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1 Introduction

While working on an evaluation of drug treatment programs and writing up our methodology that
appeared in McCalffrey et al. (2004), we developed several R scripts and functions throughout the
experimentation. The twang package is the collection of functions that we found most useful. In
fact, these are the functions that we now regularly use in our work. Since many of our colleagues
at RAND have found them useful, we have made the package more generally available.

There are now numerous propensity scoring methods in the literature. They differ in how
they estimate the propensity score (e.g. logistic regression, CART), the target estimand (e.g.
treatment effect on the treated, population treatment effect), and how they utilize the resulting
estimated propensity scores (e.g. stratification, matching, weighting). We originally developed
the twang package with a particular process in mind, generalized boosted regression to estimate
the propensity scores and weighting of the comparison cases to estimate a treatment effect on the
treated. The main workhorse of twang is the ps() function that implements this. However, the
framework of the package is flexible enough to allow the user to use propensity score estimates
from other methods and implement new stop.method objects to assess the quality of balance
between the treatment and control groups. The same set of functions are also useful for other
tasks such as non-response weighting, discussed in section 4.

The propensity score is the probability that a particular case would be assigned or exposed
to a treatment condition. Rosenbaum & Rubin (1983) showed that the knowing the propensity
score is sufficient to separate the effect of a treatment on an outcome from confounding factors
that influence both treatment assignment and outcomes. The propensity score has the balancing
property that given the propensity score the distribution of features for the treatment cases is
the same as that for the control cases. While the treatment selection probabilities are generally
not known, good estimates of them can be effective at removing confounding from treatment
effect estimates. This package aims to compute good estimates of the propensity scores from the
data, check their quality by assessing whether or not they have the balancing properties that we
expect in theory, and use them in computing treatment effect estimates.

2 An example to start

If you have not already done so, install twang by typing install.packages("twang"). twang re-
lies on other R packages, especially gbm and survey. You may have to run install.packages ()
for these as well if they are not already installed. You will only need to do this step once. In



the future running update.packages() regularly will ensure that you have the latest versions
of the packages, including bug fixes and new features.

To start using twang, first load the package. You will have to do this step once for each R
session that you run.

> library(twang)

Loading required package: gbm
Loading required package: survival
Loading required package: splines
Loading required package: lattice
Loading required package: mgcv
This is mgcv 1.3-13

Loaded gbm 1.5-6

Loading required package: survey
Loading required package: xtable

To demonstrate the package we utilize data from Lalonde’s National Supported Work Demon-
stration analysis (Lalonde 1986, Dehejia & Wahba 1999, http://www.columbia.edu/ rd247/
nswdata.html). This dataset is provided with the twang package.

> data(lalonde)

R can read data from many other sources. The manual “R Data Import/Export,” available
at http://cran.r-project.org/doc/manuals/R-data.pdf, describes that process in detail.

For the 1alonde dataset, the variable treat is the 0/1 treatment indicator, 1 indicates “treat-
ment” by being part of the National Supported Work Demonstration and 0 indicates “comparison”
cases drawn from the Current Population Survey. We wish to adjust for eight other covariates:
age, education, black, Hispanic, having no degree, married, earnings in 1974 (pretreatment), and
earnings in 1975 (pretreatment). Note that we specify no outcome variables at this time. The
ps () function is the primary method in twang for estimating propensity scores. This step is
computationally intensive and can take a few minutes.

> par(mfrow = c(1, 2))
> ps.lalonde <- ps(treat

age + educ + black +

+ hispan + nodegree + married + re74 + re75,

+ data = lalonde, plots = "optimize", stop.method = stop.methods[c("es.stat.mean",
+ "ks.stat.max")], n.trees = 200, interaction.depth = 2,

+ shrinkage = 0.005, perm.test.iters = 0, verbose = FALSE)

The arguments to ps() require some discussion. The first argument specifies a formula
indicating that treat is the 0/1 treatment indicator and that the propensity score model should
predict treat from the eight covariates listed there separated by “+”. The “4+” does not mean
that these variables are being added together nor does it mean that model is linear. This is
just R’s notation for variables in the model. There is no need to specify interaction terms in
the formula. There is also no need, and can be counterproductive, to create indicator variables
to represent categorical covariates (aka “dummy code”) if the categorical variable is stored as a
factor (see help(factor) for more details).

The data argument indicates the dataset.

The ps function can create several diagnostic plots, depending on the setting of plots. They
are described in more detail later. For now plots="none" skips the plots, but they can be create
later using the plot () method. If the call to ps() includes an argument pdf.plots=TRUE then
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Figure 1: Optimization of es.stat.mean and ks.stat.max. The horizontal axes indicate the
number of iterations and the vertical axes indicate the measure of imbalance between the two
groups. For es.stat.mean the measure is the average effect size difference between the two
groups and for ks.stat.max the measure is the largest of the KS statistics

all the plots are written to a pdf file in the current working directory (use getwd() to learn what
your working directory is and setwd() to set it). The default is pdf.plots=FALSE

n.trees, interaction.depth, and shrinkage are parameters for the gbhm model that ps()
computes and stores. The gbm object describes a family of candidate propensity score models
indexed by the number of gbm iterations. The stop.method argument takes a stop.method
object which contains a set of rules and measures for assessing the quality of the balance between
the treatment and comparison groups. The ps function selects the optimal number of gbm
iterations to minimize the differences between the treatment and control groups as measured
by the given stop.method object. Figure 1 illustrates this process. Each iteration adds model
complexity to the propensity score model giving it greater modeling flexibility. The increased
flexibility improves the balance of the two groups up to a certain point at which additional
iterations offer no improvement or actually make the balance worse. In this example, iterating
gbm for 198 iterations minimized the average effect size difference and 199 iterations minimized
the largest of the eight KS statistics computed for the eight covariates. n.trees is the maximum
number of iterations that ps() will run and it will issue a warning if the estimated optimal
number of iterations is too close to the bound. Increase n.trees if this warning appears.

The gbm package has various tools for exploring the relationship between the covariates and
the treatment assignment indicator if these are of interest. summary() computes the relative
influence of each variable for estimating the probability of treatment assignment. Figure 2 shows
the barchart of the relative influence if plot=TRUE.

> summary(ps.lalonde$gbm.obj, n.trees = ps.lalonde$desc$ks.stat.max$n.trees,
+ plot = FALSE)

var rel.inf



1 black 77.2444508
2 re74 12.0430686
3 age 9.6254553
4 educ 0.5020891
5 re75 0.4320439
6 married 0.1528924
7 hispan 0.0000000
8 nodegree 0.0000000

2.1 Assessing “balance” using balance tables

Having estimated the propensity scores, bal.table produces a table that shows how well the
resulting propensity score weights balance the treatment and comparison groups.

> lalonde.balance <- bal.table(ps.lalonde)

> lalonde.balance

ct.sd std.

$unw

tx.mn tx.sd ct.mn
age 25.816 7.155 28.030 10.787
educ 10.346 2.011 10.235 2.855
black 0.843 0.365 0.203 0.403
hispan 0.059 0.237 0.142 0.350
nodegree 0.708 0.456 0.597 0.491
married 0.189 0.393 0.513 0.500
re74 2095.574 4886.620 5619.237 6788.751
re75 1532.055 3219.251 2466.484 3291.996
$es.stat.mean

tx.mn tx.sd ct.mn
age 25.816 7.155 27.526 10.866
educ 10.346 2.011 10.225 2.853
black 0.843 0.365 0.539 0.499
hispan 0.059 0.237 0.083 0.276
nodegree 0.708 0.456 0.606 0.489
married 0.189 0.393 0.415 0.493
re74 2095.574 4886.620 4148.798 6189.789
re75 1532.055 3219.251 2004.843 3156.801
$ks.stat.max

tx.mn tx.sd ct.mn
age 25.816 7.155 27.539 10.871
educ 10.346 2.011 10.224 2.854
black 0.843 0.365 0.539 0.499
hispan 0.059 0.237 0.083 0.276
nodegree 0.708 0.456 0.606 0.489
married 0.189 0.393 0.416 0.493
re74 2095.574 4886.620 4141.643 6186.850
re75 1532.055 3219.251 2001.814 3155.076
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Figure 2: Relative influence of the covariates on the estimated propensity score



bal.table() returns a lot of information, not all of which is needed for all analyses. The
returned component is a list with named components, one for an unweighted analysis (named
unw) and one for each stop.method specified, here es.stat.mean and ks.stat.max. McCaffrey
et al (2004) essentially used es.stat.mean for the analyses, but our more recent work has been
utilizing ks.stat.max. See section XXX for a more detailed description of these choices.

The table contains the following items

tx.mn, ct.mn The treatment means and the propensity score weighted control means for each
of the variables. The unweighted table (unw) shows the unweighted means

tx.sd, ct.sd The treatment standard deviations and the propensity score weighted control stan-
dard deviations for each of the variables. The unweighted table (unw) shows the unweighted
standard deviations

std.eff.sz The standardized effect size, defined as the treatment group mean minus the com-
parison group mean divided by the treatment group standard deviation

stat, p Depending on whether the variable is continuous or categorical, stat is a t-statistic or
a x? statistic. p is the associated p-value

ks, ks.pval The Kolmogorov-Smirnov test statistic and its associated p-value. If in the call to
ps(O perm.test.iters>0 then these p-values are Monte Carlo p-values. Otherwise they
are analytic approximations that are not necessarily accurate when there are ties. For
categorical variables this is just the x? test

Components of these tables are likely to be useful in reports and presentations demonstrat-
ing that indeed the two groups have been balanced. The xtable package aids in formatting
for XTpXand Word documents. Table 1 shows the results for ks.stat.max reformatted for a
ETpXdocument. For Word documents, paste I4TEXdescription of the table into a Word docu-
ment, highlight it, Table->Convert->Text to Table, then under “Separate text at” insert “&” in
the Other: box. Additional formatting from there will finish it.

> library(xtable)
> pretty.tab <- lalonde.balance$ks.stat.max[, c("tx.mn",

+ ”ct.mn", "kS")J

> pretty.tab <- cbind(pretty.tab, lalonde.balance$ks.stat.max[,

+ "ct.mn"])

> names (pretty.tab) <- c("E(Y1[t=1)", "E(YO[t=1)",

+ "KS", "E(Y0|t=0)")

> xtable(pretty.tab, caption = "Balance of the treatment and comparison groups",
+ label = "tab:balance", digits = c(0, 2, 2,

+ 2, 2), align = c("1", "r", "r", "r", "r"))

The summary () method for ps objects offers a compact summary of the sample sizes of the
groups and the balance measures

> summary(ps.lalonde)

type n.treat n.ctrl ess max.es mean.es
1 unw 185 429 429.0000 1.7567745 0.5687259
11 es.stat.mean 185 429 237.5681 0.8346186 0.3248036
12 ks.stat.max 185 429 237.0539 0.8337603 0.3246569

max.ks max.ks.p mean.ks iter



E(Y1[t=1) E(YO[t=1) KS B(Y0[t=0)

age 25.82 27.54 0.15 27.54
educ 10.35 10.22  0.10 10.22
black 0.84 0.54 0.30 0.54
hispan 0.06 0.08 0.02 0.08
nodegree 0.71 0.61 0.10 0.61
married 0.19 0.42 0.23 0.42
re74 2095.57 4141.64 0.30 4141.64
re75 1532.06 2001.81 0.18 2001.81

Table 1: Balance of the treatment and comparison groups

1 0.6404460 NA 0.2702451 NA
11 0.3042668 NA 0.1731146 198
12 0.3039539 NA 0.1729401 199

In general, weighted means have greater sampling variance than unweighted means from a
sample of equal size. The effective sample size (ESS) of the weighted comparison group captures
this increase in variance as

2
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The ESS is approximately the number of observations from a simple random sample needed to
obtain an estimate with sampling variation equal to the sampling variation obtained with the
weighted comparison observations. Therefore, the ESS will give an estimate of the number of
comparison participants that are comparable to the treatment group. The ess column in the
summary results shows the ESS for the estimated propensity scores. Note that although the
original comparison group had 429 cases, the propensity score estimates effectively utilize only
237.6 or 237.1 of the comparison cases, depending on the rules and measures used to estimate the
propensity scores. While this may seem like a large loss of sample size, this indicates that many
of the original cases were unlike the treatment cases and, hence, were not useful for isolating the
treatment effect.

ESS = (1)

2.2 Graphical assessments of balance

The plot () method can generate useful diagnostic plots from the propensity score objects. Box-
plots comparing the estimated propensity score weights between the treatment and comparison
groups checks for overlap in the groups.

> par(mfrow = c(1, 2))
> plot(ps.lalonde, plots = "ps boxplot")
> par(mfrow = c(1, 1))
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P-values from independent tests in which the null hypothesis is true have a uniform distri-
bution. Therefore, a QQ plot comparing the quantiles of the observed p-values to the quantiles
of the uniform distribution inform us of how similar the propensity score weighting makes the
samples look like what we would expect from a randomized study. Setting plots="t pvalues"
generates such QQ plots.

> par(mfrow = c(1, 2))
> plot(ps.lalonde, plots = "t pvalues')
> par(mfrow = c(1, 1))
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Before weighting (closed circles), many variables have statistically significant differences be-
tween groups (i.e., with p-values near zero). After weighting (open circles) the p-values are above
the 45-degree line, which represents the cumulative distribution of a uniform variable on [0,1].



This indicates that the p-values are even larger than would be expected in a randomized study.
plot () can create similar figures for KS statistic p-values by setting plots="ks pvalues".

> par(mfrow = c(1, 2))

> plot(ps.lalonde, plots = "spaghetti")
> par(mfrow = c(1, 1))
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2.3 Analysis of outcomes

The survey package is useful for performing the outcomes analyses using propensity score
weights. Its statistical methods properly account for the weights when computing standard
error estimates.

> library(survey)

The get.weights function extracts the propensity score weights from a ps object. Those
weights may then be used as case weights in a svydesign object.

> lalonde$w <- get.weights(ps.lalonde, type = "ATT",

+ stop.method = "ks.stat.max")
> design.ps <- svydesign(ids = 1, weights = “w,
+ data = lalonde)

The type argument to the get.weights function specifies whether the weights are for esti-
mating the treatment effect on the treated, computed as 1 for the treatment cases and p/(1 — p)
for the comparison cases, or for estimating the treatment effect on the population, computed
as 1/p for the treatment cases and 1/(1 — p) for the comparison cases. The third argument to
get.weights selects which set of weights to utilize. If no stop.method is selected then it returns
the first set of weights.

The svydesign function from the survey package creates an object that stores the dataset
along with design information needed for analyses. See help(svydesign) for more details on
setting up svydesign objects.



The aim of the National Supported Work Demonstration analysis is to determine whether
the program was effective at increasing earnings in 1978. The propensity score adjusted test can
be computed with svyglm.

> glml <- svyglm(re78 ~ treat, design = design.ps)
> summary (glm1)

Call:
svyglm(re78 ~ treat, design = design.ps)

Survey design:

svydesign(ids = "1, weights = “w, data = lalonde)
Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 6013.2 416.0 14.454  <2e-16 xx*x
treat 335.9 711.6 0.472 0.637
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.06 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 55275642)

Number of Fisher Scoring iterations: 2

The analysis estimates an increase in earnings of $336 for those that participated in the
NSW compared with similarly situated people observed in the CPS. The effect, however, does
not appear to be statistically significant.

Some authors have recommended utilizing both propensity score adjustment and additional
covariate adjustment to obtain “doubly robust” estimates of the treatment effect (e.g. Bang
& Robins 2005). These estimators are consistent if either the propensity scores are estimated
correctly or the regression model is specified correctly. For example, note that the balance
table for ks.stat .max made the two groups more similar on nodegree, but still some differences
remained, 70.8% of the treatment group had no degree while 60.6% of the comparison group
had no degree. While linear regression is sensitive to model misspecification when the treatment
and comparison groups are dissimilar, the propensity score weighting has made them more
similar, perhaps enough so that additional modeling with covariates can adjust for any remaining
differences. In addition to potential bias reduction, the inclusion of additional covariates can
reduce the standard error of the treatment effect if some of the covariates are strongly related
to the outcome.

> glm2 <- svyglm(re78 ~ treat + nodegree, design = design.ps)
> summary(glm2)

Call:
svyglm(re78 ~ treat + nodegree, design = design.ps)

Survey design:
svydesign(ids = “1, weights = “w, data

lalonde)

Coefficients:
Estimate Std. Error t value Pr(>|t])
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(Intercept) 7369.6 677.1 10.885 < 2e-16 **x

treat 563.7 708.6 0.796 0.42661
nodegree -2237.1 811.8 -2.756 0.00603 *x*
Signif. codes: O 'x*x' 0.001 '*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 54168707)

Number of Fisher Scoring iterations: 2

Adjusting for the remaining group difference in degree slightly increased the estimate of the
program’s effect to $564, but the difference is still not statistically significant. We can covariate
adjust for the other variables seeking additional bias and variance reduction, but that too in this
case has no effect on the estimated program effect.

> glm3 <- svyglm(re78 ~ treat + age + educ + black +
+ hispan + nodegree + married + re74 + re75,

+ design = design.ps)

> summary(glm3)

Call:
svyglm(re78 ~ treat + age + educ + black + hispan + nodegree +
married + re74 + re75, design = design.ps)

Survey design:
svydesign(ids = "1, weights = “w, data = lalonde)

Coefficients:
Estimate Std. Error t value Pr(>lt|)
(Intercept) -489.2651 3066.0428 -0.160 0.8733

treat 1294.7371  747.5568 1.732 0.0838 .

age 30.0318 39.4830 0.761  0.4472

educ 506.3040 185.0477 2.736 0.0064 **

black -1395.7585 760.9860 -1.834 0.0671 .

hispan 316.8789 1290.5643 0.246 0.8061

nodegree -3.0862 1128.6801 -0.003 0.9978

married 606.2169 851.0088 0.712  0.4765

re74 0.1588 0.1079  1.471  0.1417

re75 0.1586 0.1352 1.173  0.2413

Signif. codes: O '#xx' 0.001 '%x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for gaussian family taken to be 50761887)

Number of Fisher Scoring iterations: 2

2.4 Estimating the program effect using linear regression

The more traditional regression approach to estimating the program effect would fit a linear
model with a treatment indicator and linear terms for each of the covariates.
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> glm4 <- 1m(re78 ~ treat + age + educ + black +
+ hispan + nodegree + married + re74 + re75,
+ data = lalonde)

> summary (glm4)

Call:
Im(formula = re78 ~ treat + age + educ + black + hispan + nodegree +
married + re74 + re75, data = lalonde)

Residuals:
Min 1Q Median 3Q Max
-13595 -4894 -1662 3929 54570

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) 6.651e+01 2.437e+03 0.027 0.9782

treat 1.548e+03 7.813e+02 1.982 0.0480 =*

age 1.298e+01 3.249e+01  0.399 0.6897

educ 4.039e+02 1.589e+02 2.542 0.0113 *

black -1.241e+03 7.688e+02 -1.614 0.1071

hispan 4.989e+02 9.419e+02 0.530 0.5966

nodegree 2.598e+02 8.474e+02 0.307 0.7593

married 4.066e+02 6.955e+02 0.585 0.5590

re74 2.964e-01 5.827e-02 5.086 4.89e-07 **x

re75 2.315e-01 1.046e-01 2.213 0.0273 *

Signif. codes: O '#*x*x' 0.001 '#x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6948 on 604 degrees of freedom
Multiple R-Squared: 0.1478, Adjusted R-squared: 0.1351
F-statistic: 11.64 on 9 and 604 DF, p-value: < 2.2e-16

This model estimates a rather strong treatment effect, estimating a program effect of $1548
with a p-value=0.048. Several variations of this regression approach also estimate strong pro-
gram effects. For example using square root transforms on the earnings variables yields a p-
value=0.016. These estimates, however, are very sensitive to the model structure since the
treatment and comparison subjects differ greatly as seen in the unweighted balance comparison
from bal.table(ps.lalonde).

2.5 Propensity scores estimated from logistic regression

Propensity score analysis is intended to avoid these problems, but the quality of the balance and
the treatment effect estimates can be sensitive to the method used to estimate the propensity
scores. Consider estimating the propensity scores using logistic regression instead of ps().

> ps.logit <- glm(treat ~ age + educ + black + hispan +

+ nodegree + married + re74 + re75, data = lalonde,

+ family = binomial)

> lalonde$w.logit <- rep(1, nrow(lalonde))

> lalonde$w.logit[lalonde$treat == 0] <- exp(predict(ps.logit,
+ subset (lalonde, treat == 0)))
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predict () for logistic regression model produces estimates on the log-odds scale by default.
Exponentiating those predictions for the comparison subjects gives the propensity score weights
p/(1 — p). dx.wts() diagnoses the balance for an arbitrary set of weights producing a balance
table.

> bal.logit <- dx.wts(lalonde$w.logit, data = lalonde,
+ vars = c("age", "educ", "black", "hispan",

+ "nodegree", "married", "re74", '"re75"),

+ treat.var = "treat", perm.test.iters = 0)

> print(bal.logit)
type n.treat n.ctrl ess max.es mean.es
1 unw 185 429 429.00000 1.7567745 0.56872589
185 429 99.81539 0.1188496 0.03188410
max.ks mean.ks iter

[y

0.6404460 0.27024507 NA
0.3078039 0.09302319 NA

N

For propensity score weights estimated with logistic regression, the largest KS statistic was
reduced from the unweighted sample’s largest KS of 0.64 to 0.31, still quite a large KS statistic.
Table 2 shows the details of the balance of the treatment and comparison groups. The means of
the two groups appear to be quite similar while the KS statistic shows substantial differences in
their distributions.

> pretty.tab <- bal.table(bal.logit)[[2]][, c("tx.mn",

+ "ct.mn", "ks")]

> pretty.tab <- cbind(pretty.tab, bal.table(bal.logit)[[1]]$ct.mn)

> names (pretty.tab) <- c("E(Y1[t=1)", "E(YO[t=1)",

+ "KS", "E(YO[t=0)")

> xtable(pretty.tab, caption = "Logistic regression estimates of the propensity scores",

+ label = "tab:balancelogit", digits = c(0,

+ 2, 2, 2, 2), align = c("1", "r", "r",

+ T, )

E(Y1jt=1) E(Y0|t=1) KS E(Y0|t=0)

age 25.82 24.97 0.31 28.03
educ 10.35 10.40 0.04 10.23
black 0.84 0.84 0.00 0.20
hispan 0.06 0.06 0.00 0.14
nodegree 0.71 0.69 0.02 0.60
married 0.19 0.17 0.02 0.51
re74 2095.57 2106.05 0.23 5619.24
re7b 1532.06 1496.54 0.13 2466.48

Table 2: Logistic regression estimates of the propensity scores

Table 3 compares the balancing quality of the propensity score weights directly with one
another.
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n.treat ess max.es mean.es max.ks mean.ks

unw 185  429.00 1.76 0.57 0.64 0.27
logit 185 99.82 0.12 0.03 0.31 0.09
es.stat.mean 185 237.57 0.83 0.32 0.30 0.17
ks.stat.max 185 237.05 0.83 0.32 0.30 0.17

Table 3: Summary of the balancing properties of logistic regression and gbm

3 The details of twang

3.1 Propensity score weighting

Propensity score weighting Propensity score weighting (Rosenbaum 1987, Wooldridge 2002, Hi-
rano and Imbens 2001, McCaffrey et al. 2004) addresses this problem by first reweighting the
treatment cases so that the distribution of their features match the distribution of features of
the comparison cases. Let f(x|t = 1) be the distribution of features for the treatment cases
and f(x|t = 0) be the distribution of features for the comparison cases. If treatments were
randomized then we would expect these two distributions to be similar. When they differ we
will construct a weight, w(x), so that

F(xlt = 1) = w(x) f(x]t = 0). (2)

For example, if f(age=65,sex=F|t = 1) = 0.10 and f(age=65,sex=F|t = 1) = 0.05 (i.e. 10%
of the treatment cases and 5% of the comparison cases are 65 year old females) then we need
to give a weight of 2.0 to every 65 year old female in the comparison group so that they have
the same representation as in the treatment group. More generally, we can solve (2) for w(x)
and apply Bayes Theorem to the numerator and the denominator to give an expression for the
propensity score weight for comparison cases,

fe=1x) . P(t=1]x)

wix) = fE=0x) T 1-Pt=1x)’ 3

where K is a normalization constant that will cancel out in the outcomes analysis. Equation
(3) indicates that if we assign a weight to comparison case i equal to the odds that a case with
features x; would be exposed to the treatment, then the distribution of their features would
balance. Note that for comparison cases with features that are atypical of treatment cases, the
propensity score P(t = 1|x) would be near 0 and would produce a weight near 0. On the other
hand, comparison cases with features typical of the treatment cases would receive larger weights.

3.2 Estimating the propensity score

In randomized studies P(t = 1]x) is known and fixed in the study design. In observational studies
the propensity score is unknown and must be estimated, but poor estimation of the propensity
scores can cause just as much of a problem for estimating treatment effects as poor regression
modeling of the outcome. Logistic regression is the common method for estimating propensity
scores, and can suffice for many problems. Logistic regression for propensity scores estimates
the log-odds of a case being in the treatment given x as

Pit=1x)
logm—ﬂx (4)
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Usually, § is selected to maximize the logistic log-likelihood
1 n
B =— t:f'x; —log (1 'x; 5
8= 1 2o tif'x: — log 1.+ exp(#'x) 5)

Maximizing (5) provides the maximum likelihood estimates of 5. However, in an attempt to
remove as much confounding as possible, observational studies often record data on a large
number of potential confounders, many of which can be correlated with one another. Standard
methods for fitting logistic regression models to such data with the iteratively reweighted least
squares algorithm can be statistically and numerically unstable. To improve the propensity score
estimates we might also wish to include non-linear effects and interactions in x. The inclusion
of such terms only increases the instability of the models.

One increasingly popular method for fitting models with numerous correlated variables is the
lasso (least absolute subset selection and shrinkage operator) introduced in statistics in Tibshirani
(1996). For logistic regression, lasso estimation replaces (5) with a version that penalizes the
absolute magnitude of the coefficients

" J
6 = % > tif'xi —log (14 exp(8'x:)) =AY _ |6l ©)
j=1

i=1

Setting A = 0 returns the standard (and potentially unstable) logistic regression estimates of 3.
Setting A to be very large essentially forces all of the ; to be equal to 0 (the penalty excludes
o). For a fixed value of A the estimated B can have many coefficients exactly equal to 0, not
just extremely small but precisely 0, and only the most powerful predictors of ¢ will be non-zero.
As a result the absolute penalty operates as a variable selection penalty. In practice, if we have
several predictors of ¢ that are highly correlated with each other, the lasso tends to include all
of them in the model, shrink their coefficients toward 0, and produce a predictive model that
utilizes all of the information in the covariates, producing a model with greater out-of-sample
predictive performance than models fit using variable subset selection methods.

Our aim is to include as covariates all piecewise constant functions of the potential con-
founders and their interactions. That is, in x we will include indicator functions for continu-
ous variables like I(age < 15), I(age < 16),...,I(age < 90), etc., for categorical variables like
I(sex = male), I(prior MI = TRUE), and interactions among them like I(age < 16)I(sex =
male)I(prior MI = TRUE). This collection of basis functions spans a plausible set of propensity
score functions, are computationally efficient, and are flat at the extremes of x reducing the
likelihood of propensity score estimates near 0 and 1 that can occur with linear basis functions
of x. Theoretically with the lasso is we can estimate the model in (6), selecting a A small enough
so that it will eliminate most of the irrelevant terms and yield a sparse model with only the
most important main effects and interactions. Boosting (Friedman 2001, 2003, Ridgeway 1999)
effectively implements this strategy using a computationally efficient method that Efron et al.
(2004) showed is equivalent to optimizing (6). With boosting it is possible to maximize (6) for a
range of values of A\ with no additional computational effort than for a specific value of A. We use
boosted logistic regression as implemented in the generalized boosted modeling (ghm) package
in R (Ridgeway 2005).

3.3 [Evaluating the propensity score weights

As with regression analyses, propensity score methods cannot adjust for unmeasured covariates
that are uncorrelated with the observed covariates. Nonetheless, the quality of the adjustment
for the observed covariates achieved by propensity score weighting is easy to evaluate. The
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estimated propensity score weights should equalize the distributions of the cases’ features as in
(2). This implies that weighted statistics of the covariates of the comparison group should equal
the same statistics for the treatment group. For example, the weighted average of the age of
comparison cases should equal the average age of the treatment cases. To assess the quality of
the propensity score weights one could compare a variety of statistics such as means, medians,
variances, and Kolmogorov-Smirnov statistics for each covariate as well as interactions. The
twang package encodes decisions on how to assess the quality of the balance in stop.method
objects. There are three stop.method objects included with twang, described in more detail
later, that compare means, KS statistics, and within propensity score strata mean differences.

3.4 Analysis of outcomes

With propensity score analyses the final outcomes analysis is generally straightforward, while
the propensity score estimation may require complex modeling. Once we have propensity score
weights that equalize the distribution of features of treatment and control cases, we give each
treatment case a weight of 1 and each comparison case a weight w; = p(x;)/(1 —p(x;)). We then
estimate the treatment effect estimate with a weighted regression model that contains only a
treatment indicator. No additional covariates are needed if the propensity score weights account
for differences in x.

A combination of propensity score weighting and covariate adjustment can be useful for
several reasons. First, the propensity scores may not have been able to completely balance all
of the covariates. The inclusion of these covariates in addition to the treatment indicator in
a weighted regression model may correct this if the imbalance is relatively small. Second, in
addition to exposure, the relationship between some of the covariates and the outcome may
also be of interest. Their inclusion can provide coefficients that can estimate the direction and
magnitude of the relationship. Third, as with randomized trials, stratifying on covariates that are
highly correlated with the outcome can improve the precision of estimates. Lastly, the inclusion
of covariates can make the treatment effect estimate more robust in the sense that if either the
propensity score model is correct or the regression model is correct then the treatment effect
estimator will be unbiased (Bang and Robins, 2005).

4 Non-response weights
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