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1 Introduction

Unlike other graphics functions in base R, the strucplot framework allows almost full control over
the graphical parameters of all plot elements. In particular, in association plots, mosaic plots, and
sieve plots, the user can modify the graphical appearance of each tile individually. Built on top of
this functionality, the framework supplies a set of shading functions choosing colors appropriate
for the visualization of log-linear models. The tiles’ graphical parameters are set using the gp
argument of the functions of the strucplot framework. This argument basically expects an object
of class gpar whose components are arrays of the same shape (length and dimensionality) as the
data table (see Section 2). For convenience, however, the user can also supply a specialized
graphical appearance control (“grapcon”) function that computes such an object given a vector of
residuals, or, alternatively, a generating function that takes certain arguments and returns such
a grapcon function (see Section 3). We provide several shading functions, including support for
both HSV and HCL colors, and the visualization of significance tests (see Section 4).

2 Specifying graphical parameters of strucplot displays

As an example, consider the ‘UCBAdmissions’ data. In the table aggregated over departments,
we would like to highlight the (incidentally wrong) impression that there were too many male
students accepted compared to the presumably discriminated female students (see Figure 1):

> (ucb <- margin.table(UCBAdmissions, 1:2))

Gender
Admit Male Female
Admitted 1198 557
Rejected 1493 1278

> (fill_colors <- matrix(c("dark cyan", "gray", "gray", "dark magenta"),

+ ncol = 2))

[,1] [,2]
[1,] "dark cyan" "gray"
[2,] "gray" "dark magenta"

> mosaic(ucb, gp = gpar(fill = fill_colors, col = 0))

As the example shows, we create a fourfold table with appropriate colors (dark cyan for admitted
male students and dark magenta for rejected female students) and supply them to the fill
component of the gpar object passed to the gp argument of mosaic(). For visual clarity, we
additionally hide the tiles’ borders by setting the col component to 0 (white).

If the parameters specified in the gpar object are “incomplete”, they will be recycled along the
last splitting dimension. In the following example based on the ‘Titanic’ data, we will highlight
all cells corresponding to survived passengers (see Figure 2):
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Figure 1: Mosaic plot for the ‘UCBAdmissions’ data with highlighted cells.

> mosaic(Titanic, gp = gpar(fill = c("gray", "dark magenta")), spacing = spacing_highlighting,

+ labeling_args = list(abbreviate = c(Age = 3), rep = c(Survived = FALSE)))

Note that spacing_highlighting() sets the spaces between tiles in the last dimension to 0. The
labeling_args argument ensures that labels do not overlap (see the separate vignette: “Labeling
in the Strucplot Framework” for more information).

3 Customizing residual-based shadings

This flexible way of specifying graphical parameters is the basis for a suite of shading functions
that modify the tiles’ appearance with respect to a vector of residuals, resulting from deviations of
observed from expected values under a given log-linear model. The idea is to visualize at least sign
and absolute size of the residuals, but some shadings, additionally, indicate overall significance.
One particular shading, the maximum shading, even allows to identify those cells that cause the
rejection of the null hypothesis.

Conceptually, the strucplot framework offers three alternatives to add residual-based shading
to plots:

1. Precomputing the graphical parameters (e.g., fill colors), encapsulating them into an object
of class gpar as demonstrated in the previous section, and passing this object to the gp
argument.

2. Providing a grapcon function to the gp argument that takes residuals as input and returns
an object as described in alternative 1.

3. Providing a grapcon generating function (‘grapcon generator’) taking parameters and re-
turning a function as described in alternative 2.
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Figure 2: Recycling of parameters, used for highlighting the survived passengers in the ‘Titanic’
data.

For each of these approaches, we will demonstrate the necessary steps to obtain a binary shading
that visualizes the sign of the residuals by a corresponding fill color (for simplicity, we will treat
0 as positive).

Alternative 1: Precomputed gpar object

The first method is precomputing the graphical parameters “by hand”. We will use ‘light blue’
color for positive and ‘light salmon’ color for negative residuals (see Figure 3):

> expected <- independence_table(ucb)

> (residuals <- (ucb - expected)/sqrt(expected))

Gender
Admit Male Female
Admitted 4.784093 -5.793466
Rejected -3.807325 4.610614

> (shading1_obj <- ifelse(residuals > 0, "lightblue", "lightsalmon"))

Gender
Admit Male Female
Admitted "lightblue" "lightsalmon"
Rejected "lightsalmon" "lightblue"

> mosaic(ucb, gp = gpar(fill = shading1_obj))
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Figure 3: Binary shading visualizing the sign of the residuals.

Alternative 2: Grapcon function

For implementing alternative 2, we need to create a ‘shading function’ that computes gpar objects
from residuals. For that, we can just reuse the code from the previous step:

> shading2_fun <- function(res) gpar(fill = ifelse(res > 0, "lightblue",

+ "lightsalmon"))

To create a mosaic display with binary shading, it now suffices to specify the data table along with
shading2_fun():

> mosaic(ucb, gp = shading2_fun)

mosaic() internally calls strucplot() which computes the residuals from the specified indepen-
dence model (total independence by default), passes them to shading2_fun(), and uses the gpar
object returned to finally create the plot.

Our shading2_fun() function might be useful, but can still be improved: the hard-wired
colors should be customizable. We cannot simply extend the argument list to include, e.g., a fill
= c("lightblue", "lightsalmon") argument because strucplot() will neither know how to
handle it, nor let us change the defaults. In fact, the interface of shading functions is fixed, they
are expected to take exactly one argument: a table of residuals. This is where generating functions
(alternative 3) come into play.

Alternative 3: Grapcon generator

We simply wrap our grapcon shading function in another function that takes all additional ar-
guments it needs to use, possibly preprocesses them, and returns the actual shading function.
This returned function will have access to the parameters since in R, nested functions are lexically
scoped. Thus, the grapcon generator returns (‘creates’) a ‘parameterized’ shading function with
the minimal standard interface strucplot() requires. The following example shows the necessary
extensions for our running example:
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> shading3a_fun <- function(col = c("lightblue", "lightsalmon")) {

+ if (length(col) != 2)

+ stop("Need exactly two colors!")

+ function(res) gpar(fill = ifelse(res > 0, col[1], col[2]))

+ }

In the call to mosaic(), using the new shading3a_fun() function, we can now simply change the
colors:

> mosaic(ucb, gp = shading3a_fun(c("red", "blue")))

(figure not shown). The procedure described so far is a rather general concept, applicable to a
wide family of user-level grid graphics. Indeed, the customization of other components of the
strucplot framework (labeling, spacing, legend, and core functions) follows the same idea. Now
for the shading functions, more customization is needed. Note that shading3a_fun() needs to be
evaluated by the user, even if the defaults are to be used. It is a better idea to let strucplot() call
the generating function, which, in particular, allows the passing of arguments that are computed
by strucplot(). Since shading functions can be used for visualizing significance (see Section 4), it
makes sense for generating functions to have access to the model, i.e., observed and expected values,
residuals, and degrees of freedom. For example, the shading_max() generating function computes
a permutation distribution of the maximum statistic and p values for specified significance levels
based on the observed table to create data-driven cut-off points. If this was done in the shading
function itself, the permutation statistic would be recomputed every time the shading function
is called, resulting in possibly severe performance loss and numerical inconsistencies. Therefore,
generating functions for shadings are required to take at least the parameters observed, expected,
residuals, and df (these are provided by the strucplot framework), followed by other parameters
controlling the shading appearance (to be specified by the user):

> shading3b_fun <- function(observed = NULL, residuals = NULL, expected = NULL,

+ df = NULL, col = c("lightblue", "lightsalmon")) {

+ if (length(col) != 2)

+ stop("Need exactly two colors!")

+ function(res) gpar(fill = ifelse(res > 0, col[1], col[2]))

+ }

> class(shading3b_fun) <- "grapcon_generator"

In some sense, generating functions for shadings are parameterized both by the user and the
strucplot framework. For shading functions that require model information, the user-specified
parameters are to be passed to the gp_args argument instead, and for this to work, the generating
function needs a class attribute to be distinguishable from the “normal” shading functions. For
others (like our simple shading3b_fun()) this is optional, but recommended for consistency:

> mosaic(ucb, gp = shading3b_fun, gp_args = list(col = c("red", "blue")))

The final shading3b_fun() pretty much resembles shading_binary(), one of the standard shad-
ing functions provided by the vcd package.

4 An overview of the shading functions in vcd

Friendly (1994) suggested a residual-based shading for the mosaic tiles that can also be applied
to the rectangles in association plots (Meyer et al., 2003). Apart from shading_binary(), there
are currently two basic shadings available in vcd: shading_hcl() and shading_hsv(), as well as
two derived functions: shading_Friendly() building upon shading_hsv(), and shading_max()
building upon shading_hcl(). shading_hsv() and shading_hcl() provide the same concep-
tual tools, but use different color spaces: the Hue-Saturation-Value (HSV) and the Hue-Chroma-
Luminance (HCL) scheme, respectively. We will first expose the basic concept of these shading
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functions using the HSV space, and then briefly explain the differences to the HCL space (a
detailed discussion can be found in Zeileis et al., 2005). The HCL space is trickier to use, but
preferable to the HSV space from a perceptual point of view.

In the HSV space, colors are specified in three dimensions: Hue, Saturation (‘colorfulness’),
and Value (‘lightness’, amount of gray). These three dimensions are used by shading_hsv()
to visualize information about the residuals and the underlying independence model. The hue
indicates the residuals’ sign: by default, blue for positive, and red for negative residuals. The
saturation of a residual is set according to its size: high saturation for large, and low saturation
for small residuals. Finally, the overall lightness is used to indicate the significance of a test
statistic: light colors for significant, and dark colors for non-significant results.

As an example, we will visualize the association of hair and eye color in the ‘HairEyeColor’
data set (see Figure 4)

> haireye <- margin.table(HairEyeColor, 1:2)

> mosaic(haireye, gp = shading_hsv)
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Figure 4: Shaded residuals in the ‘HairEyeColor’ data set—two cut-off points.

Large positive residuals (greater than 4) can be found for brown eyes/black hair and blue
eyes/blond hair, and are colored in saturated blue. On the other hand, there is a large nega-
tive residual (less than −4) for brown eyes/blond hair, colored deep red. There are also three
medium-sized positive (negative) residuals between 2 and 4 (−2 and −4): the colors for them
are less saturated. Residuals between −2 and 2 are shaded in white. The heuristic for choosing
the cut-off points 2 and 4 is that the Pearson residuals are approximately standard normal which
implies that the highlighted cells are those with residuals individually significant at approximately
the α = 0.05 and α = 0.0001 levels, respectively. These default cut-off points can be changed to
alternative values using the interpolate argument (see Figure 5):
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> mosaic(haireye, gp = shading_hsv, gp_args = list(interpolate = 1:4))
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Figure 5: Shaded residuals in the ‘HairEyeColor’ data set—four cut-off points.

The elements of the numeric vector passed to interpolate define the knots of an interpolating
step function used to map the absolute residuals to saturation levels. The interpolate argument
also accepts a user-defined function, which then is called with the absolute residuals to get a vector
of cut-off points. Thus, it is possible to automatically choose the cut-off points in a data-driven
way. For example, one might think that the extension from four cut-off points to a continuous
shading—visualizing the whole range of residuals—could be useful. We simply need a one-to-one
mapping from the residuals to the saturation values:

> ipol <- function(x) pmin(x/4, 1)

Note that this ipol() function maps residuals greater than 4 to a saturation level of 1. However,
the resulting plot (Figure 6) is deceiving:

> mosaic(HairEyeColor, gp = shading_hsv, gp_args = list(interpolate = ipol),

+ labeling_args = list(abbreviate = c(Sex = TRUE)))

Too much color makes it difficult to interpret the image, and the subtle color differences are hard
to catch. Therefore, we only included shadings with discrete cut-off points.

The third remaining dimension, the value, is used for visualizing the significance of a test
statistic. The user can either directly specify the p value, or, alternatively, a function that computes
it, to the p.value argument. Such a function must take observed and expected values, residuals,
and degrees of freedom (used by the independence model) as arguments. If nothing is specified,
the p value is computed from a χ2 distribution with df degrees of freedom. The level argument
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is used to specify the confidence level: if p.value is smaller than 1 - level, light colors are used,
otherwise dark colors are employed. The following example using the ‘Bundesliga’ data shows the
relationship of home goals and away goals of Germany’s premier soccer league in 1995: although
there are two “larger” residuals (one greater than 2, one less then −2), the χ2 test does not reject
the null hypothesis of independence. Consequently, the colors appear dark (see Figure 7):

> bl <- xtabs(~HomeGoals + AwayGoals, data = Bundesliga, subset = Year ==

+ 1995)

> mosaic(bl, gp = shading_hsv)

A shading function building upon shading_hsv() is shading_Friendly(), implementing the
shading introduced by Friendly (1994). In addition to the defaults of the HSV shading, it uses the
border color and line type to redundantly code the residuals’ sign. The following example again
uses the ‘Bundesliga’ data from above, this time using the Friendly scheme and, in addition, an
alternative legend (see Figure 8):

> mosaic(bl, gp = shading_Friendly, legend = legend_fixed, zero_size = 0)

(The zero_size = 0 argument removes the bullets indicating zero observed values. This feature
is not provided in the original SAS implementation of the Friendly mosaic plots.)

As introduced before, the default shading scheme is not shading_hsv() but shading_hcl()
due to the better perceptual characteristics of the HCL color space. Figure 9 depicts the HSV
space in the upper panel and the HCL space in the lower panel. On the left (right) side, we see the
color scales for red (blue) hue, respectively. The x-axis represents the colorfulness, and the y-axis
the brightness. The boxes represent the diverging color palettes used for the shadings. For the
HSV space, we can see that the effect of changing the level of brightness (‘value’) is not the same
for different levels of saturation, and again not the same for the two different hues. In fact, in the
HSV space all dimensions are confounded, which obviously is problematic for coding information.
In contrast, the HCL color space offers perceptually uniform colors: as can be seen from the lower
panel, the chroma is homogeneous for different levels of luminance. Unfortunately, this comes at
the price of the space being irregularly shaped, making it difficult to automatically select diverging
color palettes. The following example again illustrates the ‘HairEyeColor’ data, this time with
HCL colors (Figure 10 depicts the default palette, and Figure 11 an alternative setting):

> mosaic(haireye, gp = shading_hcl)

> mosaic(haireye, gp = shading_hcl, gp_args = list(h = c(130, 43), c = 100,

+ l = c(90, 70)))

A more ‘advanced’ function building upon shading_hcl() is shading_max(), using the max-
imum statistic both to conduct the independence test and to visualize significant cells caus-
ing the rejection of the independence hypothesis (Meyer et al., 2003). The level argument of
shading_max() then can be used to specify several confidence levels from which the correspond-
ing cut-off points are computed. By default, two cut-off points are computed corresponding to
confidence levels of 90% and 99%, respectively. In the following example, we investigate the effect
of a new treatment for rheumatoid arthritis on a group of female patients using the maximum
shading (see Figure 12):

> mosaic(~Treatment + Improved, data = Arthritis, subset = Sex == "Female",

+ gp = shading_max)

The maximum test is significant although the residuals are all in the [−2, 2] interval. The
shading_hcl() function with default cut-off points would not have shown any color. In ad-
dition, since the test statistic is the maximum of the absolute Pearson residuals, each colored
residual violates the null hypotheses of independence, and thus, the ‘culprits’ can immediately be
identified.
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Figure 6: The ‘HairEyeColor’ data with continuous shading.
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Figure 7: Non-significant χ2 test using part of the ‘Bundesliga’ data.
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Figure 8: The ‘Bundesliga’ data for 1995 using the Friendly shading and a legend with fixed bins.
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Figure 10: The ‘HairEyeColor’ data, using default HCL color palette.
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Figure 11: The ‘HairEyeColor’ data, using a custom HCL color palette.
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