
trustOptim: an R Package for Trust Region

Optimization with Sparse Hessians

Michael Braun
MIT Sloan School of Management

Massachusetts Institute of Technology

December 27, 2012

Abstract

Trust region algorithms for nonlinear optimization are commonly believed
to be more stable than their line-search counterparts, especially for functions
that are non-concave, ill-conditioned, and/or exhibit regions that are close
to flat. Additionally, most freely-available optimization routines do not ex-
ploit the sparsity of the Hessian when such sparsity exists, as in log posterior
densities of Bayesian hierarchical models. The trustOptim package for the R

programming language addresses both of these issues. It is intended to be
both robust, scalable and efficient for a large class of nonlinear optimization
problems that are commonly encountered in statistics, such as finding pos-
terior modes.When used in conjunction with the sparseHessianFD package,
the user does not need to supply the exact sparse Hessian, as long as the
sparsity structure is known in advance. For models with massive number of
parameters, but for which most of the cross-partial derivatives are zero (i.e.,
the Hessian is sparse), trustOptim offers dramatic performance improvements
over existing options, in terms of computational time and memory footprint.

1 Introduction

Nonlinear optimization of continuous functions occurs frequently in statistics, most no-
tably in maximum likelihood and maximum a posteriori (MAP) estimation. Among users of
R (R Development Core Team, 2012), the optim function in the base R package is the most

1



readily available tool for nonlinear optimization. The optim function itself is a front-end
for a variety of algorithms, such as conjugate gradient (CG), quasi-Newton using BFGS
updates (BFGS and L-BFGS-B), derivative-free heuristic search (Nelder-Mead) and simu-
lated annealing (SANN). Furthermore, there are many other contributed R packages that
implement additional methods, as well as algorithms available outside of R. Having such
a large number of alternatives lets the practicing statistician choose the best available tool
for the task at hand.

Unfortunately, these methods can be difficult to use when there is a large number of vari-
ables over which the objective function is to be optimized. Search methods like Nelder-
Mead are inefficient with a massive number of parameters because the search space is
large, and they do not exploit information about slope and curvature to speed up the
time to convergence. Methods like CG and BFGS do use gradient information, and both
BFGS and L-BFGS-B approximate the Hessian using successive gradients to trace out
the curvature. However, the BFGS method stores the entire Hessian, which is resource-
intensive when the number of parameters is large (the Hessian for a 50,000 parameter
model requires 20GB of RAM to store it as a standard, dense base R matrix). Although
L-BFGS-B is a limited-memory alternative to BFGS, neither is certain to offer an accurate
approximation to the Hessian at any particular iteration, especially if the objective func-
tion is not convex (BFGS updates are always positive definite). The CG method does not
store Hessian information at all, so it may the most feasible of the optim algorithms for
large problems, although it still may not converge quickly to an optimum.

The CG, BFGS and L-BFGS-B methods fall into the “line search” class of nonlinear op-
timization algorithms. In short, line search methods choose a direction along which to
move from xt to xt+1, and then find the distance along that direction that yields the great-
est improvement in the objective function. A simple example of a line search method is
“steepest descent,” which follows the direction of the gradient at xt, and searches for the
“best” point along that line. Steepest descent in known to be inefficient, which is why
methods like CG and BFGS are used to find a better direction in which to advance (No-
cedal and Wright, 2006). However, if the objective function is ill-conditioned, non-convex,
or has long ridges or plateaus, the optimizer may try to search far away from xt, only
to select an xt+1 that is closer to xt, but offers only small improvement in the objective
function. At worst, the line search step will try to evaluate the objective function so far
away from xt that the objective function is not finite, and the algorithm will fail.

The trustOptim package is an alternative nonlinear optimization tool that uses a trust
region approach. Trust region algorithms tend to be more robust and stable than line
search algorithms, and may succeed for certain kinds of large-scale problems that line
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search methods cannot solve. Like many other nonlinear optimizers, they are iterative,
and use gradient and Hessian estimates at each step to decide where to move next. Trust
region methods work by choosing a maximum distance for the move from xt to xt+1,
defining a “trust region” around xt that has a radius of that maximum distance, and
then letting a candidate for xt+1 be the minimum, within the trust region, of a quadratic
approximation of the objective function. We call this constrained quadratic program the
“trust region subproblem” or TRS. Because we do not consider points outside of the trust
region, the algorithm never runs too far, too fast, from the current iterate. If we try to
move to a point in the trust region that is worse than (or insufficiently better than), the
current point, we adaptively shrink the trust region (excluding other points that are too
far away from xt to be reasonable candidates for xt+1) and solve the new TRS. If we
accept a point close to the border of the trust region, and that point gives as a large
enough improvement in the objective function, we can expand the trust region for the
next iteration. By adaptively adjusting the size of the trust region, we try to prevent the
algorithm from jumping over the local optimum, while allowing for steps that are large
enough for the algorithm to converge quickly.

Like line search methods, trust region methods are guaranteed to converge to a point
where the norm of the gradient is nearly zero and the Hessian is positive definite (if such
a point exists). The primary advantage of trust region methods is stability. If a point
along a line search path causes the objective function to be undefined or indeterminate,
most implementations of line search methods will fail (it is not immediately clear how
the search should proceed in that event). In contrast, the search for xt+1 in a trust region
algorithm is always a solution to the TRS, which should always be finite, even when the
Hessian is indefinite (more on that later). If the objective function, at the solution to the
TRS, is not finite (or just not much better than at xt), we reject that proposal, shrink the
trust region, and try again. Furthermore, a line search requires repeated estimation of
the objective function, while trust region methods evaluate the objective function only
after solving the TRS. Thus, trust region methods can run a lot faster when the objec-
tive function is expensive to compute. Although there is no guarantee that trust region
algorithms will always converge faster than other alternatives, they may work better for
difficult optimization problems that other algorithms cannot solve.

The trustOptim package has an added benefit (not general to all trust region implementa-
tions) for being optimized for problems for which the Hessian is sparse. Sparse Hessians
occur when a large number of the cross-partial derivatives of the objective function are
zero. For example, suppose we want to find the mode of a log posterior density for a
Bayesian hierarchical model. If we assume that individual-level parameter vectors βi and
β j are conditionally independent, the cross-partial derivatives between all elements of βi
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and β j are zero. If the model includes a large number of heterogeneous units, and a rela-
tively small number of population-level parameters, the proportion of non-zero entries in
the Hessian will be small. Since we know up front which elements of the Hessian are non-
zero, we need to compute, store, and operate on only those non-zero elements. By storing
sparse Hessians in a compressed format, and using a library of numerical algorithms that
are efficient for sparse matrices (we use the Eigen numerical library (Guennebaud et al.,
2012) ), we can run the optimization algorithms faster, with a smaller memory footprint,
than the R optim algorithms.

In the next section, we discuss the specifics of the trust region implementation in trustOp-
tim. We then introduce the trust.optim function, and describe how to use it.

2 Algorithmic details

Consider f (x), an objective function over a p-dimensional vector that we want to mini-
mize. Let g be the gradient, and let B be the Hessian. The goal is to find a local minimum
of f (x), with no constraints on x. This minimum will be a point where ||g||/

√
n < ε

where ε is a small precision parameter. We will assume that B is positive definite at the
local optimum, but not necessarily at other values of x. Iterations are indexed by t (so, for
example, Bt is the Hessian at iteration t).

2.1 Trust region methods for nonlinear optimization

The details of trust region methods are described in detail in both Nocedal and Wright
(2006) and Conn et al. (2000), and the following exposition borrows heavily from both
sources. At each iteration of a trust region algorithm, we construct a quadratic approx-
imation to the objective function at xt, and minimize that approximation, subject to a
constraint that the solution falls within a trust region with radius d. More formally, each
iteration of the trust region algorithm involves solving the “trust region subproblem,” or
TRS.

min
s∈Rk

f ∗(s) = f (xt) + g′ts +
1
2

s′Bts s.t. ‖s‖M ≤ dt (1)

st = arg min
s∈Rk

f ∗(s) (2)

The norm ‖ · ‖M is a Mahalanobis norm with respect to some positive definite matrix M.
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Let st be the solution to the TRS for iteration t, and consider the ratio

ρt =
f (xt)− f (xt + st)

f ∗(xt)− f ∗(xt + st)
(3)

This ratio is the improvement in the objective function that we would get from a move
from xt to xt+1, relative to the improvement that is predicted by the quadratic approxi-
mation. Let η1 be the minimum value of ρt for which we deem it “worthwhile” to move
from xt to xt+1, and let η2 be the maximum ρt that would trigger a shrinkage in the trust
region. If ρt < η2, or if f (xt + st) is not finite, we shrink the trust region by reducing dt by
some predetermined factor, and compute a new st by solving the TRS again. If ρt > η1, we
move to xt+1 = xt + st. Also, if we do accept the move, and st is on the border of the trust
region, we expand the trust region by increasing d, again by some predetermined factor.
The idea is to not move to a new x if f (xt+1) would be worse than f (xt). By expanding
the trust region, we can propose larger jumps, and potentially reach the optimum more
quickly. We want to propose only moves that are among those that we “trust” to give
reasonable values of f (x). If it turns out that a move leads to a large improvement in the
objective function, and that the proposed move was constrained by the radius of the trust
region, we want to expand the trust region so we can take larger steps. If the proposed
move is bad, we should then reduce the size of the region we trust, and try to find another
step that is closer to the current iterate. Of course, there is no reason that the trust region
needs to change at after at a particular iteration, especially if the solution to the TRS is at
an internal point.

There are a number of different ways to solve the TRS; Conn et al. (2000) is authoritative
and encyclopedic in this area. The trustOptim package uses the method described in
Steihaug (1983). The Steihaug algorithm is, essentially, a conjugate gradient solver for
a constrained quadratic program. If Bt is positive definite, the Steihaug solution to the
TRS will be exact, up to some level of numerical precision. However, if Bt is indefinite, the
algorithm could try to move in a direction of negative curvature. If the algorithm happens
to stumble on such a direction, it goes back to the last direction that it moved, runs in that
direction to the border of the trust region, and returns that point of intersection with the
trust region border as the “solution” to the TRS. This solution is not necessarily the true
minimizer of the TRS, but it still might provide sufficient improvement in the objective
function such that ρt > η1. If not, we shrink the trust region and try again. As an
alternative to the Steihaug algorithm for solving the TRS, (Conn et al., 2000) suggest using
the Lanczos algorithm instead. The Lanczos approach may be more likely to find a better
solution to the TRS when Bk is indefinite, but at some additional computational cost. We
include only the Steihaug algorithm for now, because it still seems to work well, especially
for sparse problems.
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As with other conjugate gradient methods, one way to speed up the Steihaug algorithm
is to use a preconditioner M to rescale the TRS. Note that the constraint in the TRS is
expressed as an M-norm, rather that a Euclidean norm. The positive definite matrix M
should be close enough to the Hessian that M−1Bt ≈ I, but still cheap enough to compute
that the cost of computing the preconditioner does not exceed the benefits from using it.
Of course, the ideal preconditioner would be Bt itself, but Bt is not necessarily positive
definite, and we may not be able to estimate it fast enough for preconditioning to be
worthwhile. In this case, one could use a modified Cholesky decomposition, as described
in Nocedal and Wright (2006),

2.2 Computing Hessians

The trustOptim package provides three trust region “methods” that differ only in how the
Hessian matrix B is computed and stored. The Sparse method is optimized for objective
functions with sparse Hessians. Sparse requires the user to supply a function that returns
the Hessian in a sparse compressed format (namely, the dgCMatrix class in the Matrix
package, Bates and Maechler 2012 ). The trustOptim package also includes two quasi-
Newton methods: BFGS and SR1. The two methods do not require any information about
the Hessian at all, nor do they exploit any sparsity information. They both approximate
the Hessian by tracing the curvature of the objective function through repeated estimates
of the gradient, and differ only in the formula they use to update the Hessian; BFGS
updates are guaranteed to be positive definite, while SR1 updates are not (Nocedal and
Wright, 2006). The quasi-Newton Hessians are stored as dense matrices, so they are not
appropriate for large problems. Furthermore, from our experience it is not clear that the
trustOptim implementations of BFGS and SR1 are substantially better than the BFGS or
L-BFGS-B implementations in optim. Nevertheless, we include them for convenience and
completeness.

The Sparse method will be preferred if an analytical expression for the Hessian is readily
available, or if the user can compute the Hessian using algorithmic differentiation (AD)
software (e.g., the CppAD library for C++, Bell 2012 ). However, in conjunction with
the sparseHessianFD package (Braun, 2012), the trustOptim Sparse method can still be
used even if the Hessian is not available, as long as the sparsity structure is known in
advance. The routines in sparseHessianFD take as input the row and column indices
of the non-zero elements of the lower triangle of the Hessian, and return an object that
contains functions that compute the Hessian through finite differencing of the gradient.
These routines exploit the sparsity structure using the algorithms published in (Coleman
et al., 1985) and can sometimes be faster than computing the Hessian directly.
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3 Using the package

To run the algorithms in trustOptim, the user will call the trust.optim function. Its
signature is:

trust.optim(x, fn, gr, hs=NULL, method=c("SR1","BFGS","Sparse"),

control=list(), ...)

The user must supply a function fn that returns f (x), the value of the objective function
to be minimized, and a function gr that returns the gradient. For the Sparse method, the
function hs returns the Hessian as a sparse matrix of class dgCMatrix (this class is defined
in the Matrix package, which is now a recommended package in R and a dependency
for trustOptim). The functions fn, gr, and hs all take a parameter vector as the first
argument. Additional named arguments can be passed to fn, gr or hs through the . . .
argument. The quasi-Newton methods SR1 and BFGS do not require the user to provide
any Hessian information. For those methods, hs should be (and will default to) NULL.
If only the sparsity structure is known, use the sparseHessianFD package to construct a
function that can be used as the argument to hs.

Although it is true that the CG and BFGS methods in optim do not require a user-supplied
gradient, those methods will otherwise estimate the gradient using finite differencing.
In general, we never recommend finite-differenced gradients for any problem other than
those with a very small number of variables, even when using optim. Finite differenc-
ing takes a long time to run when there is a large number of variables, and is subject
to numerical error, especially near the optimum when elements of the gradient are close
to zero. Using sparseHessianFD with finite-differenced gradients means that the Hes-
sian is “doubly differenced,” and the resulting lack of numerical precision renders those
Hessians next to worthless.

3.1 Control parameters

The control argument takes a list of options, all of which are described in the package
manual. Most of these arguments are related to the internal workings of the trust region
algorithm (for example, how close does a step need to get to the border of the trust region
before the region expands). However, there are a few arguments that deserve some special
attention.
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3.1.1 Stopping criteria

The trust.optim function will stop when ‖g‖/√p < ε for a sufficiently small ε (where g
is the gradient and p is the number of parameters, and the norm is Euclidean). The pa-
rameter ε is the prec parameter in the control list. It defaults to

√
.Machine$double.eps,

which is the square root of the computer’s floating point precision. However, sometimes
the algorithm just can’t get the gradient to be that flat. What will then happen is that
the trust region will start to shrink, until its radius is less than the value of the cg.tol

parameter. The algorithm will then stop with the message “Radius of trust region is less
than stop.trust.radius.” This is not necessarily a problem if the norm of the gradient is
still small enough that the gradient is flat for all practical purposes. For example, suppose
we set prec to be 10−7 and that, for numerical reasons, the norm of the gradient simply
cannot get below 10−6. If the norm of the gradient were the only stopping criterion, the
algorithm would continue to run, even though it has probably hit the local optimum.
With the alternative stopping criterion, the algorithm will also stop when it is clear that
the algorithm can no longer take a step that leads to an improvement in the objective
function.

There is, of course, a third stopping criterion. The maxit is the maximum number of
iterations the algorithm should run before stopping. However, keep in mind that if the
algorithm stops at maxit, it is almost certainly not at a local optimum. Always check the
gradient to be sure.

Note that many other nonlinear optimizers, including optim, do not use the norm of
the gradient as a stopping criterion. Instead, optim stops when the absolute or relative
changes in the objective function are less that abstol or reltol, respectively. This often
causes optim to stop prematurely, when the estimates of the gradient and/or Hessian are
not precise, or if there are some regions of the domain where the objective function is
nearly flat. In theory, this should never happen, but in reality, it happens all the time. For
an unconstrained optimization problem, there is simply no reason why the norm of the
gradient should not be zero (within numerical precision) before the algorithm stops.

The cg.tol parameter specifies the desired accuracy for each solution of the trust region
subproblem. If it is set too high, there is a loss of accuracy at each step, but if set too low,
the algorithm may take too long at each trust region iteration. In general, we do not need
each TRS solution to be particularly precise. Similarly, the trust.iter parameter controls
the maximum number of conjugate gradient iterations for each attempted solution of the
trust region subproblem. Set this number high if you don’t want to lose accuracy by
stopping the conjugate gradient step prematurely.
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3.1.2 Preconditioners

Currently, the package offers two preconditioners: an identity preconditioner (no pre-
conditioning), and a modified Cholesky preconditioner. The identity and diagonal pre-
conditioners are available for all of the methods. For the Sparse method, the modified
Cholesky preconditioner will use a positive definite matrix that is closest to the potentially
indefinite Hessian (trust.optim does not require that the objective function be positive
definite). For BFGS, the Cholesky preconditioner is available because BFGS updates are
always positive definite. If you select a Cholesky preconditioner for the SR1 method, the
algorithm will use the identity preconditioner instead.

There is no general rule for selecting preconditioners. There will be a tradeoff between
the number of iterations needs to solve the problem and the time it takes to compute any
particular preconditioner. In some cases, the identity preconditioner may even solve the
problem in fewer iterations than a modified Cholesky preconditioner.

4 Example: hierarchical binary choice

Suppose we have a dataset of N households, each with T opportunities to purchase a
particular product. Let yi be the number of times household i purchases the product, out
of the T purchase opportunities. Furthermore, let pi be the probability of purchase; pi is
the same for all T opportunities, so we can treat yi as a binomial random variable. The
purchase probability pi is heterogeneous, and depends on both k continuous covariates
xi, and a heterogeneous coefficient vector βi, such that

pi =
exp(x′i βi)

1 + exp(x′i βi)
, i = 1 . . . N (4)

The coefficients can be thought of as sensitivities to the covariates, and they are distributed
across the population of households following a multivariate normal distribution with
mean µ and covariance Σ. We assume that we know Σ, but we do not know µ. Instead,
we place a multivariate normal prior on µ, with mean 0 and covariance Ω0, which is
determined in advance. Thus, each βi, and µ are k−dimensional vectors, and the total
number of unknown variables in the model is (N + 1)k.
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The log posterior density, ignoring any normalization constants, is

log π(β1:N , µ|Y, X, Σ0, Ω0) =
N

∑
i=1

pyi
i (1− pi)

T−yi (βi − µ)′ Σ−1 (βi − µ) + µ′Ω−1
0 µ (5)

Since the βi are drawn iid from a multivariate normal,
∂2 log π

∂βiβ j
= 0 for all i 6= j. We also

know that all of the βi are correlated with µ. Therefore, the Hessian will be sparse with a
“block-arrow” structure. For example, if N = 6 and k = 2, then p = 14 and the Hessian
will have the pattern as illustrated in Figure 1.

[1,] | | . . . . . . . . . . | |

[2,] | | . . . . . . . . . . | |

[3,] . . | | . . . . . . . . | |

[4,] . . | | . . . . . . . . | |

[5,] . . . . | | . . . . . . | |

[6,] . . . . | | . . . . . . | |

[7,] . . . . . . | | . . . . | |

[8,] . . . . . . | | . . . . | |

[9,] . . . . . . . . | | . . | |

[10,] . . . . . . . . | | . . | |

[11,] . . . . . . . . . . | | | |

[12,] . . . . . . . . . . | | | |

[13,] | | | | | | | | | | | | | |

[14,] | | | | | | | | | | | | | |

Figure 1: Sparsity pattern for hierarchical binary choice example.

There are 196 elements in this symmetric matrix, but only 169 are non-zero, and only 76
values are unique. Although the reduction in RAM from using a sparse matrix structure
for the Hessian may be modest, consider what would happen if N = 1000 instead. In that
case, there are 2,002 variables in the problem, and more than 4 million elements in the
Hessian. However, only 12,004 of those elements are non-zero. If we work with only the
lower triangle of the Hessian (e.g., through a Cholesky decomposition), we only need to
work with only 7,003 values.

The R code for this example is contained in two files: examples/ex1.R and examples/ex funcs.R.
What follows is a discussion of the ex1.R file. As an example, we set T = 20, N = 250,
and k = 8; there are 2,005 parameters over which we are optimizing the objective function.

First, we load libraries that are necessary to simulate the data and run the algorithm, and
set the parameters of the simulation study.

library("plyr")
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library("Matrix")

library("mvtnorm")

library("trustOptim")

library("sparseHessianFD")

source("ex_funcs.R") ## fn, gr and hs functions

set.seed(123)

N <- 250

k <- 8

T <- 20

Next, we choose the trust.optim method we want to test, and initialize the control pa-
rameters. Definitions of these parameters are described in detail in the package documen-
tation. The control parameters to which a user might want to pay the most attention are
those related to convergence of the main algorithm (stop.trust.radius, prec and maxit),
verbosity of the reporting of the status of the algoritm (report.freq, report.level and
report.freq), the function scale factor (which must be positive if minimizing and nega-
tive if maximizing), and the selection of the preconditioner (0 for no preconditioner, and
1 for a modified Cholesky preconditioner).

method <- "Sparse"

control.list <- list(start.trust.radius=5,

stop.trust.radius = 1e-5,

prec=1e-7,

report.freq=1L,

report.level=4L,

report.precision=1L,

maxit=500L,

function.scale.factor = as.numeric(-1),

preconditioner=1L

)

In the next section, we simulate data, set priors and choose a starting value for the opti-
mizer. The laply function is part of the plyr package.

x.mean <- rep(0,k)

x.cov <- diag(k)

mu <- rnorm(k,0,10)

Omega <- diag(k)

inv.Sigma <- rWishart(1,k+5,diag(k))[,,1]

inv.Omega <- solve(Omega)
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X <- t(rmvnorm(N, mean=x.mean, sigma=x.cov))

B <- t(rmvnorm(N, mean=mu, sigma=Omega))

XB <- colSums(X * B)

log.p <- XB - log1p(exp(XB))

Y <- laply(log.p, function(q) return(rbinom(1,T,exp(q))))

nvars <- N*k + k

start <- rnorm(nvars) ## random starting values

Next, we use the sparseHessianFD package to set up a function that will return the sparse
Hessian. The get.hess.struct function returns a list of the row and column indices of
the non-zero elements of the lower triangle of the Hessian (this function is defined in the
ex funcs.R file). The function new.sparse.hessian.obj is defined in sparseHessianFD,
and its return value contains functions that return the objective function, the gradient,
and the Hessian.

hess.struct <- get.hess.struct(N, k)

obj <- new.sparse.hessian.obj(start, fn=get.f, gr=get.grad,

hs=hess.struct, Y=Y, X=X,

inv.Omega=inv.Omega, inv.Sigma=inv.Sigma)

An additional advantage of using new.sparse.hessian.obj is that when we pass addi-
tional arguments to the objective function here, they are stored in obj, and we do not need
to include them again in the call to the optimizer.

We now run the algorithm, recording the time it takes to converge.

cat("running ",method, "\n")

t1 <- Sys.time()

opt <- trust.optim(start, fn=obj$fn,

gr = obj$gr,

hs = obj$hessian,

method = method,

control = control.list)

running Sparse

Beginning optimization

iter f nrm_gr status rad CG iter CG result

1 15938.2 1803.7 Continuing - TR expand 15.0 8 Intersect TR bound

2 6425.8 2735.6 Continuing - TR expand 45.0 8 Intersect TR bound
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3 759.4 65.4 Continuing 45.0 164 Reached tolerance

4 547.5 24.6 Continuing 45.0 157 Reached tolerance

5 435.8 11.0 Continuing 45.0 167 Reached tolerance

6 365.1 5.3 Continuing 45.0 183 Reached tolerance

7 336.9 2.6 Continuing 45.0 204 Reached tolerance

8 330.9 0.8 Continuing 45.0 220 Reached tolerance

9 330.6 0.1 Continuing 45.0 229 Reached tolerance

10 330.6 0.0 Continuing 45.0 229 Reached tolerance

11 330.6 0.0 Continuing 45.0 231 Reached tolerance

Iteration has terminated

11 330.6 0.0 Success

t2 <- Sys.time()

td <- difftime(t2,t1)

print(td,units="secs")

Time difference of 1.655042 secs

The output of the algorithm supplies the iteration number, the value of the objective
function and norm of the gradient, whether the trust region is expanding or contracting
(or neither) and the current radius of the trust region. It will also report the number of
iterations it took for the Steihaug algorithm to solve the trust region subproblem, and the
reason the Steihaug algorithm stopped. In this example, for the first four iterations, the
solution to the TRS was reached after only one conjugate gradient step, and this solution
was at the boundary of the trust region. Since the improvement in the objective function
was substantial, we expand the trust region and try again. By the fifth iteration, the
trust region is sufficiently large that the TRS solution is found in the interior through
subsequent conjugate gradient steps. Once the interior solution of the TRS is found, the
trust region algorithm moves to the TRS solution, recomputes the gradient and Hessian of
the objective function, and repeats until the first-order conditions of the objective function
are met.

Note that this problem has 1,005 parameters, and converged in less than half of a second.

The return value of the trust.optim function returns all of the important values, such as
the solution to the problem, the value, gradient and Hessian (in sparse compressed for-
mat) of the objective function, the number of iterations, the final trust radius, the number
of non-zeros in the Hessian, and the method used.
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If we do not use sparseHessianFD to compute the Hessian, we can supply R functions
are arguments for fn, gr and hs. In that case, we would pass the additional names
arguments to the objective function in the trust.optim step.

4.1 Comparison to alternatives

Next, we compare the performance of trust.optim to some alternative nonlinear opti-
mizers in R. The methods are summarized in Table ??. The trust package (Geyer., 2009)
is another stable and robust implementation of a trust region optimizer, and we found
that it works well for modestly-sized problems (no more than a few hundred parameters).
Unlike trustOptim, it requires the user to provide a complete Hessian as a dense matrix,
so it cannot exploit sparsity when that sparsity exists. It also uses eigenvalue decomposi-
tions to solve the TRS, as opposed to the Steihaug conjugate gradient approach. Finally,
stopping criterion in for the algorithm in trust is based on the change in the value of the
objective function, and not the norm of the gradient.

Package method Type Requires Requires
gradient Hessian

optim CG Line search No, but preferred No
optim BFGS Line search No, but preferred No
trust trust region Yes Yes
trustOptim Sparse trust region Yes Yes

Table 1: Description of optimization algorithms

Naturally, there are many other optimization tools available for R users. These are de-
scribed in the R Task View on Optimization and Mathematical Programming.

We compare the algorithms by simulating datasets from the hierarchical binary choice
model, and using the optimization algorithms to find the mode of the log posterior den-
sity. There are six conditions, determined by crossing the number of heterogeneous units
( N ∈ (25, 250, 1000) ) and number of parameters per unit (k ∈ (2, 8) ). Within each
condition, we simulated five datasets, ran the optimizers, and averaged the performance
statistics of interest: total clock time, the number of iterations of the algorithm, and both
the Euclidean and maximum norms for the gradient at the local optimum. These results
are in Table 2. We used sparseHessianFD to compute the Hessian for both Sparse and
trust (converting to a dense matrix in the case of trust. For both trustOptim methods,
we applied the modified Cholesky preconditioner.

With respect to run time, we see that for very small datasets (e.g., N = 25), there is no
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k=2 k=8
N method secs ‖g‖2 ‖g‖∞ iters secs ‖g‖2 ‖g‖∞ iters
25 Sparse 0.1 9.3e-06 4.3e-06 5 0.3 1.3e-06 4.9e-07 6
25 optim-BFGS 0.1 0.012 8.2e-03 31 0.2 0.015 4.8e-03 83
25 optim-CG 0.6 7.1e-06 4.2e-06 407 2.2 1.5e-05 7.6e-06 1464
25 trust 0.1 6.6e-12 4.0e-12 6 0.7 2.0e-09 1.2e-09 8

250 Sparse 0.2 1.3e-05 3.6e-06 8 1.5 1.2e-04 2.9e-05 8
250 optim-BFGS 0.3 0.03 0.023 39 8.0 0.087 0.036 118
250 optim-CG 6.8 2.5e-05 1.3e-05 1687 68.2 4.9e-05 3.0e-05 14578
250 trust 2.9 1.2e-08 3.4e-09 10 31.7 6.0e-09 9.9e-10 11

1000 Sparse 0.7 8.4e-05 1.0e-05 8 21.6 2.4e-04 2.4e-05 9
1000 optim-BFGS 3.2 0.20 0.14 38 271.3 0.73 0.35 111
1000 optim-CG 28.8 4.9e-05 2.7e-05 2182 1022.2 1.2e-04 5.7e-05 32489
1000 trust 49.0 6.0e-11 7.7e-12 10 3128.0 1.9e-08 2.0e-09 12

Table 2: Convergence times and gradient norms for hierarchical binary choice example.
The method Sparse refers to the main method in trustOptim. The methods optim-BFGS

and optim-CG refer to methods called via the optim function in base R. The method trust

refers to the trust package.

clear reason to prefer trustOptim over the other packages. However, when the datasets
get large, Sparse is clearly the fastest. The N = 1000, k = 8 case has more than 8,000
parameters, yet the Sparse method converges in about 100 seconds. One reason that
optim.BFGS appears to run quickly, even for small problems, is that it is prone to stopping
before the gradient is sufficiently flat. In fact, one may question whether BFGS has even
found a local optimum. Thus, when the run times of Sparse are close to those of BFGS,
the level of confidence that the result is correct seems like a reasonable tiebreaker.

5 Implementation details

The trustOptim package was written primarily in C++, using the Eigen Numerical Li-
brary (Guennebaud et al., 2012). The trustOptim package links to the RcppEigen R pack-
age (Bates et al., 2012), so the user does not need to install Eigen separately in order to
compile trustOptim. The user will call the trust.optim function from R (defined in the
callTrust.R file), which will in turn pass the arguments to the compiled code using func-
tions in the Rcpp package (Eddelbuettel and François, 2011). The trust.optim function
then gathers results and returns them to the user in R.

The src/Rinterface.cpp defines the C++ functions that collect data from R, passes them
to the optimization routines, and return the results. There is one function for Sparse and
another for SR1 and BFGS. Each function constructs an optimizer object of the class that is
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appropriate for that method. The class Trust CG Optimizer, for the quasi-Newton meth-
ods is defined in the file inst/include/CG-quasi.h, and the class Trust CG Sparse, is
defined in the fileinst/CG-sparse.h. Both of these classes inherit from the Trust CG Base

class, which is defined in inst/CG-base.h. All of the optimization is done by member
functions in Trust CG Base; Trust CG Optimizer and Trust CG Sparse differ only in how
they handle the Hessian and the preconditioners.

The Rfunc and RfuncHess classes (defined in the files inst/Rfunc.h and inst/RfuncHess.h),
are responsible for returning the value of the objective function, the gradient, and the Hes-
sian. Rfunc is used for the quasi-Newton methods, RfuncHess is used for Sparse. Both
classes contain references to Rcpp::Function objects that , in turn, are references to the
R functions that compute the objective function and gradient. Thus, a call to the get f()

function will return the result of a call to the corresponding R function. The RfuncHess

class returns the Hessian, as an Eigen sparse matrix, in a similar way.

6 Discussion

The motivation behind trustOptim was immense frustration about not being able to find
modes of posterior densities of hierarchical models. Existing tools in R were either too
cumbersome to use when there are a large number of parameters, too imprecise when
encountering ridges, plateaus or saddle points in the objective function, or too lenient
in determining when the optimization algorithm should stop. The product of the effort
behind addressing these problems is a package that is more robust, efficient and precise
than existing options. This is not to say that trustOptim will outperform other nonlinear
optimizers in all cases. But at least for hierarchical models, or other models with sparse
Hessians, this may prove to be a useful tool in the statisticians toolbox.
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