library(BradleyTerry) ## the /old/ BradleyTerry package
> data(citations, package = "BradleyTerry") ## data frame with columns "winner", "loser", "Freq"
> citations <- xtabs(Freq ~ winner + loser, citations) ## convert to 2-way table of counts
> citations.sf <- countsToBinomial(citations) ## convert to a data frame of binomial observations

The citations.sf data frame can then be used with BTm as shown in Section 1.2.

8 A list of the functions provided in BradleyTerry2
The standard R help files provide the definitive reference. Here we simply list the main user-level functions and their
arguments, as a convenient overview:

BTabilities(model)
BTm(outcome = 1, player1, player2, formula = NULL, id = "..",

separate.ability = NULL, refcat = NULL, family = binomial,
data = NULL, weights = NULL, subset = NULL, na.action = NULL,
start = NULL, etastart = NULL, mustart = NULL, offset = NULL,
br = FALSE, model = TRUE, x = FALSE, contrasts = NULL, ...)

countsToBinomial(xtab)
glmmPQL(fixed, random = NULL, family = binomial, data = NULL,

subset = NULL, weights = NULL, offset = NULL, na.action = NULL,
start = NULL, etastart = NULL, mustart = NULL, control = glmmPQL.control(...),
sigma = 0.1, sigma.fixed = FALSE, model = TRUE, x = FALSE,
contrasts = NULL, ...)

glmmPQL.control(maxiter = 50, IWLSiter = 10, tol = 1e-06, trace = FALSE)

9 A note on the treatment of ties
The present version of BradleyTerry2 provides no sophisticated facilities for handling tied contests/comparisons; the well-
known models of Rao and Kupper (1967) and Davidson (1970) are not implemented here. At present the BTm function
requires a binary or binomial response variable, the third (‘tied’) category of response is not allowed.

In several of the data examples (e.g., ?CEMS, ?springall, ?sound.fields), ties are handled by the crude but simple
device of adding half of a ‘win’ to the tally for each player involved; in each of the examples where this has been done it
is found that the result is very similar, after a simple re-scaling, to the more sophisticated analyses that have appeared in
the literature.

It is likely that a future version of BradleyTerry2 will have a more general method for handling ties.
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