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Abstract

This vignette serves as an online appendix for the manuscript “Mixed-Effects Additive Transforma-

tion Models”. It presents four example analyses that use mixed-effects additive transformation models

to reanalyze ecological phenomena from recently published studies.

1 The rat carrion decomposition experiment

Our first example presents the reanalysis of the carrion decomposition data by Englmeier et al. (2022).

In the original study, the authors analyzed the environmental factors that affect the decomposition

process of small rodent carrion using data from an experiment, in which they placed rat carcasses in

different environments and recorded the time until complete decomposition. As we describe it in the

main article, the outcome variable (time until complete decomposition) is interval censored due to

the discrete follow-up. The survival curves for specimen with and without the presence of insects are

shown in Figure 1
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Figure 1: Non-parametric survival probability estimates associated with the decomposition times

in groups where insect access was and was not allowed in the carrion decomposition experiment.
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The main environmental variables we include in our model are the indicator for the presence of

insects (Insects), local (Habitat) and regional (Landscape) land use types, The average tempera-

ture on each experimental plot was measured with thermologgers (Temperature), and the elevational

gradient was used as a surrogate for the long-term macroclimate (Elevation100). The plot-level

unobserved sources of variability were modeled by including random intercepts (grouping variable:

PlotID). We estimate the following proportional-hazards mixed-effect additive transformation model

for the decomposition intervals

R> dcmp <- CoxphME(Time ~ Insects + Habitat + Landscape

+ + s(Temperature, k = 20) + s(Elevation100, k = 20)

+ + (1 | PlotID), data = carrion,

+ log_first = TRUE, order = 6)

R> summary(dcmp)

Additive Mixed-Effects Parametric Cox Regression Model

Formula: Time ~ Insects + Habitat + Landscape + s(Temperature, k = 20) +

s(Elevation100, k = 20) + (1 | PlotID)

Fitted to dataset carrion

Fixed effects parameters:

=========================

Estimate Std. Error z value Pr(>|z|)

Insectsyes 1.0562 0.2493 4.24 2.3e-05 ***

Habitatarable field -0.8986 0.4947 -1.82 0.069 .

Habitatmeadow -0.1898 0.4665 -0.41 0.684

Habitatsettlement -0.8492 0.5699 -1.49 0.136

Landscapeagriculture -0.3964 0.4332 -0.92 0.360

Landscapeurban 0.0337 0.4373 0.08 0.938

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Smooth shift terms:

===================

edf

s(Temperature) 1

s(Elevation100) 1

Random effects:

===============

Grouping factor: PlotID (144 levels)

Standard deviation:

(Intercept)
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1.73

Log-likelihood: -314 (npar = 18)

The smooth terms can be evaluated and plotted with

R> plot(smooth_terms(dcmp))

As the results in Figure 2 show, the effects of temperature and elevation look fairly linear.
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Figure 2: Smooth effects of the continuous variables in the model of the decomposition times.

As a general check of the appropriateness of the estimated model, we can evaluate the marginal

distribution function or, as it is more commonly done in survival analysis, the marginal survivor

function of the outcomes at the observations in our dataset by integrating over the random effects

numerically.

Ŝ(ti | xi) = P̂(Ti > ti | xi) =

∫ +∞

−∞
P̂(Ti > ti | xi, γ)φ(γ) dγ.

Ŝ(ti | xi) denotes the fitted survivor function, which is straightforward to calculate from the mixed-

effects additive transformation model, due to its fully parametric approach to approximate the outcome

distribution. By evaluating − log(Ŝ(ti | xi)) at the observations in our dataset, we get the Cox-Snell

residuals (Klein and Moeschberger, 2003, Chapter 11), which are unit exponentially distributed under

the correct model.

Interval-censored outcomes pose a technical difficulty in assessing the Cox-Snell residuals. In this

situation we can either evaluate the marginal survivor function at the upper and lower bounds of the

censoring intervals and assess the interval-censored version of the residuals, or we can apply the adjust-

ment proposed by Farrington (2000), which replaces these intervals with expected values under unit

exponential distribution. To assess the distribution of the residuals, we estimate the cumulative hazard
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function of the Cox-Snell residuals, which should be close to a straight line with unit slope through

the origin under the correct model. Figure 3 presents the distributions of the Cox-Snell residuals using

the two approaches to interval censoring. Neither of these plots signals serious departures from the

unit exponential distribution, which confirms the appropriateness of our regression model. Because the

marginal Cox-Snell residuals are not independent in our case, these plots only provide a crude visual

check of the model fits.
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Figure 3: Cox-Snell residuals of the carrion decomposition model. Panel A: Treating the resid-

uals as interval-censored and estimating the cumulative hazard function using the Turnbull non-

parametric maximum likelihood estimator. Panel B : Using the adjustment proposed by Farrington

(2000). The dashed lines correspond to the unit exponential distribution.

We can relax the assumption of proportional hazards by allowing for time-dependent covariate

effects. A transformation model with time-dependent effects for the Insects indicator can be estimated

as

R> dcmp2 <- CoxphME(Time | Insects ~ Habitat + Landscape

+ + s(Temperature, k = 20) + s(Elevation100, k = 20)

+ + (1 | PlotID), data = carrion,

+ log_first = TRUE, order = 6)

In Figure 4, we compare the effect estimates of the presence of insects (on the log-hazard scale)

from the proportional hazards and non-proportional hazards (time-varying effects) models. According

to these results, the proportional hazards assumption seems plausible.

2 E. coli concentrations in streams with different grazing pe-

riods

Hulvey et al. (2021) compare the concentration levels of Escherichia coli bacteria (most probable

number, MPN) in streams under three different rotational grazing regimes. In the additive mixed

model specifications they estimated, within-year variability was modeled, as functions of the day of
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Figure 4: The effect of the presence of insects on the decomposition process from the proportional-

hazards and non-proportional hazards models.

year (DOY), with cubic regression splines and between-year and location-level variability were captured

by random intercepts of pasture-specific year effects and separate stream effects. Note that although

the cyclic version of the cubic regression splines (bs = ’cc’ in mgcv and tramME) (Tamasi, 2022) would

be more appropriate for modeling the within-year trend, the original article used bs = ’cr’ and hence

we also stick with this basis in our reanalysis.

As a first step, we replicate the results of all model variants that Hulvey et al. (2021) investigated

in the original article with the R package gamm4 (Wood and Scheipl, 2020). In a second step, we

fit the same models using the software implementation of additive mixed transformation models in

package tramME, that is, using a linear transformation function (function tramME::LmME). We do expect

identical results in steps one and two, although the two implementions rely on two completely distinct

code bases. Thus, these results are only interesting from a quality assurance point of view. In the last

step, we relax the normal distributional assumption by allowing a nonlinear transformation function

(tramME::BoxCoxME function) and evaluate how the model fits change. We are primarily interested in

potential changes of the model interpretation induced by a shift from a normal to a distribution-free

model.

As Table 1 shows, we managed to reproduce the gamm4 results with tramME. Moreover, relaxing

the distributional assumption of the normal linear model resulted in stronger model fits in terms of

in-sample log-likelihood values.

R> ## specifications w/o random effects

R> mf <- c(log10(ecoli_MPN) ~ treatment + cattle +

+ s(DOY, bs = 'cr', by = treatment),

+ log10(ecoli_MPN) ~ treatment + cattle + s(DOY, bs = 'cr'),

+ log10(ecoli_MPN) ~ treatment + s(DOY, bs = 'cr', by = treatment),

+ log10(ecoli_MPN) ~ cattle + s(DOY, bs = 'cr'),

+ log10(ecoli_MPN) ~ treatment + s(DOY, bs = 'cr'),

+ log10(ecoli_MPN) ~ s(DOY, bs = 'cr'))

R> names(mf) <- paste("Model", c(1:5, "Null"))
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R> ecoli_res <- data.frame(matrix(NA, nrow = length(mf), ncol = 3))

R> colnames(ecoli_res) <- c("gamm", "LmME", "BoxCoxME")

R> rownames(ecoli_res) <- names(mf)

R> for (i in seq_along(mf)) {
+ m_gamm <- gamm4(mf[[i]], data = ecoli,

+ random = ~ (1 | year:stream:pasture) + (1 | stream),

+ REML = FALSE)

+ ecoli_res$gamm[i] <- logLik(m_gamm$mer)

+ mf2 <- update(mf[[i]], . ~ . + (1 | year:stream:pasture) + (1 | stream))

+ m_LmME <- LmME(mf2, data = ecoli)

+ if (m_LmME$opt$convergence == 0) ecoli_res$LmME[i] <- logLik(m_LmME)

+ m_BCME <- BoxCoxME(mf2, data = ecoli)

+ if (m_BCME$opt$convergence == 0) ecoli_res$BoxCoxME[i] <- logLik(m_BCME)

+ }

Table 1: Log-likelihood values of the fitted models presented by Hulvey et al. (2021, GAMM ),

replicated as mixed-effects additive transformation models assuming conditional normality (Addi-

tive normal transformation model) and extended as flexible (non-normal) mixed-effects additive

transformation models (Additive non-normal transformation model).

GAMM
Additive normal

transformation model

Additive non-normal

transformation model

Model 1 -339.23 -339.23 -320.94

Model 2 -343.66 -343.66 -324.54

Model 3 -368.33 -368.33 -349.10

Model 4 -347.70 -347.70 -328.25

Model 5 -367.15 -367.15 -347.27

Model Null -373.76 -373.76 -353.50

Let us focus on the most complicated specification, Model 1,

R> update(mf[[1]], . ~ . + (1 | year:stream:pasture) + (1 | stream))

log10(ecoli_MPN) ~ treatment + cattle + s(DOY, bs = "cr", by = treatment) +

(1 | year:stream:pasture) + (1 | stream)

and compare the effect estimates from the normal model to its non-parametric counterpart. But first,

notice that by changing the transformation from h(y) = ϑ0 + ϑ1y to h(y) = a(y)>ϑ, we change the

scale on which the coefficients and the smooth terms are interpreted. In the normal additive mixed

model, the coefficient of a fixed effect captures the change in the expectation of the outcome when

increasing the respective predictor by one unit (keeping everything else unchanged). In the non-normal

transformation model with Φ as the inverse link, the coefficients capture similar effects but on a latent

scale defined by the transformation h(Y ).

To cast the effect estimates from the two models to a common scale, we can calculate the probabilistic

indices (PI, Thas et al., 2012). To simplify the notation, first, we will now focus on the simple, fixed
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effects-only case with a single predictor:

P(Y ≤ y |X = x) = Φ (h(y)− βx)

The PI is the probability that one outcome (Y ?) is larger than the other (Y ), given the same covariate

values (X) except for one, which is larger with one unit (X?). In our simplified example, this means

P (Y < Y ? |X = x,X? = x+ 1) = P (h(Y ) < h(Y ?) |X = x,X? = x+ 1)

= P
(
h(Y )− h(Y ?) + β√

2
<

β√
2

)
= Φ

(
β√
2

)
.

The third line follows from the fact that, in a transformation model with Φ(·) as the inverse link, h(Y )

and h(Y ?) are independent, normally distributed random variables with unit variance and a mean

difference of β. Notice that the PI does not depend on the transformation function. When random

effects are present in the model, the PI is conditional on the cluster.

In the case of transformation models with non-linear additive terms the probabilistic index is a

function of the covariate. In the simplest form of an additive transformation model with probit link,

we have

P(Y ≤ y |X = x) = Φ (h(y)− f(x))

and the PI is

PI(x) = P (Y < Y ? |X = x,X? = x+ 1) = Φ

(
f(x+ 1)− f(x)√

2

)
.

By transforming the effect estimates to the probability scale, Figure 5 compares the smooth terms

from the normal and non-normal versions of Model 1, while the first two blocks of Table 2 contrasts

the fixed effects estimates. The results are very close to each other, which suggests that the original

log-normal model is actually appropriate. As a built-in visual normality check, we can compare the

fitted transformation functions of the normal and non-normal transformation models. The linear

function corresponds to a conditional normal distribution in Figure 6. This result further confirms the

appropriateness of the normal additive model in this specific example.
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Figure 5: The comparison of the smooth terms from the normal and non-normal (probit link)

mixed-effects additive transformation models (specification Model 1).

The outcome variable (MPN per 100 ml) was measured with the Quanti-Tray System, which can

detect E. coli concentrations up to a maximum of 2,419.6 MPN without dilution. This means that
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Figure 6: Baseline transformation functions from the normal and non-normal mixed-effects additive

transformation models.

there is an effective upper detection limit on the outcome, i.e., the 25 observations with the value of

2,419.6 are right censored. The authors of the original article mention this fact, but they do not take

into account in the subsequent analyses. Because random censoring can be easily handled in tramME,

we will rerun the model taking the upper limit into account.

R> fm1c <- update(fm1, Surv(log10(ecoli_MPN), event = ecoli_MPN < 2419.6) ~ .)

R> ecoli_m1_cens <- BoxCoxME(fm1c, data = ecoli)

R> summary(ecoli_m1_cens)

Non-Normal (Box-Cox-Type) Linear Additive Mixed-Effects Regression Model

Formula: Surv(log10(ecoli_MPN), event = ecoli_MPN < 2419.6) ~ treatment +

cattle + s(DOY, bs = "cr", by = treatment) + (1 | year:stream:pasture) +

(1 | stream)

Fitted to dataset ecoli

Fixed effects parameters:

=========================

Estimate Std. Error z value Pr(>|z|)

treatmentmedium -0.680 0.230 -2.95 0.0032 **

treatmentshort -0.772 0.317 -2.44 0.0148 *

cattlePresent 1.108 0.149 7.42 1.2e-13 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Smooth shift terms:

===================
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edf

s(DOY):treatmentlong 4.38

s(DOY):treatmentmedium 4.55

s(DOY):treatmentshort 4.30

Random effects:

===============

Grouping factor: year:stream:pasture (32 levels)

Standard deviation:

(Intercept)

0.431

Grouping factor: stream (12 levels)

Standard deviation:

(Intercept)

0.000204

Log-likelihood: -358 (npar = 18)

The fitted non-linear terms are compared to the original (normal linear) estimates in Figure 7 and

the fixed effects are presented in the third block of Table 2.

Table 2: Estimates of the parametric fixed-effects terms on the probability scale (PI: probabilistic

index) from the normal, non-normal and non-normal (with censoring taken into account) models,

respectively.

Normal Non-normal Non-normal, censored

PI 95% CI PI 95% CI PI 95% CI

treatment = medium 0.32 0.22—0.44 0.33 0.22—0.45 0.32 0.21—0.44

treatment = short 0.29 0.16—0.45 0.30 0.17—0.46 0.29 0.16—0.46

cattle = present 0.79 0.72—0.84 0.78 0.72—0.84 0.78 0.72—0.84

Because the transformation model approximates the conditional distribution of the outcome, in

theory, we do not even have to take the base 10 logarithm of the E. coli most probable numbers

(MPN) on the left-hand side of the model formula. tramME should be able to approximate the most

likely transformation.

R> f_nontr <- update(fm1, Surv(ecoli_MPN, event = ecoli_MPN < 2419.6) ~ .)

R> ecoli_nontr <- BoxCoxME(f_nontr, data = ecoli, log_first = TRUE)

R> summary(ecoli_nontr)

Non-Normal (Box-Cox-Type) Linear Additive Mixed-Effects Regression Model

Formula: Surv(ecoli_MPN, event = ecoli_MPN < 2419.6) ~ treatment + cattle +
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Figure 7: The comparison of the smooth terms from the original model (normal linear) and the

non-normal (probit link) extension where censoring is also taken into account.

s(DOY, bs = "cr", by = treatment) + (1 | year:stream:pasture) +

(1 | stream)

Fitted to dataset ecoli

Fixed effects parameters:

=========================

Estimate Std. Error z value Pr(>|z|)

treatmentmedium -0.680 0.230 -2.95 0.0032 **

treatmentshort -0.772 0.317 -2.44 0.0148 *

cattlePresent 1.108 0.149 7.42 1.2e-13 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Smooth shift terms:

===================

edf

s(DOY):treatmentlong 4.38

s(DOY):treatmentmedium 4.55

s(DOY):treatmentshort 4.30

Random effects:

===============

Grouping factor: year:stream:pasture (32 levels)

Standard deviation:

(Intercept)

0.431

Grouping factor: stream (12 levels)
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Standard deviation:

(Intercept)

0.000394

Log-likelihood: -2027 (npar = 18)

Notice that we set log first = TRUE in the function call, to take the natural logarithm of the

outcome before setting up the Bernstein bases. This usually helps the approximation in the case of

positive right-skewed outcomes. With this, we basically estimate the same model as the original, but

with the natural logarithm instead of base-ten. Because of this difference, the log-likelihood values

are also different, but the fixed effects and variance components parameter estimates, as well as the

smooth terms are essentially the same as in the case of the model ecoli m1 cens.

In summary, after bringing the estimates to the same scale, the results of the additive mixed effects

model did not change much in this specific example by switching to the transformation model approach.

The originally applied base 10 logarithm falls very close to the fitted “most likely transformation”, i.e.,

taking the logarithm of the outcome was sufficient to achieve (close) conditional normality. This could

be verified through comparing the baseline transformation functions of the normal and non-normal

models, which can also serve as a visual check on conditional normality. Moreover, the number of

censored outcomes was relatively small in the sample, so taking the censoring properly into account

did not result in large differences, either. However, as the example demonstrated, transformation

models are flexible enough to accommodate these properties of the response of interest (non-normality

and censoring) automatically, without the need to apply ad hoc transformations or to implement

new estimation procedures. In this sense, tramME::BoxCoxME provides a simple way of checking the

impact of the more restrictive assumptions hard-wired in gamm4::gamm4 on model interpretation and

of handling censoring properly in the estimation procedure.

3 Sea urchin removal experiment

Andrew and Underwood (1993) analyzed the percentage cover of filamentous algae under four sea

urchin removal treatments (Control/33%/66%/Removal). The algae colonization was measured on

five quadrants located on several larger patches, so there is a clear grouped structure in the data.

Douma and Weedon (2019) reanalyzed the data as a demonstration for the usage of mixed-effects

models for zero-inflated beta regression models. Here we fit mixed-effects transformation models to

the data, and compare the results to zero-inflated mixed-model estimates obtained from glmmTMB

(Brooks et al., 2017, Magnusson et al., 2021). Figure 8 presents the empirical cumulative distribution

functions of the outcome under the four treatments. Note the large number of zeros, especially in the

control group.

First, we fit a zero-inflated beta regression model with random intercepts for the patches. The

probability of observing zero values is allowed to vary with the treatment.

R> urchin_zib <- glmmTMB(pALGAE ~ TREAT + (1 | PATCH), ziformula = ~ TREAT,

+ data = andrew, family = beta_family())

R> summary(urchin_zib)

Family: beta ( logit )

Formula: pALGAE ~ TREAT + (1 | PATCH)
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Figure 8: Empirical CDFs of the algae cover proportions under the four treatments.

Zero inflation: ~TREAT

Data: andrew

AIC BIC logLik deviance df.resid

87.2 111.0 -33.6 67.2 70

Random effects:

Conditional model:

Groups Name Variance Std.Dev.

PATCH (Intercept) 0.124 0.352

Number of obs: 80, groups: PATCH, 16

Dispersion parameter for beta family (): 4.06

Conditional model:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.060 0.530 -3.89 0.0001 ***

TREAT0.33 1.280 0.614 2.08 0.0372 *

TREAT0.66 1.374 0.602 2.28 0.0223 *

TREATremoval 1.783 0.585 3.05 0.0023 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Zero-inflation model:

Estimate Std. Error z value Pr(>|z|)
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(Intercept) 1.099 0.516 2.13 0.03338 *

TREAT0.33 -1.299 0.685 -1.90 0.05772 .

TREAT0.66 -1.504 0.689 -2.18 0.02908 *

TREATremoval -2.833 0.812 -3.49 0.00048 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As an alternative to the traditional beta regression approach, we estimate a mixed-effects continuous

outcome logistic regression.

R> urchin_tram <- ColrME(

+ Surv(pALGAE, pALGAE > 0, type = "left") ~ TREAT + (1 | PATCH),

+ bounds = c(-0.1, 1), support = c(-0.1, 1), data = andrew,

+ order = 6)

R> summary(urchin_tram)

Mixed-Effects Continuous Outcome Logistic Regression Model

Formula: Surv(pALGAE, pALGAE > 0, type = "left") ~ TREAT + (1 | PATCH)

Fitted to dataset andrew

Fixed effects parameters:

=========================

Estimate Std. Error z value Pr(>|z|)

TREAT0.33 -2.04 1.31 -1.56 0.1178

TREAT0.66 -2.49 1.31 -1.90 0.0571 .

TREATremoval -4.10 1.34 -3.06 0.0022 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Random effects:

===============

Grouping factor: PATCH (16 levels)

Standard deviation:

(Intercept)

1.48

Log-likelihood: -26.3 (npar = 11)

To allow for a jump in the conditional CDF of the outcome, we expand its bound and treat the

zero observations as left-censored. This way, we can place a point mass on zero, i.e., introduce a jump

at 0 (see Figure 9).

Because the zero-inflated beta model is a mixture of two models, the interpretation of its results
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Figure 9: Visual demonstration of how a discrete jump is introduced in the CDF by extending the

support and treating the edge cases as censored.

is cumbersome. It is not clear which parameters, or combinations of parameters, one needs to inspect

to contrast the effects of the various treatments. Moreover, extra steps are needed to calculate the

marginal effects of the covariates. In contrast, the mixed-effects transformation model only contains a

single set of fixed effects parameters and their interpretation is straightforward: For example, the odds

of observing higher proportions of algae cover under the 33% removal treatment is about exp(−β̂0.33) =

7.71 times higher compared to the control group.

To assess the fits of the two models we can marginalize the conditional distributions by integrating

over the random effects numerically, and compare against the ECDFs. As Figure 10 shows, both model

overestimate the dispersion in the control group.
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Figure 10: Fitted marginal distributions of algae cover proportion from the zero-inflated beta

regression and the mixed-effects transformation model, respectively. The step functions show the

empirical cumulative distribution functions in the four treatment groups.

Systematic differences in the outcome variability in the treatment groups occur in many situations

(Douma and Weedon, 2019). By modeling the dispersion separately, we can incorporate such differences

in the beta regression model.
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R> urchin_zib_disp <- glmmTMB(pALGAE ~ TREAT + (1 | PATCH),

+ ziformula = ~ TREAT, dispformula = ~ TREAT,

+ data = andrew, family = beta_family())

R> summary(urchin_zib_disp)

Family: beta ( logit )

Formula: pALGAE ~ TREAT + (1 | PATCH)

Zero inflation: ~TREAT

Dispersion: ~TREAT

Data: andrew

AIC BIC logLik deviance df.resid

87.9 118.8 -30.9 61.9 67

Random effects:

Conditional model:

Groups Name Variance Std.Dev.

PATCH (Intercept) 0.198 0.445

Number of obs: 80, groups: PATCH, 16

Conditional model:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.908 0.420 -6.92 4.5e-12 ***

TREAT0.33 2.158 0.587 3.68 0.00023 ***

TREAT0.66 2.213 0.559 3.96 7.6e-05 ***

TREATremoval 2.595 0.523 4.96 7.0e-07 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Zero-inflation model:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.099 0.516 2.13 0.03338 *

TREAT0.33 -1.299 0.685 -1.90 0.05772 .

TREAT0.66 -1.504 0.689 -2.18 0.02908 *

TREATremoval -2.833 0.812 -3.49 0.00048 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Dispersion model:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.612 0.849 4.26 2.1e-05 ***

TREAT0.33 -2.424 0.925 -2.62 0.0087 **

TREAT0.66 -2.279 0.921 -2.47 0.0134 *

TREATremoval -2.036 0.870 -2.34 0.0193 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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In the mixed-effects linear transformation model, we stratify to the treatment group to allow for

separate transformation functions.

R> urchin_tram_strat <- ColrME(

+ Surv(pALGAE, pALGAE > 0, type = "left") | 0 + TREAT ~ 1 + (1 | PATCH),

+ bounds = c(-0.1, 1), support = c(-0.1, 1), data = andrew,

+ order = 6, control = optim_control(iter.max = 1e3, eval.max = 1e3,

+ rel.tol = 1e-9))

R> summary(urchin_tram_strat)

Stratified Mixed-Effects Continuous Outcome Logistic Regression Model

Formula: Surv(pALGAE, pALGAE > 0, type = "left") | 0 + TREAT ~ 1 + (1 |

PATCH)

Fitted to dataset andrew

Fixed effects parameters:

=========================

No estimated shift coefficients.

Random effects:

===============

Grouping factor: PATCH (16 levels)

Standard deviation:

(Intercept)

1.51

Log-likelihood: -22.9 (npar = 29)

As Figure 11 illustrates, the two models fit the data much better. However, the cost of this flexibility

is that we cannot reduce the group comparisons to inference on a small set of parameters anymore.

Figures 10 and 11 demonstrate the flexibility of the distribution-free approach of transformation

models compared to the parametric alternative. This is also reflected in the log-likelihood values

(Table 3).

In summary, although the shift-scale beta regression model is not a special case of a transformation

model and one thus cannot expect identical results with a specific parameterisation of tramME::ColrME,

the simpler transformation model (with one instead of two linear predictors) produced a better model

fit (when comparing the in-sample log-likelihoods).

4 Mosquito control trial

Juarez et al. (2021) presented the results of a cluster randomized crossover trial that assessed the

efficacy of Autocidal Gravid Ovitrap (AGO) as a tool for against the mosquito species Aedes aegypti.
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Figure 11: Fitted marginal distributions of algae cover proportion from the zero-inflated beta re-

gression with dispersion model and the stratified mixed-effects transformation model, respectively.

The step functions show the empirical cumulative distribution functions in the four treatment

groups.

Table 3: Log-likelihood values of the four model specifications for the sea urchin removal experi-

ment.

logL

Zero-inflated beta w/o dispersion model -33.60

Linear transformation model -26.27

Zero-inflated beta w/ dispersion model -30.93

Stratified linear transformation model -22.86

The outcome of interest was the number of female mosquitoes collected on glue boards that were

placed either inside or outside of the selected houses in various neighborhoods. Within-year patterns

in mosquito counts as well as the coverage of the treatment in different areas were modeled with

non-linear smooths, while unobserved household and community level effects were captured by nested

random effects. The original article presented the results of a conditional Poisson and a negative

binomial model. We reproduce these results with gamm4, and also estimate a mixed-effects additive

transformation model for count data with “expit” inverse link function. Detailed exposition of count

transformation models is given by Siegfried and Hothorn (2020). For fitting such a model, we will use

the following custom-made ’CotramME’ model class implementing the likelihood for count data via

interval censoring (Siegfried and Hothorn, 2020), which is currently not part of the tramME package.

R> ## additive count transformation model

R> CotramME <- function(formula, data,

+ method = c("logit", "cloglog", "loglog", "probit"),

+ log_first = TRUE, plus_one = log_first, prob = 0.9,

+ ...) {
+ method <- match.arg(method)

+ rv <- all.vars(formula)[1]

+ stopifnot(is.integer(data[[rv]]), all(data[[rv]] >= 0))
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+ data[[rv]] <- data[[rv]] + as.integer(plus_one)

+ sup <- c(-0.5 + log_first, quantile(data[[rv]], prob = prob))

+ bou <- c(-0.9 + log_first, Inf)

+ data[[rv]] <- as.Surv(R(data[[rv]], bounds = bou))

+ fc <- match.call()

+ fc[[1L]] <- switch(method, logit = quote(ColrME), cloglog = quote(CoxphME),

+ loglog = quote(LehmannME), probit = quote(BoxCoxME))

+ fc$method <- NULL

+ fc$plus_one <- NULL

+ fc$prob <- NULL

+ fc$log_first <- log_first

+ fc$bounds <- bou

+ fc$support <- sup

+ fc$data <- data

+ out <- eval(fc, parent.frame())

+ out$call$data <- match.call()$data

+ class(out) <- c("CotramME", class(out))

+ out

+ }
R> mosquito_tram <- CotramME(AEAfemale ~ Year + Income*Placement

+ + s(Week) + s(CovRate200) + (1|HouseID)

+ + (1|Community), offset = -log(daystrapping), data = AGO,

+ method = "logit", order = 5, log_first = TRUE, prob = 0.9)

Table 4 compares the log-likelihood values of the three model versions. In terms of in-sample model

fit, as measured by the log-likelihood value, both the negative binomial and the transformation model

perform much better than the Poisson GAMM. The results suggest slight improvement in the model

fit when we relax the conditional distribution assumption of the negative binomial GAMM and follow

the distribution-free transformation model approach.

Table 4: Log-likelihood values of the fitted Poisson and negative binomial GAMMs reproduced

from Juarez et al. (2021) along with the log-likelihood of an additive transformation model for

count data.

Log-likelihood

Poisson GAMM -6875.73

Negative binomial GAMM -4883.26

Additive count transformation model -4873.07

We will now concentrate on comparing the estimates from the negative binomial and the count

transformation models. Note that the scales on which the parameters are interpreted are different

in the two models: While in the negative binomial model, the parametric and smooth terms affect

the log of the conditional mean of the outcome, in the transformation model with “logit” link (i.e.,

“expit” inverse link), they are interpreted on the log-odds scale. Unlike in the example application

of Section 2, we cannot easily transform the negative binomial parameters to the probability scale.

Although the magnitudes of the effect estimates of the two models are not directly comparable, their

directions, significance and the general shapes of the smooths can be contrasted.
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Figure 12 compares the smooth estimates of the GAMM from gamm4 and the transformation model

from tramME. Although the within-year time patterns (s(Week)) from the two models are almost iden-

tical (on different scales), the difference of the smooth estimates of the coverage rate (s(CovRate200))

is marked. The general shapes of the smooths are similar, but the negative binomial GAMM penal-

izes it more, which is also reflected in the EDFs: 2.96 and 17.49 for the negative binomial and count

transformation models, respectively.
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Figure 12: Smooth terms from the negative binomial and transformation models of the A. aegypti

counts. The dashed lines and the grey areas denote the 95% confidence intervals

Because the parametric and smooth terms of the two models are defined on different scales, the

magnitudes of the effect estimates are not directly comparable. As Table 5 shows, the directions of

the effects match and neither model finds evidence that the main effect of middle income is different

from zero.

Again, the models compared for this example are not nested and it is therefore hard to compare

them directly. The transformation model leads to a similar model interpretation as the model based

on the negative-binomial distribution. Model uncertainty was larger in the transformation model, at

least for the nonlinear effect of CovRate200, and thus one might wonder if the stricter distributional

assumption lead to overconfident model interpretation.
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Table 5: Point estimates and 95% confidence intervals of the parametric fixed effects terms from

the negative binomial and count transformation models of the mosquito control data by Juarez

et al. (2021). Note that the scale of the parameters are different and the effect sizes are not directly

comparable.

Negative binomial Count transformation

β̂ 95% CI β̂ 95% CI

Year = 2018 −0.20 −0.34 —−0.06 −0.35 −0.55 —−0.15

Income = middle −0.78 −1.69 — 0.13 −0.83 −2.02 — 0.36

Placement = out 2.37 2.22 — 2.52 3.01 2.79 — 3.24

Income = middle & Placement = out 0.38 0.13 — 0.64 0.51 0.16 — 0.86
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R> sessionInfo()

R version 4.1.3 (2022-03-10)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 20.04.4 LTS

Matrix products: default

BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0

LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_GB.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_GB.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_GB.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] gamm4_0.2-6 lme4_1.1-28 Matrix_1.4-0 xtable_1.8-4

[5] glmmTMB_1.1.2.3 mgcv_1.8-34 nlme_3.1-152 survival_3.2-13

[9] tramME_1.0.1 tram_0.6-4 mlt_1.4-0 basefun_1.1-2

[13] variables_1.1-1

loaded via a namespace (and not attached):

[1] Rcpp_1.0.6 highr_0.8 nloptr_1.2.2.2

[4] TMB_1.8.0 compiler_4.1.3 tools_4.1.3

[7] boot_1.3-27 evaluate_0.14 lattice_0.20-45

[10] polynom_1.4-0 mvtnorm_1.1-1 xfun_0.23

[13] coda_0.19-4 stringr_1.4.0 BB_2019.10-1

[16] knitr_1.36 grid_4.1.3 orthopolynom_1.0-5

[19] multcomp_1.4-17 minqa_1.2.4 TH.data_1.1-0

[22] alabama_2015.3-1 Formula_1.2-4 magrittr_2.0.1

[25] emmeans_1.7.2 codetools_0.2-18 splines_4.1.3

[28] MASS_7.3-54 numDeriv_2016.8-1.1 quadprog_1.5-8

[31] sandwich_3.0-1 estimability_1.3 stringi_1.5.3

[34] coneproj_1.14 zoo_1.8-9

22


	The rat carrion decomposition experiment
	E. coli concentrations in streams with different grazing periods
	Sea urchin removal experiment
	Mosquito control trial

