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1 Introduction

Here we present BaSTA (Bayesian Survival Trajectory Analysis), a free open-source R package

(R Development Core Team 2011) that implements the hierarchical Bayesian model described by

Colchero & Clark (2011). This package facilitates drawing inference on age-specific mortality from

capture-recapture/recovery (CRR) data when a large proportion (or all) of the records have missing

information on times of birth and death. In addition, BaSTA allows users to evaluate the effect of

continuous and categorical covariates on mortality.
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Figure 1: Work flow of BaSTA’s main function basta() after data input and argument definition

from the user. During the initial “Error check” sequence, 1 implies that no errors were detected

and 0 means otherwise. In the later case, the function is stopped and an error message is printed

explaining the error and suggesting solutions.

BaSTA consists of a set of routines initialised by the user through data input and the definition

of basic model settings (Fig. ??). The package then verifies that the data has the right format,

and that the user-defined model settings are consistent (i.e. initial error checks). If no errors are

found, the model runs one or multiple Markov Chain Monte Carlo (MCMC) algorithms (for a

full description of the algorithm see Colchero & Clark 2011). After the MCMC runs are finished,

the package calculates a range of diagnostics that include measures of serial autocorrelation on

parameter traces, parameter update rates, convergence and preliminary model selection.

The package’s main function, called basta(), defines its own S3 method (Chambers & Hastie

1992) and outputs an object of class basta which can then be explored with the generic plot(),

summary() and print() functions. The package also includes two data formatting functions,

CensusToCaptHist() and MakeCovMat(), and a data checking function DataCheck().
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2 Data formatting

BaSTA’s input data format is compatible with other programs that deal with CRR data sets

such as MARK (White & Burnham 1999). The data needs to be configured as a table in data

frame format where each row corresponds to one individual. The first column corresponds to the

individual IDs while the second and third columns give the years of birth and death, respectively.

Next, T columns (T = study span), one per study year, are filled with the individual recapture

histories. Thus, every year an individual is detected the corresponding column is filled with 1 and

0 otherwise.

If covariates are to be included, additional columns can be added, with one column per covariate.

For instance, table 1 shows a data frame for four individuals and a study span of T = 4 years with

one covariate, i.e. location. In this example, individuals 1 and 2 have known birth year and

individuals 1 and 3 have know death year, individual 1 was detected in the first, third and fourth

year of the study, individual 2 from the second to the forth year and so forth. Individuals 1 and 2

belong to location 1 and individuals 3 and 4 to location 2.

Table 1: Data format required by BaSTA.

ID Birth Death year 1 year 2 year 3 year 4 location

1 b1 d1 1 0 1 1 loc 1

2 b2 0 0 1 1 1 loc 1

3 0 d3 1 1 1 1 loc 2

4 0 0 0 1 1 0 loc 2

2.1 Construct capture history matrix: CensusToCaptHist()

This capture history matrix can be constructed using BaSTA’s built-in data formatting functions.

For instance, with function CensusToCaptHist(), it is possible to convert a conventional individual

survey table (i.e. one record per time an individual is observed) to the recapture matrix described

above. Below is an example with a simulated capture history of five individuals between 1990 and

2000:

> id.vec <- sort(c(rep(1, 3), rep(2, 2), rep(3, 4), rep(4, 3),

+ rep(5, 3)))

> d.vec <- rep(0, length(id.vec))

> for (i in unique(id.vec)) {

+ svec <- which(id.vec == i)

+ d.vec[svec] <- sort(sample(1990:2000, length(svec)))

+ }

> Y <- CensusToCaptHist(ID = id.vec, d = d.vec, dformat = "yyyy")

The ID argument in the CensusToCaptHist() function, takes a vector with the individual IDs,

along with the d argument, which is a vector of dates on which each individual was detected, and

argument dformat which is (optionally) used to specify the date format used in d.

The resulting capture history matrix looks like this:
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yr

ID 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

1 0 1 1 0 0 0 0 0 0 1 0

2 0 0 0 0 0 0 0 1 1 0 0

3 0 0 1 0 0 0 0 1 1 0 1

4 1 0 1 1 0 0 0 0 0 0 0

5 0 0 0 1 1 0 1 0 0 0 0

2.2 Construct covariates matrix: MakeCovMat()

Covariates can be set up in the apropriate format with the MakeCovMat() function. Below is an

example with simulated data for five individuals:

> sex <- sample(c("f", "m"), 5, replace = TRUE)

> weight <- rnorm(5, mean = 10, sd = 1)

> raw.mat <- data.frame(sex, weight)

This covariate data frame looks like this:

sex weight

1 m 9.229235

2 m 8.928843

3 m 10.411781

4 m 9.373837

5 f 9.441571

The data frame raw.mat contains one column for sex, a categorical covariate, and one for weight,

a continuous covariate. This data frame can be then rearranged into a suitable format for BaSTA

with the MakeCovMat() function. The data can then be incorporated into the main data frame

used as an input for BaSTA:

> cov.mat <- MakeCovMat(x = c("sex", "weight"), data = raw.mat)

which produces the following matrix:

sexf sexm weight

1 0 1 9.229235

2 0 1 8.928843

3 0 1 10.411781

4 0 1 9.373837

5 1 0 9.441571

Argument x can be used to specify which covariates should be included in the covariate matrix

either with a character string vector (see example above), or with a numerical vector that indicates

the column numbers in the data frame data that should be used for inference. If all of the columns

are to be included, the x argument can be ignored and only the data argument needs to be specified.

Alternatively, x can be of class formula, as we show in the following example:

> cov.mat <- MakeCovMat(x = ~sex + weight + sex:weight, data = raw.mat)

which produces the following matrix:
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sexf sexm weight sexm:weight

1 0 1 9.229235 9.229235

2 0 1 8.928843 8.928843

3 0 1 10.411781 10.411781

4 0 1 9.373837 9.373837

5 1 0 9.441571 0.000000

In this case, we are also including an interaction between sex and weight. For further details on

how to specify a formula in R, type help(formula) in the R console.

2.3 Verify data consistency: DataCheck()

After the final data frame is constructed, it can be verified with the DataCheck() function. This

function performs a range of diagnostic checks on the data frame (Table 2). Below is an example

with the simulated dataset we provide with the package:

> data("sim1.dat", package = "BaSTA")

> new.dat <- DataCheck(sim1.dat, studyStart = 51, studyEnd = 70,

+ autofix = rep(1, 7), silent = FALSE)

If the silent argument is set as FALSE, then the function prints out a range of descriptive statistics

about the dataset, exemplified as follows:

No problems were detected with the data.

*DataSummary*

- Number of individuals = 2,600

- Number with known birth year = 979

- Number with known death year = 385

- Number with known birth

AND death years = 385

- Total number of detections

in recapture matrix = 10,285

- Earliest detection time = 51

- Latest detection time = 70

- Earliest recorded birth year = 51

- Latest recorded birth year = 70

- Earliest recorded death year = 52

- Latest recorded death year = 91

DataCheck() searches the dataset for seven different types of error (Table 2), which can be

fixed using argument autofix. Although this can save a lot of time and effort to the user, we

strongly advise users to verify the reported errors and make an informed decision on how to fixed

them.

As an example, we show below how DataCheck() reports errors for a dataset that includes death

years that apparently occur before the year of birth (i.e. a type 3 error) for a few individuals:
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Table 2: Description of error types in datasets as defined in the DataCheck() function and the

actions that are taken based on the values provided in argument autofix.

Error type Description autofix code

type 1 Deaths occurring before the

study starts

0 = do nothing; 1 = remove from dataframe

type 2 No birth/death AND no recap-

tures

0 = do nothing; 1 = remove from dataframe

type 3 Births recorded after death 0 = do nothing; 1 = replace death records with

0; 2 = replace birth records with 0; 3 = replace

both birth and death records with 0

type 4 Recaptures after death 0 = do nothing; 1 = remove spurious post-

death observations

type 5 Recaptures before birth 0 = do nothing; 1 = remove observations that

pre-date year of birth

type 6 Year of birth is not a zero in the

recapture matrix

0 = do nothing; 1 = replace birth year element

of observation matrix with 0

type 7 Year of death is not a zero in the

recapture matrix

0 = do nothing; 1 = replace death year ele-

ment of observation matrix with 0

> new.dat <- DataCheck(dat.error, studyStart = 51, studyEnd = 70,

+ autofix = rep(1, 7), silent = TRUE)

The following rows have birth dates that are later than their death dates:

[1] 1169 1641 2111

The death records have been replaced with 0.

3 Setting up the analysis: function basta()

After the data has been formatted and verified for consistency, the analysis is performed with the

basta() function. In this section we explain the arguments used in this function. This function

can be run, in it’s simplest form, by specifying only the dataset (with the object argument), and

the start and end times of the study with the studyStart and studyEnd arguments. Thus, a

simple analysis for a study starting in 1990 and finishing in 2000 and with a hypothetical data

frame called ‘mydata’ can be performed by entering the following command:

> out <- basta(object = mydata, studyStart = 1990, studyEnd = 2000)

All of the other arguments in the basta() function have default values that allow users to run

the model without specifying any additional information. The default values can be viewed in the

basta() help file with the comment ?basta. In order to take advantage of the full functionality

of BaSTA we recommend that users explore different models and shapes, as well as a variety of

covariate structures. Below we outline how to set up an analysis with BaSTA in order to test a

range of models and covariate data structures (further details on the models and diagnostics can

be found in Colchero et al. 2011).
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3.1 Choosing mortality models: arguments model and shape

The model argument can be used to choose between four basic mortality rate functions: a) ‘EX’;

exponential (Cox & Oakes 1984); b) ‘GO’ (default); Gompertz (Gompertz 1825, Pletcher 1999); c)

‘WE’; Weibull (Pinder III et al. 1978); and d) ‘LO’; logistic (Pletcher 1999) (Table 4). Each one of

these functions can describe different trends in age-specific mortality, giving BaSTA considerable

flexibility when estimating these vital rates (Fig. ??).
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Figure 2: Mortality rates, µ(x|θ), resulting from the four basic models included in BaSTA:

a) exponential; b) Gompertz; c) Weibull; and d) logistic. The three different lines in each plot

(except in a) show examples of the shapes that can be tested with BaSTA, namely: ‘simple’;

‘Makeham’; and ‘bathtub’.

In addition, BaSTA allows users to extend these basic functions in order to examine more

complex shapes. Specifically, three general forms can be defined with the shape argument: i)

‘simple’ (the default shape), which uses only the basic functions defined in Table 4; ii) ‘Makeham’

(Pletcher 1999), which adds a constant to the mortality rate; and iii) ‘bathtub’ (e.g. Siler 1979),

which consists of adding a declining Gompertz function and a constant to the basic mortality rate.

The resulting shapes can be seen in Fig. ??. Clearly, the number of parameters used in each of

these combinations varies. In table 3 we show the number of parameters for the different types of

mortality models and shape combinations.

Table 3: Number of parameters for all combinations of mortality models and shapes that can

be tested in BaSTA.

Model simple Makeham bathtub

Exponential 1 – –

Gompertz 2 3 5

Weibull 2 3 5

Logistic 3 4 6

For example, to run the analysis using a logistic mortality rate with a bathtub shape, the

specifications for the function should be:

> out <- basta(object = mydata, studyStart = 1990, studyEnd = 2000,

+ model = "LO", shape = "bathtub")
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If the model or the shape are misspecified, the analysis will be stopped and an error message

is printed that clarifies which argument values should be used.

3.2 Defining covariate structure: the covarsStruct argument

BaSTA also allows to evaluate the effect of covariates on age patterns of mortality. This is achieved

with the covarsStruct argument, which defines three optional structures: i) ‘fused’ (default), in

which covariates are separated into continuous and categorical, and where the former are included

into a proportional hazards framework (Klein & Moeschberger 2003), and the latter are included

as linear functions of the mortality parameters. This is analogous to their treatment in generalized

linear models (GLMs); ii) ‘prop.haz’ where all covariates are included as proportional hazards; and

iii) ‘all.in.mort’ where all covariates are evaluated as linear functions of the mortality parameters.

Currently, the latter structure can only be implemented with a Gompertz (‘GO’) model with a

‘simple’ shape.

3.3 MCMC general settings: the niter, burnin and thinning arguments

The number of MCMC steps can be specified with the niter argument, while the burn-in sequence

and the thinning interval are controlled with arguments burnin and thinning, respectively. The

burn-in corresponds to the initial sequence before parameters reach convergence, which is commonly

discarded, leaving the remaining steps to calculate a range of diagnostics and other statistics (Clark

2007). The thinning interval is set in order to reduce serial autocorrelation between consecutive

parameter estimates. Based on the results from Colchero & Clark (2011), the default values are

niter = 50, 000 steps, burnin = 5, 001 and thinning = 50. Still, we recommend that these values

should be tested before the final simulations are implemented.

3.4 Initial parameters, jumps and priors

Although BaSTA has built-in default values for initial parameters, jump standard deviations,

and priors, these can be modified with the arguments thetaStart and gammaStart for mortality

and proportional hazards initial parameters, and the corresponding thetaJumps, thetaPriors,

gammaJumps and gammaPriors arguments for jumps and priors. It is important to note that the

length of the vector or the dimensions of the matrices specified should correspond to the number

of parameters for each combination of model, shape, and covarsStruct. For instance, if a logistic

(‘LO’) model with ‘simple’ shape (i.e. 3 parameters, Table 3) and a ‘mixed’ covariate structure is

chosen, and two categorical and two continuous covariates are included in the dataset, thetaStart,

thetaJumps and thetaPriors should be vectors of length 3 (the same set of parameters for both

categorical covariates), or of length 6 (one set of parameters per covariate), or matrices of dimension

2× 3. Also, gammaStart, gammaJumps and gammaPriors should all be vectors of length 2 for this

example. For example, if we wish to specify the jumps for the mortality parameters in this example,

we could type:

> out <- basta(object = mydata, studyStart = 1990, studyEnd = 2000,

+ model = "LO", shape = "simple", thetaJumps = c(0.1, 0.1,

+ 0.1))

or, alternatively we could create a matrix of jumps of the form:
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> new.jumps <- matrix(c(rep(0.1, 3), rep(0.2, 3)), nrow = 2, ncol = 3,

+ byrow = TRUE, dimnames = list(c("cov1", "cov2"), paste("b",

+ 0:2, sep = "")))

where each column corresponds to a mortality parameter, and each row to a covariate, of the form:

b0 b1 b2

cov1 0.1 0.1 0.1

cov2 0.2 0.2 0.2

which then we could use for the thetaJumps argument:

> out <- basta(object = mydata, studyStart = 1990, studyEnd = 2000,

+ model = "LO", shape = "simple", thetaJumps = new.jumps)

3.5 Multiple runs: arguments nsim, parallel and ncpus

To ensure that parameter estimates derived from MCMC routines converge appropriately, it is

necessary to run several simulations from over-dispersed initial parameter values (Gelman et al.

2004). By doing this, it is possible to confirm whether the parameter chains (i.e. traces) all

converge to the same final values, irrespective of the initial parameters. BaSTA allows users to

run multiple simulations by specifying the number of runs desired with nsim argument. Moreover,

to reduce the amount of computing time, BaSTA facilitates the performance of these multiple

runs in parallel using the snowfall package (Knaus 2010). This is achieved by setting the logical

argument parallel as ‘TRUE’. In addition, the number of cores used can be selected with argument

ncpus. If the package snowfall is not installed, or the argument parallel is set as ‘FALSE’, then

the multiple simulations are run in series. We strongly recommend running multiple simulations

in parallel, since this reduces computing time proportionally to the number of cpus used. Most

computers today have dual or quad core processors, and many of them can handle hyper-threading

(HT), which effectively splits one core into two virtual processors. This means that, with the

average laptop with dual core and HT capabilities, one can potentially run up to 4 simulations in

parallel.

To run 4 simulations in parallel on 4 cpus for a simple-shaped Gompertz model, the basta()

function should be specified as:

> out <- basta(object = mydata, studyStart = 1990, studyEnd = 2000,

+ nsim = 4, parallel = TRUE, ncpus = 4)

4 Results

4.1 MCMC performance diagnostics

After the MCMC algorithms are finished, a range of diagnostics are calculated from the parameter

chains. If multiple simulations were implemented and all of them have run through to completion,

then potential scale reduction is calculated for each parameter to estimate convergence (Gelman

et al. 2004). This diagnostic is calculated as R̂ =
√
v̂+/W , where W is a measure of the within-

sequence variance and v̂+ is a weighted average of the between-sequence variance (B) and W .

Convergence is attained when R̂ is close to 1. As a rule of thumb, we have assigned an arbitrary

upper bound of R̂ < 1.1 above which it is assumed that parameters have not reached convergence.

9



4.2 Model fit

If all parameters have converged, BaSTA calculates the deviance information criterion (DIC;

Spiegelhalter et al. 2002), which has been described as a measure of predictive power and a criterion

for model fit. DIC approximates the expected predictive deviance, and is calculated as;

DIC = 2D̂avg(y)−Dθ̂(y)

where y denotes the observed data, D̂avg(y) is the mean discrepancy between the data and the

model as a function of the parameters θ, averaged over the posterior distribution, and Dθ̂(y) is

the discrepancy at the posterior mode (here represented by the point estimate θ̂). It is important

to realise that the use of DICs is still controversial and, therefore, the results should to be taken

with caution (see responses in Spiegelhalter et al. 2002). In order to improve the measure provided,

BaSTA’s DIC is calculated as an approximation of the group-marginalized DIC presented by Millar

(2009).

4.3 Parameter comparison for categorical covariates

BaSTA also includes a diagnostic based on Kullback-Liebler discrepancies (KLD; Kullback &

Leibler 1951, McCulloch 1989), that provides the user with a measure of how differently (or

similarly) each categorical covariate affects survival. For instance, we may wish to evaluate the

differences in survival between males and females with a simple Gompertz model, such that the

mortality rate is of the form:

µ(x|θ) = exp


b0︷ ︸︸ ︷(

αT z
)

+

b1︷ ︸︸ ︷(
βT z

)
x

 , (1)

where θ are mortality parameters such that θ = [b0, b1] and α and β are subparameters that

then both parameters b0 and b1 in equation 1 are evaluated as a function of these covariates. To

illustrate the calculation of KLD, lets take b0, for which the resulting ‘sub-parameters’ would be

αf and αm such that, for an individual i, we have b0 = αfIi +αm(1− Ii), where Ii is an indicator

function that assigns 1 if the individual is a female and 0 otherwise. For each of these parameters,

BaSTA produces a posterior distribution, say Pf = p(αf | . . . ) and Pm = p(αm| . . . ), respectively.

The KLD between these distributions is calculated as:

K(Pf , Pm) =

∫ ∞
0

Pf log

(
Pf
Pm

)
dα (2)

The result can be interpreted as how far off we would be if we tried to predict αm from the

posterior distribution of αf . If both distributions are identical, then K(Pf , Pm) = 0, suggesting

that there is no distinction between males and females for b0; as the KLD values increase the higher

the discrepancy becomes. As can be inferred from equation 2, the relationship is asymmetric,

namely K(Pf , Pm) 6= K(Pm, Pf ).

To make KLD easier to interpret McCulloch (1989) therefore proposed a simple calibration of

the KLD values that reduces the asymmetry. This is as follows: Let k = K(Pf , Pm) and q(k) a

calibration function such that

k = K(Pf , Pm)

= K(B(
1

2
), B(q(k)))
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where B( 1
2 ) is a Bernouilli distribution for an event with probability 1/2 (i.e. same probability of

success and failure). This calibration is then calculated as:

q(k) =
(1 + (1− e−2k)

1
2 )

2
(3)

Thus, q(k) ranges from 0.5 to 1, where a value of 0.5 means that the distributions are identical,

and 1 that there is no overlap between them.

4.4 Model outputs

The output provided by the basta() function is a list object of class basta that includes a range

of diagnostics and results. This list includes summarized results in the form of coefficients (with

standard errors and credible intervals), MCMC performance diagnostics, model settings as specified

by the user, estimations of model fit and parameter overlap for categorical covariates, the raw traces

from all runs, summarized values for times of birth and death, the data used in the model, and

additional outputs such as life tables for each categorical covariate calculated from the estimated

ages at death (without including left-truncated individuals).

5 Summarizing and plotting results

5.1 Printing results: functions print() and summary()

As we mentioned above, BaSTA’s outputs can be explored using some of R’s generic functions.

For instance, the basic print() and summary() functions print a range of summary statistics and

descriptions of the model used. Basic summary values can be visualized simply by typing the name

of the BaSTA output object into the R console, while more information can be obtained with the

summary() function. For example, here are the summary values for a simple-shaped Gompertz

analysis on the simulated dataset included in the package, with 4 parallel simulations:

> summary(sim1Out, digits = 3)

Call:

Model : GO

Shape : simple

Covars. structure : fused

Cat. covars. : f, m

Cont. covars. : weight

Model settings:

niter burnin thinning nsim

10000 5001 100 3

Runs:

All simulations finished.

Jumps and priors:

Jump.sd Mean.priors

b0[f] 0.020 -3.00
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b0[m] 0.020 -3.00

b1[f] 0.009 0.01

b1[m] 0.009 0.01

gamma 0.010 0.00

Mean Kullback-Liebler

discrepancy calibration (KLDC):

b0 b1

f-m 1 0.974

Coefficients:

Estimate StdErr Lower95%CI Upper95%CI SerAutocor UpdateRate

b0[f] -4.167 0.07863 -4.297 -4.029 0.751 0.12

b0[m] -3.405 0.08151 -3.545 -3.253 0.706 0.12

b1[f] 0.177 0.00639 0.165 0.187 0.618 0.12

b1[m] 0.196 0.00878 0.179 0.211 0.579 0.12

gamma 0.208 0.02338 0.163 0.247 0.517 0.12

pi 0.624 0.00444 0.615 0.632 -0.111 1.00

PotScaleReduc

b0[f] 1.03

b0[m] 1.08

b1[f] 1.04

b1[m] 1.07

gamma 1.01

pi 1.00

Convergence:

Appropriate convergence reached for all parameters.

DIC:

17573.7

5.2 Plotting results: function plot()

To visually verify that all parameter estimates have reached convergence, function plot() can be

used on the BaSTA output object. Here is an example with the same output described above:

> plot(sim1Out)

This produces a plot of traces for the mortality parameters as in Fig. ??:

In this case, no additional arguments are required. To plot the traces of the proportional hazards

or recapture probability parameters or of the posterior chains, argument trace.name should be

specified, with values gamma, pi or post. For instance, here is the code to plot the traces of the

proportional hazards parameters:

> plot(sim1Out, trace.name = "gamma")

In addition, the predicted survival probabilities and mortality rate functions for the different

categorical covariates can be plotted by typing:
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Figure 3: Traces for the model parameters.
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> plot(sim1Out, plot.trace = FALSE)

which produces the following plot (Fig. 4):
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Figure 4: Survival and mortality trajectories from the example data analysis.
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6 Additional information

6.1 Mortality model details

Table 4: Mortality rates for all models included in BaSTA.

Function
Mortality rate Survival probability

Parameters
µb(x|b) Sb(x|b)

Exponential b e−bx b > 0

Gompertz eb0+b1x exp
[
eb0

b1
(1− eb1x)

]
−∞ < b0, b1 <∞

Weibull b0b
b0
1 x

b0−1 exp
[
−(b1x)b0

]
b0, b1 > 0

Logistic eb0+b1x

1+b2
eb0
b1

(eb1x−1)

(
1 + b2

eb0

b1

(
eb1x − 1

))−1/b2
b0, b1, b2 > 0
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