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Abstract

This short article illustrates how to analyze binary and categorical outcomes with the
BART R package.

Keywords: Bayesian Additive Regression Trees.

1. Binary and categorical outcomes with BART

The BART package supports binary outcomes via probit BART with Normal latents and
logistic BART with Logistic latents. Categorical outcomes are supported with multinomial
BART with Logistic latents. Convergence diagnostics are provided and variable selection as
well.

1.1. Probit BART for binary outcomes

To extend BART to binary outcomes, we employ the technique of Albert and Chib (1993) to
create what we call probit BART. Probit BART is provided by the BART package as the
pbart function. In this case, the outcome, y.train, is provided as an integer with values
0 or 1. Given these yi, we introduce the auxiliary Normal latents, zi, as the outcome for a
continuous BART with unit variance where i indexes subject and Φ is the standard Normal
cumulative distribution function.

yi|pi
ind∼ B (pi)

pi|f = Φ(µ0 + f(xi)) where f
prior∼ BART

zi|yi, f∼N (µ0 + f(xi), 1)

{
I (−∞, 0) if yi = 0

I (0,∞) if yi = 1

The zi are centered around a known constant, µ0, which is tantamount to centering the
probabilities, pi, around p0 = Φ(µ0). If µ0 = 0, which is the default, then the pi are centered
around 0.5; to specify a different value, say -1, pass the argument binaryOffset=-1 in the
pbart call. The key insight into the probit BART technique is that the Gibbs conditional

f |zi, yi
d
= f |zi, i.e., given zi, yi is unnecessary. This setup leads to the following Bernoulli

likelihood: [y|f ] =
∏N
i=1 p

yi
i (1− pi)1−yi .

In the following, we assume that binaryOffset=0 for convenience (which is the default). The
pbart (mc.pbart) function is for serial (parallel) computation. The outcome y.train is a
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vector containing zeros and ones. The covariates for training (validation, if any) are x.train

(x.test) which can be matrices or data frames containing factors; in the display below, we
assume matrices for simplicity.
set.seed(99)

post <- pbart(x.train, y.train, x.test, ..., ndpost=M) or
post <- mc.pbart(x.train, y.train, x.test, ..., ndpost=M, mc.cores=2, seed=99)

Input matrices: x.train and, optionally, x.test:


x1

x2
...

xN

 or xi

post, of type pbart, which is essentially a list

post$yhat.train and post$yhat.test:

 ŷ11 . . . ŷN1
... . . .

...
ŷ1M . . . ŷNM

 where ŷim = fm(xi)

The columns of post$yhat.train and post$yhat.test represent different covariate settings
and the rows, the M draws from the posterior. Although, post$yhat.train and post$yhat.test,
when requested, are returned, generally, post$prob.train and post$prob.test are of more
interest (and post$prob.train.mean and post$prob.test.mean which are the means of the
posterior sample columns, not shown).

post$prob.train and post$prob.test:

 p̂11 . . . p̂N1
... . . .

...
p̂1M . . . p̂NM

 where p̂im = Φ(fm(xi))

Often it is impractical to provide x.test in the call to pbart due to the number of predic-
tions considered or all the settings to evaluate are simply not known at that time. To allow
for this common problem, the BART package returns the trees encoded in an ASCII string,
treedraws$trees, and provides a predict function to generate any predictions needed. Note
that if you need to perform the prediction in some later R instance, then you can save the pbart
object returned and reload it when needed, e.g., save with saveRDS(post, ’post.rds’) and
reload, post <- readRDS(’post.rds’) . The x.test input can be a matrix or a data frame;
for simplicity, we assume a matrix below.
pred <- predict(post, x.test, mc.cores=1, ...)
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Input: x.test:


x1

x2
...

xQ

 or xh

pred, of type pbart, which is essentially a list

pred$yhat.test:

 ŷ11 . . . ŷQ1
...

...
...

ŷ1M . . . ŷQM

 where ŷhm = fm(xh)

pred$prob.test:

 p̂11 . . . p̂Q1
...

...
...

p̂1M . . . p̂QM

 where p̂hm = Φ(fm(xh))

pred$prob.test.mean: [p̂1, . . ., p̂Q] where p̂h = M−1
M∑
m=1

p̂hm

1.2. Friedman’s partial dependence function

BART does not directly provide a summary of the effect of a single covariate, or a subset of
covariates, on the outcome. This is also the case for black-box, or nonparametric regression,
models in general which have had to deal with this issue. We recommend Friedman’s partial
dependence function (Friedman 2001) with BART to summarize the marginal effect due to
a subset of the covariates, xS , by aggregating over the complement covariates, xC , i.e., x =
[xS ,xC ]. The marginal dependence function is defined by fixing xS while aggregating over the
observed settings of the complement covariates in the cohort: f(xS) = N−1

∑N
i=1 f(xS ,xiC).

For probit BART, the f function is not directly of interest; rather, the probability of an event
is more interpretable: p(xS) = N−1

∑N
i=1 Φ(µ0 + f(xS ,xiC)). Other marginal functions can

be obtained in a similar fashion. Estimates can be derived via functions of the posterior
samples such as means, quantiles, e.g., p̂(xS) = M−1N−1

∑M
m=1

∑N
i=1 Φ(µ0 + fm(xS ,xiC))

where m indexes posterior samples. Friedman’s partial dependence function is a concept that
is very flexible. So flexible that we are unable to provide abstract functional support in the
BART package; rather, we provide examples of the many practical uses in the demo directory.

1.3. Logistic BART for binary outcomes

Note that the distribution of the latent zi is not identifiable from the data so it is essentially a
parametric assumption. This assumption can be relaxed by assuming the latents come from
the Logistic distribution which has heavier tails and, therefore, is a better choice if the pi can
be very close to zero or one. For Logistic latents, we employ the technique of Holmes and
Held (2006) to create what we call logistic BART. However, it is important to recognize that
logistic BART is more computationally intensive than probit BART.

The outcome, y.train, is provided as an integer with values 0 or 1. Logistic BART is
provided by the lbart function. Unlike probit BART where we sample Normal latents, zi,



4 Binary/categorical outcomes with BART

with a fixed variance σ2 = 1; with Logisitic BART, we sample Normal latents, zi, with a
random variance σ2i . If σ2i = 4ψ2

i where ψi∼Kolmogorov-Smirnov, then the zi follow the
Logistic distribution. Sampling ψi from the Kolmogorov-Smirnov distribution is described by
Devroye (1986). So, the conditionally Normal latents, zi|σ2i , are the outcomes for a continuous
BART with a known heteroskedastic variance, σ2i . Since Logistic latents are more flexible,
there is no centering parameter, i.e., µ0 = 0. Therefore, the probabilities are pi = F (f(xi))
where F is the standard Logistic distribution function.

The input and output for lbart is essentially identical to pbart. Also, the predict function
for objects of type lbart is analogous.

1.4. Multinomial BART for categorical outcomes

To extend BART to categorical outcomes, we employ as many logistic BARTs as there are
categories to create what we call multinomial BART. Multinomial BART is provided by the
BART package as the mbart function. In this case, the outcome, y.train, is provided
as an integer with values 1, . . . , C which generate the corresponding latents zi1, . . . , ziC and
probabilities pi1, . . . , piC which are constrained to sum to one.

The input for mbart is essentially identical to pbart. The output is slightly different.
set.seed(99)

post <- mbart(x.train, y.train, x.test, ..., ndpost=M) or
post <- mc.mbart(x.train, y.train, x.test, ..., ndpost=M, mc.cores=2, seed=99)

Input: x.train and, optionally, x.test:


x1

x2
...

xN

 or xi

post, of type mbart

post$prob.train and post$prob.test:

 p̂111 . . . p̂1C1 . . . p̂N11 . . . p̂NC1
...

...
...

...
...

...
...

p̂11M . . . p̂1CM . . . p̂N1M . . . p̂NCM


where p̂icm = F (fcm(xi))

The columns of post$prob.train and post$prob.test represent different covariate settings
crossed with the C categories. Also, the predict function for objects of type mbart is analo-
gous.

1.5. Converegence diagnostics for dichotomous and categorical outcomes

How do you perform convergence diagnostics for BART? For continuous outcomes, convegence
can easily be determined from the trace plots of the the error variance, σ2. However, for
probit BART with Normal latents, the error variance is fixed at 1 so this is not an option.
Similarly, for logistic and multinomial BART, σ2i , are auxiliary latent variables not suitable
for convergence diagnostics. Therefore, we adapt traditional MCMC diagnostic approaches
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to BART. We perform graphical checks via auto-correlation, trace plots and an approach due
to Geweke (1992).

Geweke diagnostics are based on earlier work which characterizes MCMC as a time series
(Hastings 1970). Once this transition is made, auto-regressive, moving-average (ARMA)
process theory is employed (Silverman 1986). Generally, we define our Bayesian estimator
as θ̂M = M−1

∑M
m=1 θm. We represent the asymptotic variance of the estimator by σ2

θ̂
=

limM→∞V
[
θ̂M

]
. If we suppose that θm is an ARMA(p, q) process, then the spectral density

of the estimator is defined as γ(w) = (2π)−1
∑∞

m=−∞V [θ0, θm] eimw where eitw = cos(tw) +
i sin(tw). This leads us to an estimator of the asymptotic variance which is σ̂2

θ̂
= γ̂2(0). We

divide our chain into two segments, A and B, as follows: m ∈ A = {1, . . . ,MA} where MA =
aM ; and m ∈ B = {M −MB + 1, . . . ,M} where MB = bM . Note that a + b < 1. Geweke
suggests a = 0.1, b = 0.5 and recommends the following Normal test for convergence.

θ̂A = M−1A

∑
m∈A

θm θ̂B = M−1B

∑
m∈B

θm

σ̂2
θ̂A

= γ̂2m∈A(0) σ̂2
θ̂B

= γ̂2m∈B(0)

ZAB =

√
M(θ̂A − θ̂B)√

a−1σ̂2
θ̂A

+ b−1σ̂2
θ̂B

∼N (0, 1)

In our BART package, we supply R functions adapted from the coda R package (Plummer,
Best, Cowles, and Vines 2006) to perform Geweke diagnostics: spectrum0ar and gewekediag.
But, how do we apply Geweke’s diagnostic to BART? We can check convergence for any
estimator of the form θ = h(f(x)), but often setting h to the identify function will suffice,
i.e., θ = f(x). However, BART being a Bayesian nonparametric technique means that we
have many potential estimators to check, i.e., essentially one estimator for every possible
choice of x.

We have supplied Figures 1, 2 and 3 generated by the example geweke.pbart2.R:
system.file(’demo/geweke.pbart2.R’, package=’BART’). The data are simulated by Fried-
man’s five-dimensional test function (Friedman 1991) where 50 covariates are generated as
xij∼U (0, 1) but only the first 5 covariates have an impact on the outcome at sample sizes
N = 100, 1000, 10000.

f(xi) = −1.5 + sin(πxi1xi2) + 2(xi3 − 0.5)2 + xi4 + 0.5xi5

zi∼N (f(xi), 1)

yi = I (zi > 0)

The convergence for each of these data sets is graphically displayed in Figures 1, 2 and 3
where each figure is broken into four quadrants. In the upper left quadrant, we have plotted
Friedman’s partial dependence function for f(xi4) vs. xi4 for 10 values of xi4. This is a check
that can’t be performed for real data, but it is informative in this case. Notice that f(xi4) vs.
xi4 is directly proportional in each figure as expected. In the upper right quadrant, we plot
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the auto-correlations of f(xi) for 10 randomly selected xi where i indexes subjects. Notice
that there is very little auto-correlation for N = 100, 1000, but a more notable amount for
N = 10000. In the lower left quadrant, we display the corresponding trace plots for these
same settings. The traces demonstrate that samples of f(xi) appear to adequately traverse
the sample space for N = 100, 1000, but less notably for N = 10000. In the lower right
quadrant, we plot the Geweke ZAB statistics for each subject i. Notice that for N = 100,
the ZAB exceed the 95% limits only a handful of times. Although, there are 10 times more
comparisons, N = 1000 has seemingly more than 10 times as many values exceeding the
95% limits. And, for N = 10000, there are dramatically more values exceeding the 95%
limits. Based on these figures, we conclude that the chains have converged for N = 100;
for N = 1000, convergence is questionable; and, for N = 10000, convergence has not been
attained. We would suggest that more thinning be employed for N = 1000, 10000 via the
keepevery argument to pbart; perhaps, keepevery=50 for N = 1000 and keepevery=250

for N = 10000.

1.6. BART and variable selection

Several methods have been proposed for variable selection with BART (Chipman, George,
and McCulloch 2010; Bleich, Kapelner, George, Jensen et al. 2014; Hahn and Carvalho 2015;
McCulloch, Carvalho, and Hahn 2015; Linero 2016). The BART package supports the sparse
prior of Linero (2016) by specifying sparse=TRUE (the default is sparse=FALSE). Let’s repre-
sent the variable selection probabilities by sj where j = 1, . . ., P . Now, replace the uniform
variable selection prior in BART with a Dirichlet prior. Also, place a Beta prior on the α
parameter.

[s1, . . ., sP ]
prior∼ Dirichlet (α/P, . . ., α/P )

α

α+ ρ

prior∼ Beta (a, b)

Typical settings are b = 1 and ρ = P (the defaults) which you can over-ride with the b

and rho arguments respectively. The value a = 0.5 (the default) is a sparse setting whereas
an alternative setting a = 1 is not sparse; you can specify this parameter with argument a.
Linero discusses two assumptions: Assumption 2.1 and Assumption 2.2 (see Linero (2016)
for more details). Basically, Assumption 2.2 (2.1) is more (less) friendly to binary/ordinal
covariates and is (not) the default corresponding to augment=FALSE (augment=TRUE).

Let’s return to the simulated probit BART example explored above which is in the BART
package: system.file(’demo/sparse.pbart.R’, package=’BART’). For sample sizes ofN =
100, 1000, 10000, there are P = 100 covariates, but only the first 5 are active. In Figure 4, the
5 (95) active (inactive) covariates are red (black) and circles (dots) are > (≤) P−1 which is
chance association represented by a black line. For N = 100, only s2 ≤ P−1, but notice that
there are 34 false positives. For N = 1000, all five active covariates are identified, but notice
that there are 18 false positives. For N = 10000, all five active covariates are identified and
notice that there are only two false positives.

1.7. Motivating example: chronic pain and obesity

We want to test the hypothesis that obesity is a risk factor for chronic lower back pain (which
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includes buttock pain in this definition). A corollary to this hypothesis is that obesity is not
considered to be a risk factor for chronic neck pain. A good source of data for this question
is available in the National Health and Nutrition Examination Survey (NHANES) 2009-2010
Arthritis Questionnaire. 5106 subjects were surveyed. We will use probit BART to analyze
the dichotomous outcomes of chronic lower back pain and chronic neck pain. We restrict our
attention to the following covariates: age, gender and anthropometric measurements including
weight (kg), height (cm), body mass index (kg/m2) and waist circumference (cm). Also, note
that sampling weights are available to extrapolate the rates from the survey to the US as
a whole. We will concentrate on body mass index (BMI) and gender, xS , while utilizing
Friedman’s partial dependence function as defined above and also incorporating the sampling
weights, i.e., pS(xS) =

∑N
i=1wiΦ(µ0 + f(xS ,xiC))/

∑N
i′=1wi′ .

The BART package provides two examples:
system.file(’demo/nhanes.pbart1.R’, package=’BART’) for chronic lower back pain and
system.file(’demo/nhanes.pbart2.R’, package=’BART’) for chronic neck pain. In Fig-
ure 5, the unweighted relationship between chronic lower back pain, BMI and gender are
displayed: males (females) are represented by blue (red) lines. As you can see, there is a non-
linear relationship between the probability of chronic lower back pain and BMI for both gen-
ders where females have a parallel higher probability than males. For frail and underweight,
the probability is high and drops as BMI increases until about 35 kg/m2 and afterwards in-
creases until about 65 kg/m2 and then is flat. Based on sampling weights (not shown), the
results are basically the same. In Figure 6, the unweighted relationship between chronic neck
pain, BMI and gender are displayed: males (females) are represented by blue (red) lines. As
you can see, there appears to be no relationship between the probability of chronic neck pain
and BMI for both genders where females have a nearly parallel higher probability than males.
Based on sampling weights (not shown), the results are basically the same.
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Figure 1: Geweke convergence diagnostics for probit BART: N = 100. In the upper left
quadrant, we have plotted Friedman’s partial dependence function for f(xi4) vs. xi4 for 10
values of xi4. This is a check that can’t be performed for real data, but it is informative
in this case. Notice that f(xi4) vs. xi4 is directly proportional as expected. In the upper
right quadrant, we plot the auto-correlations of f(xi) for 10 randomly selected xi where i
indexes subjects. Notice that there is very little auto-correlation. In the lower left quadrant,
we display the corresponding trace plots for these same settings. The traces demonstrate
that samples of f(xi) appear to adequately traverse the sample space. In the lower right
quadrant, we plot the Geweke ZAB statistics for each subject i. Notice that the ZAB exceed
the 95% limits only a handful of times. Based on this figure, we conclude that the chains
have converged.
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Figure 2: Geweke convergence diagnostics for probit BART: N = 1000. In the upper left
quadrant, we have plotted Friedman’s partial dependence function for f(xi4) vs. xi4 for 10
values of xi4. This is a check that can’t be performed for real data, but it is informative
in this case. Notice that f(xi4) vs. xi4 is directly proportional as expected. In the upper
right quadrant, we plot the auto-correlations of f(xi) for 10 randomly selected xi where i
indexes subjects. Notice that there is very little auto-correlation. In the lower left quadrant,
we display the corresponding trace plots for these same settings. The traces demonstrate
that samples of f(xi) appear to adequately traverse the sample space. In the lower right
quadrant, we plot the Geweke ZAB statistics for each subject i. Notice that there appear
to be a considerable number exceeding the 95% limits. Based on this figure, we conclude
that convergence is questionable. We would suggest that more thinning be employed via the
keepevery argument to pbart; perhaps, keepevery=50.
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Figure 3: Geweke convergence diagnostics for probit BART: N = 10000. In the upper left
quadrant, we have plotted Friedman’s partial dependence function for f(xi4) vs. xi4 for 10
values of xi4. This is a check that can’t be performed for real data, but it is informative in
this case. Notice that f(xi4) vs. xi4 is directly proportional as expected. In the upper right
quadrant, we plot the auto-correlations of f(xi) for 10 randomly selected xi where i indexes
subjects. Notice that there is some auto-correlation. In the lower left quadrant, we display
the corresponding trace plots for these same settings. The traces demonstrate that samples
of f(xi) appear to traverse the sample space, but there are some slower oscillations. In the
lower right quadrant, we plot the Geweke ZAB statistics for each subject i. Notice that there
appear to be far too many exceeding the 95% limits. Based on these figures, we conclude
that convergence has not been attained. We would suggest that more thinning be employed
via the keepevery argument to pbart; perhaps, keepevery=250.
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Figure 4: Probit BART and variable selection example. For sample sizes of N =
100, 1000, 10000, there are P = 100 covariates, but only the first 5 are active. The 5 (95)
active (inactive) covariates are red (black) and circles (dots) are > (≤) P−1 which is chance
association represented by a black line. For N = 100, only s2 ≤ P−1, but notice that there
are 34 false positives. For N = 1000, all five active covariates are identified, but notice that
there are 18 false positives. For N = 10000, all five active covariates are identified and notice
that there are only two false positives.
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Figure 5: Friedman’s partial dependence function: BMI and probability of chronic lower
back pain. The unweighted relationship between chronic lower back pain, BMI and gender
are displayed: males (females) are represented by blue (red) lines. As you can see, there
is a non-linear relationship between the probability of chronic lower back pain and BMI for
both genders where females have a parallel higher probability than males. For frail and
underweight, the probability is high and drops as BMI increases until about 35 kg/m2 and
afterwards increases until about 65 kg/m2 and then is flat. Based on sampling weights (not
shown), the results are basically the same



Rodney Sparapani, Robert McCulloch 13

20 30 40 50 60 70 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Unweighted NHANES chronic neck pain: M(blue) vs. F(red)
BMI

Φ
(f(

x)
)

Figure 6: Friedman’s partial dependence function: BMI and probability of chronic neck
pain. The unweighted relationship between chronic neck pain, BMI and gender are displayed:
males (females) are represented by blue (red) lines. As you can see, there appears to be no
relationship between the probability of chronic neck pain and BMI for both genders where
females have a nearly parallel higher probability than males. Based on sampling weights (not
shown), the results are basically the same.
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