
Efficient computing with BART

Rodney Sparapani
Medical College of Wisconsin

Robert McCulloch
Arizona State University

Abstract

This short article illustrates how to perform efficient computing with the BART
package.

Keywords: Bayesian Additive Regression Trees, multi-threading, R, C++, forking, OpenMP.

1. Efficient computing with BART

If you had the task of creating an efficient implementation for a black-box model such as
BART, which tools would you use? Surprisingly, linear algebra routines which are a traditional
building block of scientific computing will be of little use for a tree-based method such as
BART. So what is needed? Restricting ourselves to widely available off-the-shelf hardware
and open-source sofware, we believe there are four key technologies necessary for a successful
BART implementation.

• an object-oriented language to facilitate working with trees

• a parallel (or distributed) CPU computing framework for faster processing

• a high-quality parallel random number generator

In our implementation of BART, we pair the objected-oriented languages of R and C++ to
satisfy these requirements. In this Section, we give a brief introduction to the concepts and
technologies harnessed for efficient computing by our BART package.

1.1. A brief history of multi-threading

We now present a short synopsis of multi-threading. This is not meant to be exhaustive;
rather, we only provide enough detail to explain the capability and popularity of multi-
threading today. Multi-threading emerged rather early in the digital computer age with
pioneers laying the research groundwork in the 1950s and 60s. In 1961, Burroughs released
the B5000 which was the first commercial hardware capable of multi-threading (Lynch 1965).
The B5000 performed asymmetric multiprocessing which is commonly employed in modern
hardware via numerical co-processors and/or graphical processors today. In 1962, Burroughs
released the D825 which was the first commercial hardware capable of symmetric multipro-
cessing (SMP) with CPUs (Anderson, Hoffman, Shifman, and Williams 1962). In 1967, Gene
Amdahl derived the theoretical limits for multi-threading which came to be known as Am-
dahl’s law (Amdahl 1967). If C is the number of CPUs and b is the fraction of work that
can’t be parallelized, then the gain due to multi-threading is ((1− b)/C + b)−1.

2 Efficient computing with BART

Let’s fast-forward to the modern era of multi-threading. Although, not directly related to
multi-threading, in 2000, Advanced Micro Devices (AMD) released the AMD64 specification
that created a new 64-bit x86 instruction set which was capable of co-existing with 16-bit
and 32-bit x86 legacy instructions. This was an important advance since 64-bit math is
capable of addressing vastly more memory than 16-bit or 32-bit (264 vs. 216 or 232) and
multi-threading inherently requires more memory resources. In 2003, version 2.6 of the Linux
kernel incorporated full SMP support; prior Linux kernels had either no support or very
limited/crippled support. From 2005 to 2011, AMD released a series of Opteron chips with
multiple cores for multi-threading: 2 cores in 2005, 4 cores in 2007, 6 cores in 2009, 12 cores
in 2010 and 16 cores in 2011. From 2008 to 2010, Intel entered the market with Xeon chips
and their hyperthreading technology that allows each core to issue two instructions per clock
cycle: 4 cores (8 threads) in 2008 and 8 cores (16 threads) in 2010. In this era including
today, most off-the-shelf hardware available features 1 to 4 CPUs. Therefore, in the span of
only a few years, multi-threading rapidly trickled down from servers at large firms to mass-
market products such as desktops/laptops. For example, the consumer machine that BART
is developed on, purchased in 2016, is capable of 8 threads (and hence many of the examples
default to 8 threads).

1.2. Modern multi-threading software frameworks

In the late 1990s, the Message Passing Interface (MPI) (Walker and Dongarra 1996) was intro-
duced which is the dominant distributed computing framework in use today (Gabriel, Fagg,
Bosilca, Angskun, Dongarra, Squyres, Sahay, Kambadur, Barrett, Lumsdaine et al. 2004),
i.e., distributed meaning tasks which span multiple computers called nodes. R has some sup-
port for MPI provided in the parallel (Urbanek, Ripley, Tierney, and R Core 2017) package
and additional support is provided by several other CRAN packages such as snow (Tier-
ney, Rossini, Li, and Sevcikova 2016), Rmpi (Yu 2017) and pbdMPI (Chen, Ostrouchov,
Schmidt, Patel, Yu, and R Core 2018). To support MPI, BART sofware was re-written with
a simple, readable C++ object schema. Although, not an R package, this project was docu-
mented by Pratola, Chipman, Gattiker, Higdon, McCulloch, and Rust (2014). The current
BART package source code is a descendent of the MPI BART project which is deprecated.

Furthermore, the current BART package no longer supports MPI; rather, the multi-threading
available is now based on the OpenMP standard (Dagum and Menon 1998) and the parallel
package. OpenMP takes advantage of modern hardware by performing multi-threading on
single machines which often have multiple CPUs each with multiple cores. Currently, the
BART package only uses OpenMP for parallelizing predict function calculations. The
challenge with OpenMP, besides the programming per se, is that it is not widely available
on all platforms. Operating system support can be detected by the GNU autotools (Calcote
2010) which define a C pre-processor macro if it is available, _OPENMP, or not. There are
numerous exceptions for operating systems so it is difficult to generalize. But, generally,
Microsoft Windows lacks OpenMP detection since the GNU autotools do not natively exist on
this platform. And, Apple macOS lacks OpenMP support since the standard Xcode toolkit
does not provide it. Thankfully, most Linux and UNIX distributions do provide OpenMP
(although, macOS is technically a UNIX distribution, yet it is a notable exception in this
regard). We provide the function mc.cores.openmp which returns > 0 (0) if the predict

function is (not) capable of utilizing OpenMP.

Rodney Sparapani, Robert McCulloch 3

The parallel package provides multi-threading via forking. Forking is available on Unix
platforms, but not Windows (we use the term Unix to refer to UNIX, Linux and macOS
since they are all in the UNIX family tree). The BART package uses forking for posterior
sampling of the f function, and also for the predict function when OpenMP is not available.
Except for predict, all functions that use forking start with mc. And, regardless of whether
OpenMP or forking is employed, these functions except the argument mc.cores which controls
the number of threads to be used. The parallel package provides the function detectCores

which returns the number of threads that your hardware can support.

1.3. BART implementations on CRAN

Currently, there are four BART implementations on the Comprehensive R Archive Network
(CRAN); see the Appendix for a tabulated comparative summary of their features.

BayesTree was the first released in 2006 (Chipman and McCulloch 2016). Reported bugs
will be fixed, but no future improvements are planned; so, we suggest choosing one of the
newer packages such as BART. The basic interface and workflow of BayesTree has strongly
influenced the other packages which followed. However, the BayesTree source code is difficult
to maintain and, therefore, improvements were limited leaving it with relatively fewer features
than the other entries.

The next entrant is bartMachine which is written in java and was first released in 2013
(Kapelner and Bleich 2016). It provides advanced features like multi-threading, variable
selection (Bleich, Kapelner, George, Jensen et al. 2014), a predict function, convergence
diagnostics and missing data handling. However, the R to java interface can be challenging
to deal with. R is written in C and Fortran, consequentally, functions written in java do not
have a natural interface to R. This interface is provided by the rJava (Urbanek 2017) package
which requires the Java Development Kit (JDK). Therefore, we recommend bartMachine
only for those users who have a firm grounding in the java language and its tools in order to
install/upgrade the package and get the best performance out of it.

The next entrant is dbarts which is written in C++ and was first released in 2014 (Dorie,
Chipman, and McCulloch 2016). It is a clone of the BayesTree interface, but it does not
share the source code; dbarts source has been re-written from scratch for efficiency and
maintainability. dbarts is a drop-in replacement for BayesTree. However, dbarts has
relatively fewer features than the other entries.

The BART package which is written in C++ was first released in 2017 (McCulloch, Spara-
pani, Gramacy, Spanbauer, and Pratola 2018). It provides advanced features like multi-
threading, variable selection (Linero 2016), a predict function and convergence diagnostics.
The source code is a descendent of the MPI BART project. Although, R is mainly written in
C and Fortran (at the time of this writing, 39.2% and 26.8% lines of source code respectively),
C++ is a natural choice for creating R functions since they are both object-oriented languages.
The C++ interface to R has been seamlessly provided by the Rcpp package (Eddelbuettel,
François, Allaire, Ushey, Kou, Russel, Chambers, and Bates 2011) which efficiently passes
object references from R to C++ (and vice versa) as well as providing direct accesss to the
R random number generator. The source code can also be called from C++ alone without
an R instance where the random number generation is provided by either the standalone
Rmath library (R Core 2017) or the C++ random Standard Template Library. Also, it is
the only BART package to support categorical and time-to-event outcomes (Sparapani, Lo-

4 Efficient computing with BART

gan, McCulloch, and Laud 2016). It does not provide missing data imputation; rather, we
recommend the sbart package for this niche which is performed by the so-called Sequential
BART algorithm (Daniels and Singh 2017; Xu, Daniels, and Winterstein 2016) (sbart is also
a descendent of MPI BART).

1.4. MCMC is embarrassingly parallel

In general, Bayesian Markov chain Monte Carlo (MCMC) posterior sampling is considered to
be embarrassingly parallel (Rossini, Tierney, and Li 2007), i.e., since the chains only share the
data and don’t have to communicate with each other, parallel implementations are considered
to be trivial. BART MCMC also falls into this class. Typical practice for Bayesian MCMC is
to start in some initial state, perform a limited number of samples to generate a new random
starting position and throw away the preceding samples which we call burn-in (the amount of
burn-in in the BART package is controlled by the argument nskip which defaults to either
100 or 250). The total length of the chain returned is controlled by the argument ndpost

which defaults to 1000. The theoretical gain due to multi-threading can be calculated by
what we call the MCMC Corollary to Amdahl’s Law. Let b be the burn-in fraction and C be
the number of threads, then the gain limit is ((1 − b)/C + b)−1. (As an aside, note that we
can derive Amdahl’s Law as follows where the amount of work done is in the numerator and
elapsed time is in the denominator: 1−b+b

(1−b)/C+b = 1
(1−b)/C+b). For example, see the diagram

in Figure 1 where the burn-in fraction, b = 100
1100 = 0.09, and the number of CPUs, C = 5,

results in an elapsed time of only ((1 − b)/C + b) = 0.27 or a ((1 − b)/C + b)−1 = 3.67 fold
reduction which is the gain in efficiency. In Figure 2, we plot theoretical gains on the y-axis
and the number of CPUs on the x-axis for two settings: b ∈ {0.025, 0.1}.

1.5. Multi-threading and random access memory (RAM)

The IEEE standard 754-2008 (IEEE Computer Society 2008) specifies that every double-
precision number consumes 8 bytes (64 bits). Therefore, it is quite simple to estimate the
amount of random access memory (RAM) required to store a matrix. If A is m × n, then
the amount of RAM needed is 8 ×m × n bytes. Large matrices held in RAM can present a
challenge to system performance. If you consume all of the physical RAM, the system will
“swap” segments out to virtual RAM which are disk files and this can degrade performance
and possibly even crash the system. On Unix, you can monitor memory and swap usage with
the top command-line utility. And, within R, you can determine the size of an object with
the object.size function.

Mathematically, a matrix is represented as follows.

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

...
am1 am2 · · · amn


R is a column-major language, i.e., matrices are laid out in consecutive memory locations
by traversing the columns: [a11, a21, . . ., a12, a22, . . .]. R is written in C and Fortran where
Fortran is a column-major language as well. However, C and C++ are row-major lan-
guages, i.e., matrices are laid out in consecutive memory locations by traversing the rows:

Rodney Sparapani, Robert McCulloch 5

[a11, a12, . . ., a21, a22, . . .]. So, if you have written an R function in C/C++, then you need to
be cognizant of the clash in paradigms (also note that R/Fortran array indexing goes from
1 to m while C/C++ indexing goes from 0 to m − 1). As you might surmise, this is easily
addressed with a transpose, i.e., instead of passing A from R to C/C++, pass At.

R is very efficient in passing objects; rather, than passing an object (along with all of its
memory consumption) on the stack, it passes objects merely by a pointer referencing the
original memory location. However, R follows copy-on-write memory allocation, i.e., all ob-
jects present in the parent thread can be read by a child thread without a copy, but when an
object is altered/written by the child, then a new copy is created in memory. Therefore, if we
pass A from R to C/C++, and then transpose, we will create multiple copies of A consuming
8 × m × n × C where C is the number of children. If A is a large matrix, then you may
stress the system’s limits. The simple solution is for the parent to create the transpose before
passing A and avoiding the multiple copies, i.e., A <- t(A). And this is the philosophy that
the BART package follows.

1.6. Multi-threading: interactive and batch processing

Interactive jobs must take precedence over batch jobs to prevent the user experience from
suffering high latency. For example, have you ever experienced a system slowdown while you
are typing and the display of your keystrokes can not keep up; this should never happen and is
the sign of something amiss. With large multi-threaded jobs, it is surprisingly easy to naively
degrade system performance. But, this can easily be avoided by operating system support
provided by R. In the tools package (Hornik and Leisch 2017), there is the psnice function.
Paraphrased from the ?psnice help page.

Unix has a concept of process priority. Priority is assigned values from 0 to 39
with 20 being the normal priority and (counter-intuitively) larger numeric values
denoting lower priority. Adding to the complexity, there is a “nice” value, the
amount by which the priority exceeds 20. Processes with higher nice values will
receive less CPU time than those with normal priority. Generally, processes with
nice 19 are only run when the system would otherwise be idle.

Therefore, by default, the BART package children have their nice value set to 19.

1.7. Continuous BART: serial and parallel implementations

Here we present snippets of R code to run BART in serial and parallel for a continuous
outcome which we call continuous BART. While we only demonstrate continuous outcomes,
the other outcomes are as similarly handled by the BART package as possible to present a
consistent interface. The serial function is wbart and the parallel, mc.wbart. The ’w’ in the
name stands for weighted since you can provide known weights (with the w argument) for

the following model: yi∼N
(
f(xi, w

2
i σ

2
)

where (f, σ)
prior∼ BART and i = 1, . . ., N indexes

subjects. Now, we can perform the calculations in serial,
set.seed(99); post <- wbart(x.train, y.train, ..., ndpost=M)

or in parallel (when said support is available),
post <- mc.wbart(x.train, y.train, ..., ndpost=M, mc.cores=8, seed=99).
Notice the difference in how the seed is set; we will return to this detail later on. The BART

6 Efficient computing with BART

package allows x.train (and x.test) to be provided as matrices or data frames, but for
simplicity we present them as matrices.

Input: x.train and, optionally, x.test:


x1

x2
...

xN

 where xi is the ith row

Output: post$yhat.train and post$yhat.test:

 ŷ11 . . . ŷN1
...

...
...

ŷ1M . . . ŷNM

 where ŷim = fm(xi)

The post object returned is of type wbart which is essentially a list. There are other items
returned in the list, but here we only focus on post$yhat.train and post$yhat.test; the
latter only being returned if x.test is provided. In the above display, m = 1, . . .,M are the
MCMC samples which are the rows of post$yhat.train and post$yhat.test. Note that
each outcome has a different return type, i.e., post object of type wbart (continuous), pbart
(binary probit), lbart (binary logistic), survbart (survival analysis), criskbart (competing
risks) or recurbart (recurrent events).

1.8. Continuous BART: predicting with a previous fit

Often when we are fitting a BART model, we have not specified an x.test matrix of hy-
pothetical values for the evaluation of f . For fire-and-forget packages like BayesTree and
dbarts, we would have to re-fit the model every time we want to evaluate x.test which can
be very time-consuming. Therefore, the BART package takes a unique approach: it returns
the ensemble of trees in the post object for later use; specifically, they are encoded in an
ASCII character string, post$treedraws$trees. This allows us to construct x.test after
the fact which is often convenient when it is large since we can partition it into smaller chunks.
Then we can evaluate predictions via the S3 method predict.wbart. The predictions are
generated in serial by default,
pred <- predict(post, x.test, ...)

but can be parallelized (when said support is available),
pred <- predict(post, x.test, mc.cores=8, ...).

Input: x.test:


x1
x2
...
xQ

 where xi is the ith row and i = 1, . . ., Q

Output matrix:

 ŷ11 . . . ŷQ1
...

...
...

ŷ1M . . . ŷQM

 where ŷim = fm(xi)

Rodney Sparapani, Robert McCulloch 7

In the above display, m = 1, . . .,M are the MCMC samples which are the rows of the output
matrix.

1.9. Creating a BART executable

Occasionally, you may need to create a BART executable that you can run without an R
instance. This is especially useful if you need to include BART in another C++ program.
Or, when you need to debug the BART package C++ source code which is more difficult to
do when you are calling the function from R. Several examples of these are provided with the
BART package. With R, you can find the Makefile and the weighted BART example with
system.file(’cxx-ex/Makefile’, package=’BART’) and
system.file(’cxx-ex/wmain.cpp’, package=’BART’) respectively. Note that these exam-
ples require the installation of the standalone Rmath library (R Core 2017) which is contained
in the R source code distribution. Rmath provides common R functions and random number
generation, e.g., pnorm and rnorm. You will likely need to copy the cxx-ex directory to your
workspace. Once done, you can build and run the weighted BART executable example from
the command line as follows.
> make wmain.out ## to build

> ./wmain.out ## to run

By default, these examples are based on the Rmath random number generator. However, you
can specify the C++ Standard Template Library random number generator (contained in the
STL random header file) by uncommenting the following line in the Makefile (by removing
the pound, #, symbols):
CPPFLAGS = -I. -I/usr/local/include -DMATHLIB_STANDALONE -DRNG_random

(which still requires Rmath for other purposes). These examples were developed on Linux
and macOS, but they should be readily adaptable to UNIX and Windows as well.

References

Amdahl G (1967). “Validity of the Single Processor Approach to Achieving Large-Scale
Computing Capabilities.” In AFIPS Conference Proceedings, volume 30, pp. 483–5.

Anderson JP, Hoffman SA, Shifman J, Williams RJ (1962). “D825 - a multiple-computer
system for command and control.” In AFIPS Conference Proceedings, volume 24.

Bleich J, Kapelner A, George EI, Jensen ST, et al. (2014). “Variable selection for BART: an
application to gene regulation.” The Annals of Applied Statistics, 8(3), 1750–1781.

Calcote J (2010). Autotools: A Practitioner’s Guide to GNU Autoconf, Automake, and Libtool.
No Starch Press.

Chen W, Ostrouchov G, Schmidt D, Patel P, Yu H, R Core (2018). pbdMPI: Programming
with Big Data - Interface to MPI. [https://CRAN.R-project.org/package=pbdMPI].

Chipman H, McCulloch R (2016). BayesTree: Bayesian Additive Regression Trees. [https:
//CRAN.R-project.org/package=BayesTree].

https://CRAN.R-project.org/package=pbdMPI
https://CRAN.R-project.org/package=BayesTree
https://CRAN.R-project.org/package=BayesTree

8 Efficient computing with BART

Dagum L, Menon R (1998). “OpenMP: an industry standard API for shared-memory pro-
gramming.” IEEE computational science and engineering, 5(1), 46–55.

Daniels M, Singh A (2017). sbart: Sequential BART for Imputation of Missing Covariates.
[https://cran.r-project.org/package=sbart].

Dorie V, Chipman H, McCulloch R (2016). dbarts: Discrete Bayesian Additive Regression
Trees Sampler. [https://CRAN.R-project.org/package=dbarts].

Eddelbuettel D, François R, Allaire J, Ushey K, Kou Q, Russel N, Chambers J, Bates D
(2011). “Rcpp: Seamless R and C++ integration.” Journal of Statistical Software, 40(8),
1–18.

Gabriel E, Fagg GE, Bosilca G, Angskun T, Dongarra JJ, Squyres JM, Sahay V, Kambadur
P, Barrett B, Lumsdaine A, et al. (2004). “Open MPI: Goals, concept, and design of a next
generation MPI implementation.” In European Parallel Virtual Machine/Message Passing
Interface Users’ Group Meeting, pp. 97–104. Springer.

Hornik K, Leisch F (2017). tools: Tools for Package Development. [https://CRAN.
R-project.org].

IEEE Computer Society (2008). IEEE Std 754-2008.

Kapelner A, Bleich J (2016). bartMachine: Bayesian Additive Regression Trees. [https:
//CRAN.R-project.org/package=bartMachine].

Linero AR (2016). “Bayesian regression trees for high dimensional predic-
tion and variable selection.” Journal of the American Statistical Association,
(<doi:10.1080/01621459.2016.1264957>).

Lynch J (1965). “The Burroughs B8500.” Datamation, pp. 49–50.

McCulloch R, Sparapani R, Gramacy R, Spanbauer C, Pratola M (2018). BART: Bayesian
Additive Regression Trees. [https://CRAN.R-project.org/package=BART].

Pratola MT, Chipman HA, Gattiker JR, Higdon DM, McCulloch R, Rust WN (2014). “Paral-
lel Bayesian additive regression trees.” Journal of Computational and Graphical Statistics,
23(3), 830–52.

R Core (2017). Mathlib: A C Library of Special Functions. [https://cran.r-project.org/
doc/manuals/r-release/R-admin.html#The-standalone-Rmath-library].

Rossini AJ, Tierney L, Li N (2007). “Simple parallel statistical computing in R.” Journal of
computational and Graphical Statistics, 16(2), 399–420.

Sparapani RA, Logan BR, McCulloch RE, Laud PW (2016). “Nonparametric survival analysis
using Bayesian Additive Regression Trees (BART).” Statistics in medicine, 35(16), 2741–
53.

Tierney L, Rossini A, Li N, Sevcikova H (2016). snow: Simple Network of Workstations.
[https://CRAN.R-project.org/package=snow].

https://cran.r-project.org/package=sbart
https://CRAN.R-project.org/package=dbarts
https://CRAN.R-project.org
https://CRAN.R-project.org
https://CRAN.R-project.org/package=bartMachine
https://CRAN.R-project.org/package=bartMachine
https://CRAN.R-project.org/package=BART
https://cran.r-project.org/doc/manuals/r-release/R-admin.html#The-standalone-Rmath-library
https://cran.r-project.org/doc/manuals/r-release/R-admin.html#The-standalone-Rmath-library
https://CRAN.R-project.org/package=snow

Rodney Sparapani, Robert McCulloch 9

Urbanek S (2017). rJava: Low-Level R to Java Interface. [https://CRAN.R-project.org/
package=rJava].

Urbanek S, Ripley B, Tierney L, R Core (2017). parallel: Support for Parallel Computation.
[https://CRAN.R-project.org].

Walker DW, Dongarra JJ (1996). “MPI: a standard message passing interface.” Supercom-
puter, 12, 56–68.

Xu D, Daniels MJ, Winterstein AG (2016). “Sequential BART for imputation of missing
covariates.” Biostatistics, 17(3), 589–602.

Yu H (2017). Rmpi: Interface (Wrapper) to MPI (Message-Passing Interface). [https:
//CRAN.R-project.org/package=Rmpi].

Affiliation:

Rodney Sparapani rsparapa@mcw.edu
Division of Biostatistics, Institute for Health and Equity
Medical College of Wisconsin, Milwaukee campus

https://CRAN.R-project.org/package=rJava
https://CRAN.R-project.org/package=rJava
https://CRAN.R-project.org
https://CRAN.R-project.org/package=Rmpi
https://CRAN.R-project.org/package=Rmpi

10 Efficient computing with BART

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Chains

P
ro

po
rt

io
na

te
 le

ng
th

 o
f c

ha
in

 p
ro

ce
ss

in
g

tim
e

b

Figure 1: The theoretical gain due to multi-threading can be calculated by Amdahl’s Law.
Let b be the burn-in fraction and C be the number of threads, then the gain limit is ((1 −
b)/C+ b)−1. In this diagram, the burn-in fraction, b = 100

1100 = 0.09, and the number of CPUs,
C = 5, results in an elapsed time of only ((1− b)/C + b) = 0.27 or a ((1− b)/C + b)−1 = 3.67
fold reduction which is the gain in efficiency.

Rodney Sparapani, Robert McCulloch 11

1 2 5 10 20 50

0
5

10
15

20
25

30

C: number of CPU

G
ai

n

0.025

0.1

Figure 2: The theoretical gain due to multi-threading can be calculated by Amdahl’s Law.
Let b be the burn-in fraction and C be the number of threads, then the gain limit is ((1 −
b)/C + b)−1. In this figure, the theoretical gains are on the y-axis and the number of CPUs,
the x-axis, for two settings: b ∈ {0.025, 0.1}.

12 Efficient computing with BART

C
a
teg

o
ry

B
a
y
e
sT

re
e

b
a
rtM

a
ch

in
e

d
b
a
rts

B
A
R
T

F
irst

relea
se

2006
2013

2014
2017

A
u
th

ors
C

h
ip

m
an

K
ap

eln
er

D
orie,

M
cC

u
llo

ch
,

S
p

arap
an

i
&

M
cC

u
llo

ch
&

B
leich

C
h
ip

m
an

G
ram

acy,
S

p
an

b
au

er
&

M
cC

u
llo

ch
&

P
ratola

S
ou

rce
co

d
e

C
+

+
java

C
+

+
C

+
+

C
R

A
N

d
ep

en
d
en

cies
n
n

et
rJ

ava,
car,

R
cp

p
ran

d
om

F
orest,

m
issF

orest
T

ree
tra

n
sition

p
ro

p
osals

4
3

4
3

M
u

lti-th
read

ed
N

o
Y

es
N

o
Y

es
p
r
e
d
i
c
t

fu
n
ction

N
o

Y
es

N
o

Y
es

V
aria

b
le

selection
N

o
Y

es
N

o
Y

es
C

on
tin

u
o
u

s
ou

tco
m

es
Y

es
Y

es
Y

es
Y

es
D

ich
o
tom

o
u
s

ou
tco

m
es

w
ith

N
orm

a
l

laten
ts

Y
es

Y
es

Y
es

Y
es

D
ich

o
tom

o
u
s

ou
tco

m
es

w
ith

L
ogistic

laten
ts

N
o

N
o

N
o

Y
es

C
atego

rica
l

o
u
tcom

es
N

o
N

o
N

o
Y

es
T

im
e-to-ev

en
t

o
u
tcom

es
N

o
N

o
N

o
Y

es
C

on
verg

en
ce

d
iagn

ostics
N

o
Y

es
N

o
Y

es
T

h
in

n
in

g
Y

es
N

o
Y

es
Y

es
C

ross-valid
a
tion

N
o

Y
es

Y
es

N
o

M
issin

g
d

a
ta

h
an

d
lin

g
N

o
Y

es
N

o
N

o
P

artial
d

ep
en

d
en

ce
p
lo

ts
Y

es
Y

es
Y

es
N

o
C

ita
tion

s
C

h
ip

m
an

an
d

M
cC

u
llo

ch
(2016)

K
ap

eln
er

an
d

B
leich

(2016)
D

orie
et

a
l.

(2016)
M

cC
u
llo

ch
et

a
l.

(2018)

	Efficient computing with BART
	A brief history of multi-threading
	Modern multi-threading software frameworks
	BART implementations on CRAN
	MCMC is embarrassingly parallel
	Multi-threading and random access memory (RAM)
	Multi-threading: interactive and batch processing
	Continuous BART: serial and parallel implementations
	Continuous BART: predicting with a previous fit
	Creating a BART executable

