tmod: Analysis of Transcriptional
Modules

January Weiner

2018-11-28

Abstract

The package tmod provides blood transcriptional modules described by Chaussabel et
al. (2008) and by Li et al. (2014) as well as metabolic profiling clusters from Weiner et
al. (2012). Furthermore, the package includes several tools for testing the significance of
enrichment of modules or other gene sets as well as visualisation of the features (genes,
metabolites etc.) and modules. This user guide is a tutorial and main documentation for
the package.

Contents

1 Introduction

2.1 Introduction
2.2 The Gambia dataset

Dive into tmod: analysis of transcriptomic responses to tuberculosis

2.3 Transcriptional module analysis with GSEA

24 Visualizing results

3 Statistical tests in tmod
3.1 Introduction
3.2 First generation tests
3.3 Second generation tests
3.3.1 U-test (tmodUtest) . . .

3.3.2 CERNO test (tmodCERNOtest and tmodZtest)

333 PLAGE
3.4 Permutationtests
3.4.1 Introduction

3.4.2 Permutation testing —a generalcase
3.4.3 Permutation testing with tmodGeneSetTest

3.5 Comparison of different tests . .

41 Introduction
42 Evidenceplots
4.3 Summary tables
4.4 Panel plots with tmodPanelPlot

5 Working with limma

Visualisation and presentation of results in tmod

11
11
12
14
14
15
16
18
18
18
21
22

23
23
23
25
26

30

5.1 Limma and tmod . .

5.2 Minimum significant difference MSD)
5.3 Comparing tests across experimental conditions

6 Using tmod for other types of GSEA analyses

6.1 Correlation analysis

6.2 Functional multivariate analysis

6.3 PCA and tag clouds

7 Using and creating modules and gene sets

7.1 Using built-in gene sets (transcriptional modules)

7.2 Accessing the tmod module data directly

721 Moduleoperations 0oL

7.2.2 Using tmod modules in other programs

7.2.3 Custom module definitions

7.3 Obtaining othergenesets

731 MSigDB . . .

7.3.2 Using the ENSEMBL databases through biomaRt
733 Geneontologies(GO)
734 KEGGpathways.
7.3.5 Manual creation of tmod module objects: MSigDB

8 Case studies

8.1 Metabolic profiling of TB patients

8.1.1 Introduction

8.1.2 Differential analysis

8.1.3 Functional multivariate analysis

8.2 Case study: RNASeq

References

41
41
43
48

53
53
54
55
56
65
66
67
69
70
73
74

77
77
77
78
84
89

92

Chapter 1

Introduction

Gene set enrichment analysis (GSEA) is an increasingly important tool in the biological
interpretation of high throughput data, versatile and powerful. In general, there are three
generations of GSEA algorithms and packages.

First generation approaches test for enrichment in defined sets of differentially ex-
pressed genes (often called “foreground”) against the set of all genes (“background”). The
statistical test involved is usually a hypergeometric or Fisher’s exact test. The main prob-
lem with this kind of approach is that it relies on arbitrary thresholds (like p-value or log
fold change cut-offs), and the number of genes that go into the “foreground” set depends
on the statistical power involved. Comparison between the same experimental condition
will thus yield vastly different results depending on the number of samples used in the

experiment.

The second generation of GSEA involve tests which do not rely on such arbitrary defi-
nitions of what is differentially expressed, and what not, and instead directly or indirectly
employ the information about the statistical distribution of individual genes. A popular
implementation of this type of GSEA is the eponymous GSEA program (Subramanian et
al. 2005). While popular and quite powerful for a range of applications, this software has
important limitations due to its reliance on bootstrapping to obtain an exact p-value. For
one thing, the performance of GSEA dramatically decreases for small sample numbers
(Weiner 3rd and Domaszewska 2016). Moreover, the specifics of the approach prevent it
from being used in applications where a direct test for differential expression is either not
present (for example, in multivariate functional analysis, see Section “Functional multi-

variate analysis”).

The tmod package and the included CERNO' test belong to the second generation of
algorithms. However, unlike the program GSEA, the CERNO relies exclusively on an
ordered list of genes, and the test statistic has a x? distribution. Thus, it is suitable for
any application in which an ordered list of genes is generated: for example, it is possible
to apply tmod to weights of PCA components or to variable importance measure of a
machine learning model.

tmod was created with the following properties in mind: (i) test for enrichment which
relies on a list of sorted genes, (ii) with an analytical solution, (iii) flexible, allowing custom
gene sets and analyses, (iv) with visualizations of multiple analysis results, suitable for
time series and suchlike, (v) including transcriptional module definitions not present in
other databases and, finally, (vi) to be suitable for use in R.

!Coincident Extreme Ranks in Numerical Observations (Yamaguchi et al. 2008)

Chapter 2

Dive into tmod: analysis of
transcriptomic responses to tuberculosis

2.1 Introduction

In this chapter, I will use an example data set included in tmod to show the application
of tmod to the analysis of differential gene expression. The data set has been generated
by Maertzdorf et al. (2011) and has the GEO ID GSE28623. Is based on whole blood RNA
microarrays from tuberculosis (TB) patients and healthy controls.

Although microarrays were used to generate the data, the principle is the same as in
RNASeq.

2.2 The Gambia data set

In the following, we will use the Egambia data set included in the package. The data
is already background corrected and normalized, so we can proceed with a differential
gene expression analysis. Note that only a bit over 5000 genes from the original set of
over 45000 probes is included.

library(limma)
library(tmod)

data(Egambia)
design <- cbind(Intercept=rep(1, 30), TB=rep(c(0,1), each= 15))
E <- as.matrix(Egambia[,-c(1:3)])
fit <- eBayes(1lmFit(E, design))
tt <- topTable(fit, coef=2, number=Inf,
genelist=Egambial[,1:3])

The table below shows first couple of results from the table tt.

GENE_SYMBOL

GENE_NAME logFC adj.P.Val
FAM20A family with sequence similarity 20, 2.956 0.001899
member A”
FCGR1B Fc fragment of IgG, high affinity Ib, 2.391 0.002095
receptor (CD64)”
BATF2 basic leucine zipper transcription 2.681 0.002216
factor, ATF-like 2
ANKRD22 ankyrin repeat domain 22 2.764 0.002692
SEPT4 septin 4 3.287 0.002692
CD274 CD274 molecule 2.377 0.002692

OK, we see some of the genes known to be prominent in the human host response
to TB. We can display one of these using tmod’s showGene function (it’s just a boxplot
combined with a beeswarm, nothing special):

group <- rep(c("CTRL", "TB"), each=15)
showGene (E["20799",], group,
main=Egambia["20799", "GENE_SYMBOL"])

FCGR1B

16_ 1
c 15 — :
fel .

g 14 - | 5
o ' o
s 13 !

I

g’ 12 —

11 - !

- m
nd =
|_
O

Fine, but what about the modules?

2.3 Transcriptional module analysis with GSEA

There are two main functions in tmod to understand which modules or gene sets are sig-
nificantly enriched'. There are several statistical tests which can be used from within
tmod (see chapter “Statistical tests in tmod” below), but here we will use the CERNO test,
which is the main reason this package exist. CERNO is particularly fast and robust second
generation approach, recommended for most applications.

CERNO works with an ordered list of genes (only ranks matter, no other statistic is
necessary); the idea is to test, for each gene set, whether the genes in this gene set are
more likely than others to be at the beginning of that list. The CERNO statistic has a X2
distribution and therefore no randomization is necessary, making the test really fast.

'If you work with limma, there are other, more efficient and simpler to use functions. See “Working with
limma” below.

1

<- tt$GENE_SYMBOL

resC <- tmodCERNOtest(1l)
head(resC, 15)

##
##
##
##
##
##
##
##
##
##
##
#i#t
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

LI.
LT.
LT.
LI.
LI.
LI.
LT.
LT.
LI.
LI.
LI.
LT.
LT.
LT.
LI.

LT.
LT.
LT.
LI.
LI.
LI.
LT.
LT.
LI.
LI.
LI.
LT.
LT.
LI.
LI.

ID

M37.0 LI.M37.0
M11.0 LI.M11.0
S4 LI.S4
M112.0 LI.M112.0
M75 LI.M75
M16 LI.M16
M67 LI.M67
M165 LI.M165
M37.1 LI.M37.1
M118.60 LI.M118.0
S5 LI.S5
M4.3 LI.M4.3
M20 LI.M20
mM81 LI.M81
M150 LI.M150
N1 AUC

M37.0 100 0.746
M11.0 20 0.777
S4 10 0.897
M112.0 11 0.846
M75 10 6.893
M16 5 0.979
M67 6 0.971
M165 19 0.720
M37.1 12 0.870
M118.0 9 0.877
S5 34 0.683
M4.3 5 0.886
M20 5 0.876
M81 13 0.756
M150 5 0.950

immune activation - generic cluster 426.
enriched in monocytes (II) 113.

76.

73.

65.

46.

49.

91.

68.

54.

123.
34.

M

TLR a

enriched in activ
en
e

Title cerno

onocyte surface signature
complement activation (I)
antiviral IFN signature
nd inflammatory signaling
activated dendritic cells
ated dendritic cells (II)
riched in neutrophils (I)
nriched in monocytes (1IV)
DC surface signature

myeloid cell enriched receptors and transporters

cES
.13
.85
.82
.35
.26
.63
.13
.41
.83
.03
.81
.44
.19
.19
.18

W N W WE WDNDNDNBAEPEEWOWWDNMDN

AN DR DMRPRAANRPRRRRROOR

AP-1 tra
enriched in my

P.value adj.P.val
.82e-18 6.31e-16

.26e-09 9.09e-07
.61le-08 1.85e-06
.72e-07 1.49e-05
.05e-06 7.19e-05
.25e-06 7.19e-05
.69e-06 8.36e-05
.44e-06 1.06e-04
.32e-06 1.66e-04
.49e-05 5.17e-04
.78e-05 1.50e-03
.59e-04 4.58e-03
.09e-04 9.96e-03
.22e-04 9.96e-03
.32e-04 9.96e-03

nscription factor network
eloid cells and monocytes
innate antiviral response

31.
57.
31.

00O © A NO OGN W WSN B~ 0 D

Only first 15 results are shown above.

Columns in the above table contain the following;:

¢ ID The module ID. IDs starting with “LI” come from Li et al. (S. Li et al. 2014),
while IDs starting with “DC” have been defined by Chaussabel et al. (Chaussabel
et al. 2008).

¢ Title The module description

¢ cerno The CERNO statistic

* N1 Number of genes in the module

¢ AUC The area under curve — main size estimate

e cES CERNO statistic divided by 2 X N1

¢ P.Value P-value from the hypergeometric test

¢ adj.P.Val P-value adjusted for multiple testing using the Benjamini-Hochberg cor-
rection

These results make a lot of sense: the transcriptional modules found to be enriched in a
comparison of TB patients with healthy individuals are in line with the published findings.
In especially, we see the interferon response, complement system as well as T-cell related
modules.

2.4 Visualizing results

The main working horse for visualizing the results in tmod is the function tmodPanelPlot.
This is really a glorified heatmap which shows both the effect size (size of the blob on
the figure below) and the p-value (intensity of the color). Each column corresponds to a
different comparison. Here, there will be only one column for the only comparison we
made, however we need to wrap it in a 1ist object. However, we can also use a slightly
different representation to also show how many significantly up- and down-regulated”
genes are found in the enriched modules (right panel on the figure below).

ZFormally, we don’t test for regulation here. “Differentially expressed” is the correct expression. I will
use, however, the word “regulated” throughout this manual with the understanding that it only means
“there is a difference between two conditions” because it is shorter.

par (mfrow=c(1,2))
tmodPanelPlot (list(Gambia=resC))

calculate the number of significant genes

per module

pie <- tmodDecideTests(g=tt$GENE_SYMBOL,
1fc=tt$logFC,
pval=tt$adj.P.val)

names(pie) <- "Gambia"

tmodPanelPlot (list(Gambia=resC),

Gambia

enriched in myeloid cells and monocytes (LI.M81)
innate antiviral response (LI.M150)

AP-1 transcription factor network (L1.M20)
myeloid cell enriched receptors and transporters (LI.M4.3)
DC surface signature (LI.S5)

enriched in monocytes (1V) (LI.M118.0)
complement activation (1) (LI.M112.0)

Monocyte surface signature (L1.S4)

enriched in monocytes (11) (LI.M11.0)

immune activation — generic cluster (LI.M37.0)
enriched in neutrophils (1) (LI.M37.1)

enriched in activated dendritic cells (1I) (LI.M165)
activated dendritic cells (LI.M67)

TLR and inflammatory signaling (LI.M16)

antiviral IFN signature (LI.M75)

(XX X J

P value: P value:

0.01 0.001 107 10 0.01

Effect size:

0.68

Effect size:

0.68 0.98

pie=pie, grid="b")

enriched in myeloid cells and monocytes (LI.M81)

innate antiviral response (LI.M150)
AP-1 transcription factor network (LI.M20)

myeloid cell enriched receptors and transporters (LI.M4.3)

DC surface signature (LI.S5)

enriched in monocytes (IV) (LI.M118.0)
complement activation (1) (LI.M112.0)
Monocyte surface signature (LI1.S4)

enriched in monocytes (1l) (LI.M11.0)

immune activation — generic cluster (LI.M37.0)
enriched in neutrophils (I) (LI.M37.1)

enriched in activated dendritic cells (1I) (LI.M165)
activated dendritic cells (LI.M67)

TLR and inflammatory signaling (LI.M16)
antiviral IFN signature (LI.M75)

[N | nn
0.001 10 107
[B | [B | H N

Gambia

On the right hand side, the red color on the bars indicates that all signficantly regulated
in the enriched modules. The size of the bar corresponds to the AUC, and intensity of the
color corresponds to the p-value. See chapter “Visualisation and presentation of results

in tmod” for more information on this and other functions.

10

Chapter 3

Statistical tests in tmod

3.1 Introduction

There is a substantial numer of different gene set enrichment tests. Several are imple-
mented in tmod (see Table below for a summary). This chapter gives an overview of the
possibilities for gene set enrichment analysis with tmod.

Test Description Input type
tmodHGtest First generation test Two sets, foreground and
background
tmodUtest Wilcoxon U test Ordered gene list
tmod CERNOtest CERNO test Ordered gene list
tmodZtest variant of the CERNO Ordered gene list
test
tmodPLAGEtest eigengene-based Expression matrix
tmodAUC general permutation Matrix of ranks

based testing
tmodGeneSetTest permutation based on a A statistic (e.g. logFC)
particular statistic

In the following, I will briefly describe the various tests and show examples of usage
on the Gambia data set.

11

3.2 First generation tests

First generation tests were based on an overrepresentation analysis (ORA). In essence,
they rely on splitting the genes into two groups: the genes of interest (foreground), such
as genes that we consider to be significantly regulated in an experimental condition, and
all the rest (background). For a given gene set, this results in a 2 X 2 contingency table. If
these two factors are independent (i.e., the probability of a gene belonging to a gene set is
independent of the probability of a gene being regulated in the experimental condition),
then we can easily derive expected frequencies for each cell of the table. Several statistical
tests exist to test whether the expected frequencies differ significantly from the observed
frequencies.

In tmod, the function tmodHGtest (), performs a hypergeometric test on two groups
of genes: ‘foreground’ (fg), or the list of differentially expressed genes, and ‘background’
(bg) — the gene universe, i.e., all genes present in the analysis. The gene identifiers used
currently by tmod are HGNC identifiers, and we will use the GENE_SYMBOL field from
the Egambia data set.

In this particular example, however, we have almost no genes which are significantly
differentially expressed after correction for multiple testing: the power of the test with 10
individuals in each group is too low. For the sake of the example, we will therefore relax
our selection. Normally, I'd use a g-value threshold of at least 0.001.

fg <- tt$GENE_SYMBOL[tt$adj.P.Val < 0.05 & abs(tt$logFC) > 1]
resHG <- tmodHGtest(fg=fg, bg=tt$GENE_SYMBOL)

options(width=60)

resHG

ID
LI.M112.0 LI.M112.0
LI.M11.0 LI.M11.0

LI.M75 LI.M75
LI.S4 LI.S4
LI.S5 LI.S5
LI.M165 LI.M165
LI.M4.3 LI.M4.3
LI.M16 LI.M16
Title

12

LI.M112.0 complement activation (I)

LI.M11.0 enriched in monocytes (II)
LI.M75 antiviral IFN signature
LI1.S4 Monocyte surface signature
LI.S5 DC surface signature
LI.M165 enriched in activated dendritic cells (II)
LI.M4.3 myeloid cell enriched receptors and transporters
LI.M16 TLR and inflammatory signaling
#it b B n N E P.value adj.P.val
LI.M112.0 4 11 47 4826 37.3 2.48e-06 0.000858
LI.M11.0 4 20 47 4826 20.5 3.41e-05 0.005907
LI.M75 3 10 47 4826 30.8 9.91e-05 0.008569
L1.S4 3 10 47 4826 30.8 9.91e-05 0.008569
LI.S5 4 34 47 4826 12.1 2.96e-04 0.020465
LI.M165 3 19 47 4826 16.2 7.52e-04 0.039413
LI.M4.3 2 5 47 4826 41.1 9.11e-04 0.039413
LI.M16 2 5 47 4826 41.1 9.11e-04 0.039413

The columns in the above table contain the following:

¢ ID The module ID. IDs starting with “LI” come from Li et al. (S. Li et al. 2014),
while IDs starting with “DC” have been defined by Chaussabel et al. (Chaussabel
et al. 2008).

¢ Title The module description

* b Number of genes from the given module in the fg set

¢ B Number of genes from the module in the bg set

* n Size of the fg set

* N Size of the bg set

e E Enrichment, calcualted as (b/n)/(B/N)

¢ P.Value P-value from the hypergeometric test

¢ adj.P.Val P-value adjusted for multiple testing using the Benjamini-Hochberg cor-
rection

Well, IEN signature in TB is well known. However, the numbers of genes are not high:
n is the size of the foreground, and b the number of genes in fg that belong to the given
module. N and B are the respective totals — size of bg+fg and number of genes that belong

13

to the module that are found in this totality of the analysed genes. If we were using the
full Gambia data set (with all its genes), we would have a different situation.

Lack of significant genes is the main problem of ORA: splitting the genes into fore-
ground and background relies on an arbitrary threshold which will yield very different
results for different sample sizes.

3.3 Second generation tests

3.3.1 U-test (tmodUtest)

Another approach is to sort all the genes (for example, by the respective p-value) and
perform a U-test on the ranks of (i) genes belonging to the module and (ii) genes that do
not belong to the module. This is a bit slower, but often works even in the case if the power
of the statistical test for differential expression is low. That is, even if only a few genes or
none at all are significant at acceptable thresholds, sorting them by the p-value or another
similar metric can nonetheless allow to get meaningful enrichments'.

Moreover, we do not need to set arbitrary thresholds, like p-value or logFC cutoff.

The main issue with the U-test is that it detects enrichments as well as depletions —
that is, modules which are enriched at the bottom of the list (e.g. modules which are
never, ever regulated in a particular comparison) will be detected as well. This is often
undesirable. Secondly, large modules will be reported as significant even if the actual
effect size (i.e., AUC) is modest or very small, just because of the sheer number of genes in
a module. Unfortunately, also the reverse is true: modules with a small number of genes,
even if they consist of highly up- or down-regulated genes from the top of the list will not
be detected.

1 <- tt$GENE_SYMBOL

resU <- tmodUtest(1l)
head(resu)

#i#t ID Title u N1 AUC

!The rationale is that the non-significant p-values are not associated with the test that we are actually
performing, but merely used to sort the gene list. Thus, it does not matter whether they are significant or

not.

14

LI.M37.0 LI.M37.0 immune activation - generic cluster 352659 100
LI.M37.1 LI.M37.1 enriched in neutrophils (I) 50280 12
LI.S4 LI.S4 Monocyte surface signature 43220 10
LI.M75 LI.M75 antiviral IFN signature 42996 10
#4# LI.M11.0 LI.M11.0 enriched in monocytes (II) 74652 20
LI.M67 LI.M67 activated dendritic cells 28095 6
#i# P.value adj.P.val

LI.M37.0 1.60e-17 5.53e-15

LI.M37.1 4.53e-06 6.57e-04

LI.S4 6.85e-06 6.57e-04

LI.M75 8.63e-06 6.57e-04

LI.M11.0 9.49e-06 6.57e-04

LI.M67 3.20e-05 1.81e-03

nrow(resu)

[1] 25

This list makes a lot of sense, and also is more stable than the other one: it does not
depend on modules that contain just a few genes. Since the statistics is different, the b, B,
n, N and E columns in the output have been replaced by the following:

¢ U The Mann-Whitney U statistics
¢ N1 Number of genes in the module
e AUC Area under curve — a measure of the effect size

A U-test has been also implemented in limma in the wilcoxGST() function.

3.3.2 CERNO test (tmodCERNOtest and tmodZtest)

There are two tests in tmod which both operate on an ordered list of genes: tmodUtest
and tmodCERNOtest. The U test is simple, however has two main issues. Firstly, The
CERNO test, described by Yamaguchi et al. (2008), is based on Fisher’s method of com-
bining probabilities. In summary, for a given module, the scaled ranks of genes from the

15

© 0 &6 6 00 o

. 746
.870
.897
.893
L7777
.971

module are treated as probabilities. These are then logarithmized, summed and multi-
plied by -2:

R;
Ntot

feerno = —2- Zl

This statitic has the)(2 distribution with 2 - N degrees of freedom, where /N is the
number of genes in a given module and V¢, is the total number of genes (Yamaguchi et
al. 2008).

The CERNO test is actually much more practical than other tests for most purposes and
is the recommended approach. A variant called tmodZtest exists in which the p-values
are combined using Stouffer’s method rather than the Fisher’s method.

3.3.3 PLAGE

PLAGE (Tomfohr, Lu, and Kepler 2005) is a gene set enrichment method based on singular
value decomposition (SVD). The idea is that instead of running a statistical test (such as a
t-test) on each gene separately, information present in the gene expression of all genes in a
gene set is first extracted using SVD, and the resulting vector (one per gene set) is treated
as a “pseudo gene” and analysed using the approppriate statistical tool.

In the tmod implementation, for each module a gene expression matrix subset is gener-
ated and decomposed using PCA using the eigengene() function. The first component
is returned and a t-test comparing two groups is then performed. This limits the imple-
mentation to only two groups, but extending it for more than one group is trivial.

tmodPLAGEtest (Egambia$GENE_SYMBOL, Egambial,-c(1:3)], group=group)

Converting group to factor

Calculating eigengenes...

ID Title
L1.S4 LI.S4 Monocyte surface signature
LI.M11.0 LI.M11.0 enriched in monocytes (II)

16

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
#i#t
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

LI.
LT.
LT.
LI.
LI.
LI.
LT.
LT.
LI.
LI.
LI.
LT.
LT.
LI.
LI.
LI.

LT.
LT.
LI.
LI.
LT.

LT

LT.
LI.
LI.
LI.
LT.
LT.
LI.
LI.
LI.
LT.
LT.
LI.

M16 LI.M16 TLR and inflammatory signaling

M20 LI.M20 AP-1 transcription factor network

M67 LI.M67 activated dendritic cells

M37.0 LI.M37.0 immune activation - generic cluster

M4.3 LI.M4.3 myeloid cell enriched receptors and transporters

M118.0 LI.M118.0 enriched in monocytes (IV)

M37.1 LI.M37.1 enriched in neutrophils (I)

M97 LI.M97 enriched for SMAD2/3 signaling

M112.0 LI.M112.0 complement activation (I)

M105 LI.M105 TBA

M75 LI.M75 antiviral IFN signature

M165 LI.M165 enriched in activated dendritic cells (II)

mM81 LI.mM81 enriched in myeloid cells and monocytes

M112.1 LI.M112.1 complement activation (II)

M86.0 LI.M86.0 chemokines and inflammatory molecules in myeloid cells

M66 LI.M66 TBA
t.t D.CTRL AbsD.CTRL P.Value adj.P.val

S4 -7.17 -2.62 2.62 9.96e-08 3.45e-05

M11.0 -6.45 -2.35 2.35 5.51e-07 9.53e-05

M16 -5.34 -1.95 1.95 1.09e-05 1.26e-03

M20 -4.95 -1.81 1.81 3.21e-05 2.78e-03

M67 -4.69 -1.71 1.71 6.59e-05 3.88e-03

.M37.0 -4.73 -1.73 1.73 6.89e-05 3.88e-03

M4.3 -4.63 -1.69 1.69 9.74e-05 3.88e-03

M118.0 -4.62 -1.69 1.69 9.75e-05 3.88e-03

M37.1 -4.53 -1.66 1.66 1.01e-04 3.88e-03

M97 -4.,33 -1.58 1.58 1.74e-04 5.52e-03

M112.0 -4.36 -1.59 1.59 1.75e-04 5.52e-03

M105 -4,10 -1.50 1.50 3.28e-04 9.44e-03

M75 -3.91 -1.43 1.43 5.63e-04 1.50e-02

M165 -3.77 -1.38 1.38 7.80e-04 1.93e-02

M81 -3.80 -1.39 1.39 9.29e-04 2.14e-02

M112.1 -3.52 -1.29 1.29 1.64e-03 3.43e-02

M86.0 -3.50 -1.28 1.28 1.68e-03 3.43e-02

M66 -3.36 -1.23 1.23 2.24e-03 4.30e-02

17

3.4 Permutation tests

3.4.1 Introduction

The GSEA approach (Subramanian et al. 2005) is based on similar premises as the other
approaches described here. In principle, GSEA is a combination of an arbitrary scoring
of a sorted list of genes and a permutation test. Although the GSEA approach has been
criticized from statistical standpoint (Damian and Gorfine 2004), it remains one of the
most popular tools to analyze gene sets amongst biologists. In the following, it will be
shown how to use a permutation-based test with tmod.

A permutation test is based on a simple principle. The labels of observations (that is,
their group assignments) are permutated and a statistic S; is calculated for each i-th per-
mutation. Then, the same statistic S, is calculated for the original data set. The proportion
of the permutated sets that yielded a statistic S; equal to or higher than s, is the p-value
for a statistical hypothesis test.

3.4.2 Permutation testing — a general case

First, we will set up a function that creates a permutation of the Egambia data set and
repeats the limma procedure for this permutation, returning the ordering of the genes.

permset <- function(data, design) {
require(limma)
data <- data[, sample(l:ncol(data))]
fit <- eBayes(lmFit(data, design))
tt <- topTable(fit, coef=2, number=Inf, sort.by="n")
order(tt$P.Value)

In the next step, we will generate 100 random permutations. The sapply function
will return a matrix with a column for each permutation and a row for each gene. The
values indicate the order of the genes in each permutation. We then use the tmod function
tmodAUC to calculate the enrichment of each module for each permutation.

18

same design as before
design <- cbind(Intercept=rep(1, 30),

TB=rep(c(0,1), each= 15))
E <- as.matrix(Egambia[,-c(1:3)])
N <- 250 # small number for the sake of example
set.seed(54321)
perms <- sapply(1:N, function(x) permset(E, design))
pauc <- tmodAUC(Egambia$GENE_SYMBOL, perms)
dim(perms)

[1] 5547 250

We can now calculate the true values of the AUC for each module and compare them
to the results of the permutation. The parameters “order.by” and “qval” ensure that we
will calculate the values for all the modules (even those without any genes in our gene
list!) and in the same order as in the perms variable.

fit <- eBayes(lmFit(E, design))

tt <- topTable(fit, coef=2, number=Inf,
genelist=Egambial,1:3])

res <- tmodCERNOtest(tt$GENE_SYMBOL, qval=Inf, order.by="n")

all(res$ID == rownames(perms))

[1] TRUE

fnsum <- function(m) sum(pauc[m,] >= res[m, "AUC"])
sums <- sapply(res$ID, fnsum)
res$perm.P.val <- sums / N
res$perm.P.Val.adj <- p.adjust(res$perm.P.Val)
res <- res[order(res$AUC, decreasing=T),]
head(res[order(res$perm.P.Val),
c("ID", "Title", "AUC", "adj.P.val", "perm.P.Val.adj")])

ID Title AUC adj.P.vVal
LI.M16 LI.M16 TLR and inflammatory signaling 0.979 7.19e-05

19

LI.M59 LI.M59 CCR1, 7 and cell signaling 0.977 5.75e-02
LI.M67 LI.M67 activated dendritic cells 0.971 8.36e-05
LI.M150 LI.M150 innate antiviral response 0.950 9.96e-03
LI.M127 LI.M127 type I interferon response 0.946 1.16e-02
LI1.S4 LI.S4 Monocyte surface signature 0.897 1.85e-06
#it perm.P.Val.adj
LI.M16 (0]
LI.M59 0
LI.M67 0
LI.M150 (C]
LI.M127 0
LI.S4 0

Although the results are based on a small number of permutations, the results are
nonetheless strikingly similar. For more permutations, they improve further. The table
below is a result of calculating 100,000 permutations.

ID Title AUC adj.P.val
LI.M37.0 immune activation - generic cluster 0.7462103 0.00000
LI.M11.0 enriched in monocytes (II) 0.7766542 0.00000
LI.M112.0 complement activation (I) 0.8455773 0.00000
LI.M37.1 enriched in neutrophils (I) 0.8703781 0.00000
LI.M105 TBA 0.8949512 0.00000
LI.S4 Monocyte surface signature 0.8974252 0.00000
LI.M150 innate antiviral response 0.9498859 0.00000
LI.M67 activated dendritic cells 0.9714730 0.00000
LI.M16 TLR and inflammatory signaling 0.9790500 0.00000
LI.M118.0 enriched in monocytes (IV) 0.8774710 0.00295
LI.M75 antiviral IFN signature 0.8927741 0.00295
LI.M127 type I interferon response 0.9455715 0.00295
LI.S5 DC surface signature 0.6833387 0.02336
LI.M188 TBA 0.8684647 0.09894
LI.M165 enriched in activated dendritic cells (II) 0.7197180 0.11600
LI.M240 chromosome Y linked 0.8157171 0.11849
LI.M20 AP-1 transcription factor network 0.8763327 0.12672
LI.mM81 enriched in myeloid cells and monocytes 0.7562851 0.13202
LI.M3 regulation of signal transduction 0.7763995 0.14872
LI.M4.3 myeloid cell enriched receptors and transporters 0.8859573 0.15675

20

Unfortunately, the permutation approach has two main drawbacks. Firstly, it requires

a sufficient number of samples — for example, with three samples in each group there are

only 6! = 720 possible permutations. Secondly, the computational load is substantial.

3.4.3 Permutation testing with tmodGeneSetTest

Another approach to permutation testing is through the tmodGeneSetTest () function.

This is an implementation of geneSetTest from the limma package’. Here, a statistic is

used — for example the fold changes or -10g10(pvalue). For each module, the average

value of this statistic in the module is calculated and compared to a number of random

samples of the same size as the module. Below, we are using again the t t object containing

the results of the analysis in the Gambia data set.

tmodGeneSetTest (t t$GENE_SYMBOL, abs(tt$logFC))

##
##
##
##
##
##
##
#i#
##
##
##
##
##
##
##
##
##
##
##
##

LI.
LI.
LT.
LT.
LI.
LI.
LI.
LT.
LT.
LT.
LI.
LI.
LI.
LT.
LT.

LI.
LI.
LT.

ID Title
M4.3 LI.M4.3 myeloid cell enriched receptors and transporters
M11.0 LI.M11.0 enriched in monocytes (II)
M20 LI.M20 AP-1 transcription factor network
M37.0 LI.M37.0 immune activation - generic cluster
M67 LI.M67 activated dendritic cells
M75 LI.M75 antiviral IFN signature
M112.0 LI.M112.0 complement activation (I)
M165 LI.M165 enriched in activated dendritic cells (II)
M240 LI.M240 chromosome Y linked
S4 LI.S4 Monocyte surface signature
S5 LI.S5 DC surface signature
M16 LI.M16 TLR and inflammatory signaling
M37.1 LI.M37.1 enriched in neutrophils (I)
M118.0 LI.M118.0 enriched in monocytes (IV)
M188 LI.M188 TBA
M N1 AUC P.Value adj.P.val
M4.3 1.216 5 0.886 0.000 0.0000
M11.0 0.902 20 0.777 0.000 0.0000
M20 1.414 5 0.876 0.000 0.0000

2Only the actual geneSetTest part, the wilcoxGST part is implemented in tmodUtest

21

W W w oo~ 01010 oo © oo b

.15
.09
.55
.14
.42
.03
.64
.23
.39
.90
.86
.24
.36
.75
.71

LI.M37.0 0.815 100 0.746 0.000 0.0000
LI.M67 1.480 6 0.971 0.000 0.0000
LI.M75 1.222 10 0.893 0.000 0.0000
LI.M112.0 1.273 11 0.846 0.000 0.0000
LI.M165 0.931 19 0.720 0.000 0.0000
LI.M240 1.222 8 0.816 0.000 0.0000
LI1.S4 1.224 10 0.897 0.000 0.0000
LI.S5 0.774 34 0.683 0.000 0.0000
LI.M16 1.381 5 0.979 0.001 0.0288
LI.M37.1 0.855 12 0.870 0.002 0.0461
LI.M118.0 0.959 9 0.877 0.002 0.0461
LI.M188 1.067 6 0.868 0.002 0.0461

In the above table, d is the difference between the mean value of the statistic
(abs(tt$logFC)) in the given module and the mean of the means of the statistic in the
random samples, divided by standard deviation.

The drawback of this approach is that we are permuting the genes (rather than the
samples). This may easily lead to unstable and spurious results, so care should be taken.

3.5 Comparison of different tests

22

Chapter 4

Visualisation and presentation of results
in tmod

41 Introduction

By default, results produced by tmod are data frames containing one row per tested gene
set / module. In certain circumstances, when multiple tests are performed, the returned
object is a list in which each element is a results table. In other situations a list can be
created manually. In any case, it is often necessary to extract, compare or summarize one
or more result tables.

4.2 Evidence plots

Let us first investigate in more detail the module L1.M75, the antiviral interferon signature.
We can use the evidencePlot function to see how the module is enriched in the list 1.

1 <- tt$GENE_SYMBOL
evidencePlot (1, "LI.M75")

23

0.8
|

Fraction of genes in module
0.0 0.4

0 1000 2000 3000 4000 5000

List of genes

In essence, this is a receiver-operator characteristic (ROC) curve, and the area under
the curve (AUC) is related to the U-statistic, from which the P-value in the tmodUtest is
calculated, as AUC = nquQ. Both the U statistic and the AUC are reported. Moreover,

the AUC can be used to calculate effect size according to the Wendt’s formula(Wendt 1972)
for rank-biserial correlation coefficient:

2-U

ny - no

r=1-— =1-2-AUC

In the above diagram, we see that nine out of the 10 genes that belong to the LL.M75
module and which are present in the Egambia data set are ranked among the top 1000
genes (as sorted by p-value).

There are three options of interest for generating evidence plots, shown below. Firstly,
by using the option labels=... itis possible to indicate gene of interest on the plot.
Secondly, option style="g" shows a plot similar to the K-S plots of GSEA. Thirdly, it is
possible to show more than one module on a single plot.

par(mfrow=c(1,2))

evidencePlot(1l, m="LI.M75", style="g")

evidencePlot(1l, m=c("LI.M37.0", "LI.M75"),
gene.labels=1[1:4], col=c(2,4), legend="right")

24

Fraction of genes in module

0.6

0

1000 2000

T
3000

List of genes

4.3 Summary tables

4000 5000

Fraction of genes in module

06 08 1.0

0.4

0.2

0.0

N
[N
[a]
24
X
zZ
<

— LLM37.0
— LLM75

[T
0 1000

T T T 1
2000 3000 4000 5000

List of genes

We can summarize the output from the previously run tests (tmodUtest, tmodCERNOtest
and tmodHGtest) in one table using tmodSummary. For this, we will create a list contain-

ing results from all comparisons.

resAll <- list(CERNO=resC, U=resU, HG=resHG)
head (tmodSummary(resAll))

##
##
##
##
##
##
##
##
##
##
##
##
##
#i#

LI.
LI.
LI.
LI.
LI.
LI.

LI.
LT.
LT.
LI.
LI.
LI.

M11.0
M112.0
M118.0
M127
M13
M150

M11.0
M112.0
M118.0
M127
M13
M150

ID
LI.M11.0
LI.M112.0
LI.M118.0
LI.M127
LI.M13
LI.M150
g.CERNO
.09e-07
.49e-05
.17e-04
.16e-02
.66e-02
.96e-03

© W =L, 0 RFr o©

innate

AUC.U

0.

0
0.
(0]

777
.846
877
. 946

NA
.950

o 0o © o

The table below shows the results.

Title AUC.CERNO

enriched in monocytes (II) 0.777

complement activation (I)
enriched in monocytes (IV)
type I interferon response
activation by cytosolic DNA sensing
innate antiviral response

q.U E.HG
.000657 20.5 0.005907
.001811 37.3 0.000858
.001926
.007486

NA

.007162

25

NA
NA
NA
NA

q.HG

NA
NA
NA
NA

.846
.877
. 946
.913
.950

© 0 6 © O

4.4 Panel plots with tmodPanelPlot

A list of result tables (or even of a single result table) can be visualized using a heatmap-
like plot called here “panel plot”. The idea is to show both, effect sizes and p-values, and,
optionally, also the direction of gene regulation.

In the example below, we will use the resAll object created above, containing the
results from three different tests for enrichment, to compare the results of the individual
tests. However, since the E column of HG test is not easily comparable to the AUC values
(which are between 0 and 1), we need to scale it down.

resAl11$HGSE <- log10(resAll$HGS$E) - 0.5
tmodPanelPlot (resAll)

26

DC surface signature (LI.S5)
complement activation (1) (LI1.M112.0)
enriched in monocytes (ll) (LI.M11.0)

antiviral IFN signature (LI.M75)

Monocyte surface signature (LI1.S4)

myeloid cell enriched receptors and transporters (LI.M4.3)
TLR and inflammatory signaling (L1.M16)
enriched in activated dendritic cells (1) (LI.M165)
enriched in monocytes (V) (LI1.M118.0)

activated dendritic cells (LI.M67)

immune activation — generic cluster (LI.M37.0)
enriched in neutrophils (1) (LI.M37.1)

AP-1 transcription factor network (L1.M20)

type | interferon response (L1.M127)

innate antiviral response (LI.M150)

enriched in myeloid cells and monocytes (LI.M81)

P value:

0.01 0.001 107

Effect size:

0.5

Each enrichment result corresponds to a reddish blob. The size of the blob corresponds

tmodCERNOtest is the more sensitive option.

We can see that also the intercept term is enriched for genes found in monocytes and

However, one is usually interested in the direction of regulation. If a gene list is sorted

27

CERNO

HG

to the effect size (AUC or logl0(Enrichment), as it may be), and color intensity corre-
sponds to the p-value — pale colors show p-values closer to 0.01. It is easily seen how

neutrophils. Note that by default, tmodPanelPlot only shows enrichments with p < 0.01,
hence a slight difference from the tmodSummary output. This behavior can be modified
by the pval.thr option.

by p-value, the enriched modules may contain both up- or down-regulated genes'. It
is often desirable to visualize whether genes in a module go up, or go down between
experimental conditions. For this, the function tmodDecideTests is used to obtain the
number of significantly up- or down-regulated genes in a module.

This information must be obtained separately from the differential gene expression
analysis and provided as a list to tmodPanelPlot. The names of this list must be identical
to the names in the results list.

There are three default representations (rug-like, pie and a square pie).

par(mfrow=c(1,3))

pie <- tmodDecideTests(g=tt$GENE_SYMBOL, lfc=tt$logFC, pval=tt$adj.P.val)
names(pie) <- "CERNO"

tmodPanelPlot (resAl1["CERNO"], pie=pie, grid="b")

tmodPanelPlot (resAll1["CERNO"], pie=pie, grid="b", pie.style="pie")
tmodPanelPlot (resAl1["CERNO"], pie=pie, grid="b", pie.style="boxpie")

T

uuuuu

sy
o001 10+ 0% 0°

rrrrrrrr

,,,,,,,,

001 001 0001 w0 10° 107° 001 0001 107
-
A A n = -
iil Il EE R EE W e o = =
E =
o o

Each mini-plot shows the effect size of the enrichment and the corresponding p-value,
as before. Additionally, the fraction of up-regulated and down-regulated genes is visual-
ized by coloring a fraction of the area of the mini-plot red or blue, respectively”.

The tmodPanelPlot function has several parameters, notably for filtering and la-
belling:

!Searching for enrichment only in up- or only in down-regulated genes depends on how the gene list is
sorted; this is described in Section “Testing for up- or down-regulated genes separately”.
“The colors can be modified by the parameter pie.colors

28

¢ Filtering:

- filter.empty.rowsand filter.empty.cols remove, respectively, mod-
ules and result tables with no enrichment above pval.thr

— filter.rows.pval and filter.rows.auc removes rows that do not con-
tain at least one p value or AUC above the specified threshold

- filter.by.id shows only a selected subset of modules

¢ Labelling:

- row.labels.auto: by default, the row labels of the panel plot are generated
automatically from the module descriptions. This option specifies how.
- row.labels: alternatively, labels for the modules shown can be provided

manually as a named vector
- col.labels: alternative labels for the columns (in order of appearance in

the results list)
- col.labels.style: where the column labels should be put (top, bottom,

both, none)

Internally, tmodPanelPlot is a convenient wrapper for the much more customizable
function pvalEffectPlot, operating directly on matrices of effect sizes and p values.

29

Chapter 5

Working with limma

5.1 Limma and tmod

Given the popularity of the limma package, tmod includes functions to easily integrate
with limma. In fact, if you fit a design / contrast with limma function ImFit and calculate
the p-values with eBayes(), you can directly use the resulting object in tmodLimmaTest
and tmodLimmaDecideTests'.

res.l <- tmodLimmaTest(fit, Egambia$GENE_SYMBOL)
length(res.l)

[1] 2

names(res.l)

[1] "Intercept" "TB"

head(res.1$TB)

IThe function tmodLimmaDecideTests is described in the next section

30

##
##
##
##
##
##
##
##
##
##
##
##
##
##

LT.
LT.
LI.
LI.
LI.
LT.

LI.
LI.
LI.
LT.
LT.

LI

5.2 Minimum significant difference (MSD)

3
6
6
(C]
1
4

ID Title cerno

M37.0 LI.M37.0 immune activation - generic cluster 414.
M11.0 LI.M11.0 enriched in monocytes (II) 105.
M112.0 LI.M112.0 complement activation (I) 75.
S4 LI.S4 Monocyte surface signature 70.
M75 LI.M75 antiviral IFN signature 66.
M67 LI.M67 activated dendritic cells 50.

CES P.value adj.P.val
M37.0 2.07 4.57e-17 1.58e-14
M11.0 2.64 7.92e-08 9.67e-06
M112.0 3.44 8.39e-08 9.67e-06
S4 3.50 1.84e-07 1.59e-05
M75 3.31 7.78e-07 5.38e-05
.M67 4.20 1.21e-06 6.97e-05

N1
100
20
11
10
10

The tmodLimmaTest function uses coefficients and p-values from the limma object to or-

der the genes. By default, the genes are ordered by MSD (Minimum Significant Differ-

ence), rather than p-value or log fold change.

The MSD is defined as follows:

CI.L iflogFC >0

MSD =

—CI.R iflogFC <0

Where logFC is the log fold change, CI.L is the left boundary of the 95% confidence

interval of logFC and CI.R is the right boundary. MSD is always greater than zero and

is equivalent to the absolute distance between the confidence interval and the x axis. For
example, if the logFC is 0.7 with 95% CI = [0.5, 0.9], then MSD=0.5; if logFC is -2.5 with
95% CI =[-3.0, -2.0], then MSD = 2.0.

The idea behind MSD is as follows. Ordering genes by decreasing absolute log fold

change will include on the top of the list some genes close to background, for which log

fold changes are grand, but so are the errors and confidence intervals, just because mea-

suring genes with low expression is loaded with errors. Ordering genes by decreasing

absolute log fold change should be avoided.

31

© 0 06 0 0o 6

AUC

.726
. 786
.867
.884
.865
.971

On the other hand, in a list ordered by p-values, many of the genes on the top of the
list will have strong signals and high expression, which results in better statistical power
and ultimately with lower p-values — even though the actual fold changes might not be
very impressive.

However, by using MSD and using the boundary of the confidence interval to order
the genes, the genes on the top of the list are those for which we can confidently that the
actual log fold change is large. That is because the 95% confidence intervals tells us that
in 95% cases, the real log fold change will be anywhere within that interval. Using its
bountary closer to the x-axis (zero log fold change), we say that in 95% of the cases the log
fold change will have this or larger magnitude (hence, “minimal significant difference”).

This can be visualized as follows, using the drop-in replacement for limma'’s topTable
function, tmodLimmaTopTable, which calculates msd as well as confidence intervals. We
will consider only genes with positive log fold changes and we will show top 50 genes as
ordered by the three different measures:

plotCI <- function(x, ci.l, ci.r, title="") {
n <- length(x)
plot(x,
ylab="1logFC", xlab="Index",
pch=19, ylim=c(min(x-ci.l), max(x+ci.r)),
main=title)
segments(1:n, ci.l, 1:n, ci.r, lwd=5, col="#33333333")

par(mfrow=c(1,3))

X <- tmodLimmaTopTable(fit, coef="TB")
print(head(x))

it logFC.TB t.TB msd.TB SE.TB d.TB ciL.TB ciR.TB qval.TB

34 0.0282 0.0756 -0.728 0.373 0.0288 -0.728 0.784 0.9954
36 1.5242 3.8798 0.728 0.393 1.6398 0.728 2.320 0.0439
41 0.0789 0.1783 -0.817 0.442 0.0955 -0.817 0.975 0.9950
44 0.1532 0.3239 -0.806 0.473 ©0.1985 -0.806 1.112 0.9950
52 -0.2350 -0.6170 -0.537 0.381 -0.2451 -1.007 0.537 0.9950
62 -0.3195 -0.5585 -0.840 0.572 -0.5007 -1.479 0.840 0.9950

32

X <- X[x$1logFC.TB > 0@,] # only to simplify the output!
X2 <- X[order(abs(x$logFC.TB), decreasing=T),][1:50,]
plotCI(x2$logFC.TB, x2$ciL.TB, x2$ciR.TB, "logFC")

x2 <- x[order(x$qval.TB),][1:50,]
plotCI(x2$1logFC.TB, x2%ciL.TB, x2$ciR.TB, "g-value')

X2 <- X[order(x$msd.TB, decreasing=T),][1:50,]
plotCI(x2$logFC.TB, x2$cilL.TB, x2$ciR.TB, "MSD")

MSD

logFC g-value
© —
© -
o 4
=
©
©
© o
o o [§)
L o 4 L L
E . g < -
£ (]
< - e o0 [}
e %o '
) oe *®] 'o.’l'
~N [} o, LY ° o~
.
o U ik
LI NS Jt'
T T T T T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20
Index Index

Index

Black dots are logFCs, and grey bars denote 95% confidence intervals. On the left panel,
the top 50 genes ordered by the fold change include several genes with broad confidence

intervals, which, despite having a large log fold change, are not significantly up- or down-

regulated.

On the middle panel the genes are ordered by p-value. It is clear that the log fold
changes of the genes vary considerably, and that the list includes genes which are more

and less strongly regulated in TB.

The third panel shows genes ordered by decreasing MSD. There is less variation in
the logFC than on the second panel, but at the same time the fallacy of the first panel
is avoided. MSD is a compromise between considering the effect size and the statistical

significance.

What about enrichments?

33

X <- tmodLimmaTopTable(fit, coef="TB", genelist=Egambial,1:3])
x.1lfc <- x[order(abs(x$logFC.TB), decreasing=T),]

x.qval <- x[order(x$qval.TB),]

x.msd <- X[order(x$msd.TB, decreasing=T),]

comparison <- list(
1fc=tmodCERNOtest(x.1fc$GENE_SYMBOL),
gval=tmodCERNOtest (x.qval$GENE_SYMBOL),
msd=tmodCERNOtest (x.msd$GENE_SYMBOL))
tmodPanelPlot (comparison)

34

gval
msd

Ifc

enriched in neutrophils (1) (LI.M37.1)
innate antiviral response (LI.M150)
chromosome Y linked (L1.M240)
enriched in monocytes (V) (LI1.M118.0)
myeloid cell enriched receptors and transporters (LI.M4.3)
AP-1 transcription factor network (L1.M20)
TLR and inflammatory signaling (LI.M16)
DC surface signature (LI.S5)
enriched in monocytes (11) (LI1.M11.0) @)
enriched in activated dendritic cells (1) (LI.M165)
Monocyte surface signature (L1.S4) @
activated dendritic cells (LI.M67)
antiviral IFN signature (LI.M75)

complement activation (1) (L1.M112.0) D ®
immune activation — generic cluster (L1.M37.0) ()) (&)
P value:
@ @
0.01 0.001 10™ 107 10
Effect size:
0.5 0.98

In this case, the results of p-value and msd-ordering are very similar.

While MSD is a general method, it relies on a construction of confidence intervals,

which might not be possible in some cases.

5.3 Comparing tests across experimental conditions

In the above example with the Gambian data set there were only two coefficients calcu-

lated in limma, the intercept and the TB. However, often there are several coefficients

35

or contrasts which are analysed simultaneously, for example different experimental con-
ditions or different time points. tmod includes several functions which make it easy to
visualize such sets of enrichments.

The object res.1 created above using the tmod function tmodLimmaTest is a list of tmod
results. Any such list can be directly passed on to functions tmodSummary and tmod-
PanelPlot, as long as each element of the list has been created with tmodCERNOtest or a
similar function. tmodSummary creates a table summarizing module information in each
of the comparisons made. The values for modules which are not found in a result object
(i.e., which were not found to be significantly enriched in a given comparison) are shown
as NA’s:

head(tmodSummary(res.1l), 5)

#t ID Title AUC.Intercept
LI.M11.0 LI.M11.0 enriched in monocytes (II) 0.815
LI.M112.0 LI.M112.0 complement activation (I) NA
LI.M118.0 LI.M118.0 enriched in monocytes (IV) NA
LI.M124 LI.M124 enriched in membrane proteins 0.881
LI.M127 LI.M127 type I interferon response NA
#i#t q.Intercept AUC.TB q.TB
LI.M11.0 0.000114 0.786 9.67e-06
LI.M112.0 NA 0.867 9.67e-06
LI.M118.0 NA 0.838 2.85e-03
LI.M124 0.011487 NA NA
LI.M127 NA 0.945 1.04e-02

We can neatly visualize the above information on a heatmap-like representation:

tmodPanelPlot(res.l, text.cex=0.8)

36

Intercept

i
enriched in neutrophils (1) (L1.M37.1)

enriched in monocytes (1) (L1.M11.0) Q

immune activation — generic cluster (L1.M37.0) O
enriched in monocytes (V) (LI.M118.0)
TLR and inflammatory signaling (LI.M16)
complement activation () (L1.M112.0)

O

Monocyte surface signature (LI1.S4) ()
antiviral IFN signature (LI.M75)
enriched in activated dendritic cells (1) (LI.M165)
activated dendritic cells (LI.M67)
innate antiviral response (LI.M150)
myeloid cell enriched receptors and transporters (LI.M4.3)
AP-1 transcription factor network (LI.M20)

DC surface signature (LI.S5)

P value:
() @
0.01 0.001 1074 107 107
Effect size:
0.5 0.97

The function tmodPanelPlot has many optional arguments for customization, includ-
ing options for label sizes, p value thresholds and custom functions for plotting the test

37

results instead of just red blobs.

ically, we would like to see, for each module, how many genes are up-, and how many
genes are down-regulated. tmodPanelPlot takes an optional argument, pie, which con-
tains information on significantly regulated genes in modules. We can conveniently gen-
erate it from a limma linear fit object with the tmodLimmaDecideTests function:

pie <- tmodLimmaDecideTests(fit,
head(pie$TB[order(pie$TB[, "Up"],

#i#t
##
##
##
##
##
##

DC.
DC.
LT.
LI.
LI.
LT.

M3.4
M4.2
M11.0
M37.0
M112.0
M165

data(tmod)

tmod$MODULES["DC.M3.4",]

#it

##

It is often of interest to see which enriched modules go up, and which go down? Specif-

Down Zero Up

0

© 0 &6 &6 ©

ID

11
16
16
110

24

FEE S . e]

Title Category Annotated
DC.M3.4 DC.M3.4 Interferon

genes=Egambia$GENE_SYMBOL)
decreasing=T),

URL

DC.M3.4 http://www.biir.net/public_wikis/module_annotation/v2_Trial_8_Modules_M3.4

##

data frame with the columns “Down”, “Zero” and “Up” (in that order). Importantly, all
names of the “res.l” list must correspond to an item in the pie list.

all(names(pie) %in% names(res.l))

[1] TRUE

The pie object is a list. Each element of the list corresponds to one coefficient and is a

Source SourcelID original.ID B
DC.M3.4 http://www.biir.net/

We can now use this information in tmodPanelPlot:

tmodPanelPlot(res.l, pie=pie, text.cex=0.8, grid="b")

enriched in neutrophils (1) (LI.M37.1)

enriched in monocytes (Il) (LI1.M11.0)

immune activation — generic cluster (LI.M37.0)
enriched in monocytes (V) (L1.M118.0)

TLR and inflammatory signaling (LI.M16)
complement activation (l) (L1.M112.0)

Monocyte surface signature (LI.S4)

antiviral IFN signature (LI.M75)

enriched in activated dendritic cells (Il) (LI.M165)
activated dendritic cells (LI.M67)

innate antiviral response (LI.M150)

myeloid cell enriched receptors and transporters (LI.M4.3)
AP-1 transcription factor network (LI.M20)

DC surface signature (LI.S5)

P value:

0.01 0.001 10

Effect size:

i i L
0.5

A pie-like plot can be also generated:

tmodPanelPlot(res.1,
pie=pie, pie.style="pie")

39

I I Intercept

.. | B

107 107

0.97

Intercept

TB

enriched in neutrophils (1) (LI.M37.1)

enriched in monocytes (1) (LI.M11.0)
immune activation — generic cluster (LI.M37.0) (" J
enriched in monocytes (IV) (LI.M118.0)
TLR and inflammatory signaling (LI.M16)
complement activation (I) (LI.M112.0)
Monocyte surface signature (LI1.S4)
antiviral IFN signature (LI.M75)
enriched in activated dendritic cells (1l) (LI.M165)
activated dendritic cells (LI1.M67)
innate antiviral response (LI.M150)
myeloid cell enriched receptors and transporters (LI1.M4.3)
AP-1 transcription factor network (LI.M20)
DC surface signature (LI.S5)

| YT ¥ Y

P value:

0.01 0.001 107 107° 107°

Effect size:
P ~ "N N N
0.5 0.97

There is also a more general function, tmodDecideTests that also produces a
tmodPanelPlot-compatible object, a list of data frames with gene counts. However,
instead of taking a limma object, it requires (i) a gene name, (ii) a vector or a matrix of
log fold changes, and (iii) a vector or a matrix of p-values. We can replicate the result of
tmodLimmaDecideTests above with the following commands:

tt.I <-
topTable(fit, coef="Intercept", number=Inf, sort.by="n")
tt.TB <- topTable(fit, coef="TB", number=Inf, sort.by="n")
pie2 <- tmodDecideTests(Egambia$GENE_SYMBOL,
1fc=cbind(tt.I$logFC, tt.TB$logFC),
pval=cbind(tt.I$adj.P.val, tt.TB$%adj.P.val))
identical(pie[[1]], pie2[[1]])

[1] TRUE

40

Chapter 6

Using tmod for other types of GSEA
analyses

The fact that tmod relies on a single ordered list of genes makes it useful in many other
situations in which such a list presents itself.

6.1 Correlation analysis

Genes can be ordered by their absolute correlation with a variable or even a data set or a
module. For example, one can ask the question about a function of a particular unknown
gene — such as ANKRD?22, annotated as “ankyrin repeat domain 22”.

X <- E[match("ANKRD22", Egambia$GENE_SYMBOL),]
cors <- t(cor(x, t(E)))

ord <- order(abs(cors), decreasing=TRUE)
head(tmodCERNOtest (Egambia$GENE_SYMBOL[ord]))

#it ID Title cerno N1
LI.M37.0 LI.M37.0 immune activation - generic cluster 431.4 100
LI.M165 LI.M165 enriched in activated dendritic cells (II) 113.1 19
LI.M11.0 LI.M11.0 enriched in monocytes (II) 113.9 20
LI.M112.0 LI.M112.0 complement activation (I) 80.5 11

41

##
##
##
##
##
##
##
##
##

are interferon inducible.

LI.
LT.

LI.
LI.
LI.
LI.
LI.
LI.

M75 LI.
M16 LI.

AUC
M37.0 0.719
M165 0.781
M11.0 0.807
M112.0 0.849
M75 0.901
M16 0.991

M75

M16

CES
.16
.98
.85
.66
.72
.21

g W W NN DN

R W EREr N &

.71e-19
.18e-09
.14e-09
.32e-08
.30e-08
.11e-07

1.

DN B O W

antiviral IFN signature
TLR and inflammatory signaling 52.1
P.Value adj.P.val

63e-16
.77e-07
.92e-07
.14e-06
.28e-06
.41e-06

74.5 10

Clearly, ANKRD22 correlates to other immune related genes, most of all these which

In another example, consider correlation between genes and the first principal com-

ponent (“eigengene”) of a group of genes of unknown function'. To demonstrate the

method, we will select the genes from the module “LL.M75”. For this, we use the function
getGenes with the optional argument genelist used to filter the genes in the module

by the genes present in the data set.

g <- getGenes("LI.M75",
sel <- Egambia$GENE_SYMBOL %in% g[[1]]
X <- E[sel,]

genelist=Egambia$GENE_SYMBOL, as.list=T)

calculating the "eigengene"
scale.=T)

pca <- prcomp(t(x),

eigen <- pca$x[,1]
cors <- t(cor(eigen, t(E)))
ord <- order(abs(cors),
head (tmodCERNOtest (Egambia$GENE_SYMBOL[ord 1))

##
##
##
##
##
##

LI.
LI.
LT.
LT.
LT.

ID
M165 LI.M165

M75 LI.M75

M37.0 LI.M37.

0

M127 LI.M127
M150 LI.M150

decreasing=TRUE)

Title cerno

enriched in activated dendritic cells (II)

antiviral IFN signature

immune activation - generic cluster

"More on eigengenes in the Chapter on modules

42

type I interferon response
innate antiviral response

156.
106.
353.
66.
65.

0

1
4
2
4

N1
19
10
100

5

LI.M67 LI.M67 activated dendritic cells 67.7 6

AUC CcES P.value adj.P.val
LI.M165 0.826 4.11 3.06e-16 1.06e-13
LI.M75 0.940 5.31 9.91e-14 1.71e-11
LI.M37.0 0.658 1.77 1.29e-10 1.49e-08
LI.M127 0.998 6.62 2.43e-10 2.10e-08
LI.M150 0.998 6.54 3.34e-10 2.31e-08
LI.M67 0.994 5.64 8.65e-10 4.99e-08

6.2 Functional multivariate analysis

Transcriptional modules can help to understand the biological meaning of the calculated
multivariate transformations. For example, consider a principal component analysis
(PCA), visualised using the pca3d package (Weiner 2013):

mypal <- c("#E69F0O", "#56B4E9")
pca <- prcomp(t(E), scale.=TRUE)

col <- mypal[factor(group)]
par(mfrow=c(1, 2))
l<-pcaplot(pca, group=group, col=col)

legend("topleft", as.character(l$groups),

pch=1$pch,

col=1$colors, bty="n")
l<-pcaplot(pca, group=group, col=col, components=3:4)
legend("topleft", as.character(l$groups),

pch=1$pch,

col=1$colors, bty="n")

43

o _ = CTRL CTRL
S

o _
B < B
o |
- ™
o
N
O —
N <
O (@] — |
o o o
N —_
I o 4
o
<|t‘ — —
o
o N -
ul:: — |
[I I I I] [I I]
-40 -20 O 20 40 60 -40 -20 0 20
PC1 PC3

The fourth component looks really interesting. Does it correspond to the modules
which we have found before? Each principal component is, after all, a linear combination
of gene expression values multiplied by weights (or scores) which are constant for a given
component. The i-th principal component for sample j is given by

PCij =) wik Ty
k

where k is the index of the variables (genes in our case), w; j, is the weight associated
with the ¢-th component and the k-th variable (gene), and Ty, ; is the value of the variable
k for the sample j; that is, the gene expression of gene k in the sample j. Genes influence
the position of a sample along a given component the more the larger their absolute weight
for that component.

For example, on the right-hand figure above, we see that samples which were taken
from TB patients have a high value of the principal component 4; the opposite is true for
the healthy controls. The genes that allow us to differentiate between these two groups
will have very large, positive weights for genes highly expressed in TB patients, and very
large, negative weights for genes which are highly expressed in NID, but not TB.

We can sort the genes by their weight in the given component, since the weights are
stored in the pca object in the “rotation” slot, and use the tmodUtest function to test for
enrichment of the modules.

44

0 <- order(abs(pca$rotation[,4]), decreasing=TRUE)
1 <- Egambia$GENE_SYMBOL[O]
res <- tmodUtest(1l)

head(res)
ID Title U N1 AUC
LI.M37.0 LI.M37.0 immune activation - generic cluster 339742 100 0.719
LI.M37.1 LI.M37.1 enriched in neutrophils (I) 50096 12 0.867
LI.M75 LI.M75 antiviral IFN signature 43379 10 0.901
LI.M11.0 LI.M11.0 enriched in monocytes (II) 74343 20 0.773
LI.S5 LI.S5 DC surface signature 115007 34 0.706
LI.M67 LI.M67 activated dendritic cells 28291 6 0.978
#t P.value adj.P.val
LI.M37.0 3.13e-14 1.08e-11
LI.M37.1 5.41e-06 6.70e-04
LI.M75 5.81e-06 6.70e-04
LI.M11.0 1.19e-05 1.03e-03
LI.S5 1.71e-05 1.18e-03
LI.M67 2.51e-05 1.45e-03

Perfect, this is what we expected: we see that the neutrophil / interferon signature
which is the hallmark of the TB biosignature. What about other components? We can
run the enrichment for each component and visualise the results using tmod’s functions
tmodSummary and tmodPanelPlot. Below, we use the filter.empty option to omit the
principal components which show no enrichment at all.
Calculate enrichment for each component
gs <- Egambia$GENE_SYMBOL
function calculating the enrichment of a PC
gn.f <- function(r) {

tmodCERNOtest (gs[order(abs(r), decreasing=T)],
gval=0.01)

}
x <- apply(pca$rotation, 2, gn.f)
tmodSummary(x, filter.empty=TRUE)[1:5,]
ID Title AUC.PC3 q.PC3 AUC.PC4

45

##
##
##
##
##
##
##
##
##
##
#i#

LI.M11.0
LI.M112.0
LI.M118.0
LI.M127
LI.M144

LI.M11.0
LI.M112.0
LI.M118.0
LI.M127
LI.M144

The following plot shows the same information in a visual form. The size of the blobs

LI.M11.0 enriched in monocytes (II)
LI.M112.0 complement activation (I)
LI.M118.0 enriched in monocytes (IV)

LI.M127 type I interferon response
LI.M144 cell cycle, ATP binding

2.14e-07 NA NA NA
4.91e-05 NA NA NA
5.03e-05 NA NA NA
3.71e-03 NA NA NA

NA NA NA NA

NA
NA
NA
NA
NA

NA
NA
NA
NA

NA
NA
NA
NA

0.989 0.00605
q.PC4 AUC.PC9 q.PC9 AUC.PC14 q.PC14 AUC.PC30 q.PC30

corresponds to the effect size (AUC value), and their color — to the g-value.

tmodPanelPlot (x)

extracellular matrix (I1) (LI.M2.1)

cell movement, Adhesion & Platelet activation (LI.M30)

cell cycle, ATP binding (LI.M144)

regulation of transcription, transcription factors (LI.M213)
immune activation — generic cluster (L1.M37.0) ®

enriched in neutrophils (1) (LI.M37.1)
DC surface signature (LI.S5)
enriched in monocytes (Il) (LI.M11.0) ®
antiviral IFN signature (LI.M75)
TLR and inflammatory signaling (LI.M16)

enriched in activated dendritic cells (1) (LI.M165)

Monocyte surface signature (LI.S4)
enriched in monocytes (IV) (LI.M118.0)
complement activation (I) (LI.M112.0)
activated dendritic cells (LI.M67)
innate antiviral response (LI.M150)

complement and other receptors in DCs (LI.M40)

type | interferon response (LI.M127)
enriched in B cells (I) (LI.M47.0)

platelet activation — actin binding (LI.M196)

enriched in myeloid cells and monocytes (LI.M81)

Effect size:

0.5

P value:

0.99.01 0.001

46

107

NA
NA
NA
NA
NA

107

NA
NA
NA
NA
NA

108

0.773
0.751
0.853
0.959

NA

However, we might want to ask, for each module, how many of the genes in that
module have a negative, and how many have a positive weight? We can use the function
tmodDecideTests for that. For each principal component shown, we want to know how
many genes have very large (in absolute terms) weights — we can use the “lfc” parameter
of tmodDecideTests for that. We define here “large” as being in the top 25% of all weights
in the given component. For this, we need first to calculate the 3rd quartile (top 25%
threshold). We will show only 10 components:

gfnc <- function(r) quantile(r, 0.75)
ggs <- apply(pcas$rotation[,1:10], 2, gfnc)
pie <- tmodDecideTests(gs, lfc=pca$rotation[,1:10], 1lfc.thr=qqgs)
tmodPanelPlot (x[1:10], pie=pie,
pie.style="rug", grid="between")

PC1
PC2
PC3
pC4
PC5
PC6
PC7
pPC8
PC9

platelet activation - actin binding (LI.M196)
DC surface signature (LI.S5)

enriched in monocytes (I1) (LI.M11.0)

immune activation - generic cluster (LI.M37.0)
antiviral IFN signature (LI.M75)

TLR and inflammatory signaling (LI.M16)
enriched in activated dendritic cells (I1) (LI.M165)
enriched in neutrophils (1) (LI.M37.1)
Monocyte surface signature (LI1.S4)

enriched in monocytes (1V) (LI.M118.0)
complement activation (1) (LI.M112.0)
activated dendritic cells (LI.M67)

innate antiviral response (LI.M150)

complement and other receptors in DCs (LI.M40)
enriched in myeloid cells and monocytes (LI.M81)
type | interferon response (L1.M127)
enriched in B cells (1) (LI.M47.0)
extracellular matrix (I1) (L1.M2.1)
cell movement, Adhesion & Platelet activation (LI.M30)
cell cycle, ATP binding (LI1.M144)
regulation of transcription, transcription factors (LI.M213) I

Effect size: P value:

PC10

1l 1l i ifr 1 1 1] 1
0.5 10™ 107 107

0.99 0.01 0.001

47

6.3 PCA and tag clouds

For another way of visualizing enrichment, we can use the tagcloud package (Weiner
2014). P-Values will be represented by the size of the tags, while AUC — which is a proxy
for the effect size — will be shown by the color of the tag, from grey (AUC=0.5, random) to
black (1):

library(tagcloud)

w <- -log10(res$P.Value)

c <- smoothPalette(res$AUC, min=0.5)
tags <- strmultline(res$Title)
tagcloud(tags, weights=w, col=c)

enriched in
B cells (1)

myeloid cell enriched

receptors and transporters innate antiviral

: o response
complement anriched in activated SPonse
actvaton O gendritic cells (1 enriched in

Monocyte surface TLR and inflammatory monocytes (1)
signature signaling complement and other

receptors in DCs

Immune activation antiviral
— generic cluster " sonare

activated
TBA platelet activation dendritic cells
enriched in — actin binding enriched in

neutrophils (I) TBA DC surface Monocytes (IV)

enriched in enriched in myeloid signature
B cells (1) cells and monocytes

type | interferon
response

We can now annotate the PCA axes using the tag clouds; however, see below for a
shortcut in tmod.

48

par(mar=c(1,1,1,1))

03 <- order(abs(pca$rotation[,3]), decreasing=TRUE)

13 <- Egambia$GENE_SYMBOL[03]

res3 <- tmodUtest(13)

layout(matrix(c(3,1,0,2),2,2,byrow=TRUE),
widths=c(1/3, 2/3), heights=c(2/3, 1/3))

col <- mypal[factor(group)]

note -- PC4 is now x axis!!
1 <- pcaplot(pca, group=group, components=4:3,
col=col, cex=1.8)

legend("topleft",
as.character (1$groups),
pch=1$pch,
col=1%$colors, bty="n")

tagcloud(tags, weights=w, col=c, fvert= 0)

tagcloud(strmultline(res3$Title),
weights=-1log10(res3$P.Value),
col=smoothPalette(res3$AUC, min=0.5),
fvert=1)

49

CTRL
B

heme
biosynthesis (I)
20

TBA

transport (1)

cell cycle,
enriched in

dendritic cells
TBA

TBA

TBA ATPbinding transmembrane
TBA
TBA
regulation of transcription,

enriched in
NK cells (I1)

transcription factors

TBA TBA

NK cell surface
signature

~40
L

[I I I I I 1
=20 -10 0 10 20 30 40
enrichedin enriched in
Becells () monocytes (IV)
Monocyte surface enriched in type | interferon enriched in
signature monocytes (I1) response neutrophils (I)

enriched in activated '°* TLR and inflammatory ~ complement and other

. N " receptors in DCs
enriched in myeloid dendritic cells (I1) signaling on enriched in
cells and monocytes » H H

Immune activation Belis ()

DC surface platelet activation

signatre— — generic cluster PN

i L myeloid cell enriched innate antiviral
activated antiviral receptors and transporters response
IFN signature

complement
activation (I)

dendritic cells

As mentioned previously, there is a way of doing it all with tmod much more quickly,
in just a few lines of code:

Note that plot . params arejust parameters which will be passed to the pca2d function.
However, remember that is must be a list.

To plot the PCA, tmod uses the function pcaplot(), but you can actually do it yourself
by providing tmodPCA with a suitable function. The only requirement is that the function
takes named parameters “pca” and “components”:

50

plotf <- function(pca, components) {

idl <- components[1]
id2 <- components[2]
print(id1)
print(id2)

plot(pca$x[,id1], pca$x[,id2])

}

ret <- tmodPCA(pca, genes=Egambia$GENE_SYMBOL,

components=3:4, plotfunc=plotf)

[1] 3
[1] 4

o _]
<
£
g
£ g
- 23
i) 5 s O _|
S £, T ™
o O S0 @-=
T o 22
> E 8S< g
P =R
o T 00 E o
c C Eazs O _|
D > 29 2 N
S5 gggf
8o T EAS%
g5 o s 2
58 8 E S
68 $2 g2 =
3 2
e %%f_ﬁi o _]
g =
SSEc —
m:'_mE
58 TH 2
£ c¥ 5o
T c =R’}
x £
S o
J4 =3 o —
= o 2
Q
=
s (@)
> 9 — —
28
S I
2@
T O
E. c &
g£s £ o
25 AN —
g3 |

generic cluster

enriched in
monocytes

(0]
(¢]
(¢]
° o
(o]
o (¢]
o
o oo O
(0] o o
(0]
(¢]
°0 o o o0
(0]
(0]
I I I I
-40 -20 0 20
cell cycle, . -
ATP binding regulation of transcription,

transcription factors

51

Alternatively, you can use the function “pca2d” from the pca3d package:

if(require(pca3d)) plotf <- pca2d
ret <- tmodPCA(pca, genes=Egambia$GENE_SYMBOL,
components=3:4, plotfunc=plotf, plot.params=1list(group=group))

enriched
in B cells

enriched in myeloid
cells and monocytes

_ 5s
g 52 Q@ —
= g2 ¥
Q.
L a9
s g¢£
S E o _|
L3 o™
o <
E8
——)
qd‘l’
= o _|
AN
>
=]
© S o
E _ s
£3
ED2 S -
‘_U'(—Eﬁg
Ec &g
5 2E%
25
S H
@ 0 8o o —
4 = 53
T 58
= BOoc:e
= G355
SSE:
£5%° o
QT &
c < — —
[}
c o
£ S !
[o =N
29
S £ .
= o} ca
5¢ 2, £t o
B
7::8 5¢g N =
s 58 |
I
= 3
55 ®%

[I I 1
-40 -20 0 20

cell cycle,
ATP binding

regulation of transcription,
transcription factors

52

Chapter 7

Using and creating modules and gene
sets

Tmod was created with transcriptional modules in mind. This is why the word “module”
is used throughout tmod. However, any gene or variable set — depending on application —
isa “module” in tmod. These data sets can be used with most of tmod functions (including
the gene set enrichment test functions) by specifying it with the option mset=, for example
tmodCERNOtest (..., mset=mytmodobject).

7.1 Using built-in gene sets (transcriptional modules)

By default, tmod uses the modules published by Li et al. (S. Li et al. 2014) (LI). A second
set of modules was published by Chaussabel et al. (Chaussabel et al. 2008) (DC); new
module definitions were described by Banchereau et al. (Banchereau et al. 2012) and can
be found on a public website'.

Depending on the mset parameter to the test functions, either the LI or DC sets are
used, or both, if the mset=all has been specified.

1 <- tt$GENE_SYMBOL
res2 <- tmodUtest(l, mset="all")
head(res2)

1h’c’cp://WWW.biir.net/public_wikis/module_zmnotatiom/GZ_Trial_S_Modules

53

http://www.biir.net/public_wikis/module_annotation/G2_Trial_8_Modules

##
##
##
##
##
##
##
##
##
##
##
##
##
##

LI.
DC.
DC.
DC.
DC.
DC.

LI.
DC.
DC.
DC.
DC.
DC.

ID Title U N1
M37.0 LI.M37.0 immune activation - generic cluster 352659 100
M4.2 DC.M4.2 Inflammation 91352 20
M1.2 DC.M1.2 Interferon 73612 17
M3.2 DC.M3.2 Inflammation 96366 24
M5.15 DC.M5.15 Neutrophils 65289 16
M7.29 DC.M7.29 Undetermined 77738 20

P.Value adj.P.val

M37.0 1.60e-17 9.68e-15
M4.2 1.67e-12 5.07e-10
M1.2 5.70e-09 9.62e-07
M3.2 6.35e-09 9.62e-07
M5.15 7.24e-07 8.77e-05
M7.29 9.08e-07 9.18e-05

As you can see, the information contained in both module sets is partially redundant.

7.2 Accessing the tmod module data directly

The tmod package stores its data in two data frames and two lists. This object is contained

in a list called tmod, which is loaded with data("tmod"). The names mimick the various

environments from Annotation.dbi packages, but currently the objects are just two lists

and two data frames.

tmod$MODULES is a data frame which contains general module information as de-
fined in the supplementary materials for Li et al. (S. Li et al. 2014) and Chaussabel
et al. (Chaussabel et al. 2008)

tmod$GENES is a data frame which contains general gene information, including
columns with HGNC (“primary”), as well as ENTREZ and REFSEQ identifiers.
tmod$MODULES2GENES is a list with module IDs (same as in the “ID” column of
tmod$MODULES) as names. Every element of the list is a character vector with IDs
(“primary” column of tmod$GENES) of the genes which are included in this mod-
ule.

tmod$GENES2MODULES is a list with gene IDs (same as in the “primary” column of
tmod$GENES) as names. Every element of the list is a character vector with IDs of
the modules in which the gene is found.

54

© &6 ©6 0 O 6

AUC

. 746
.950
.900
.836
.848
.809

7.2.1 Module operations
The gene sets used by tmod are objects of class tmod. The default object used in the gene
set enrichment tests in the tmod package can be loaded into the environment with the

command data(tmod):

data(tmod)
tmod

An object of class "tmod"
606 modules, 12712 genes

Objects of the class tmod can be easily generated from a number of data sources (see
below). Several functions can be used on the objects:

length(tmod)

[1] 606

sel <- grep("Interferon", tmod$MODULES$Title, ignore.case=TRUE)
ifn <- tmod[sel]
ifn

An object of class "tmod"
6 modules, 161 genes

length(ifn)

[1] 6

55

7.2.2 Using tmod modules in other programs

Using these variables, one can apply any other tool for the analysis of enriched module
sets available, for example, the geneSetTest function from the limma package (Smyth
etaL(ZME»Z.kawﬂlﬁmﬁruntmodCERNOteStsmﬁngtheqvaltoInftogetpthws
for all modules. Then, we apply the geneSetTest function to each module. Note that
we are using the actual geneSetTest function’.

data(tmod)
res <- tmodCERNOtest(tt$GENE_SYMBOL, qval=Inf)
gstest <- function(x) {
sel <- tt$GENE_SYMBOL %in% tmod$MODULES2GENES[[x]]
geneSetTest(sel, tt$logFC, ranks.only=FALSE)

}
gst <- sapply(res$ID, gstest)

[1] 0.799
[1] 0.902
[1] 1.22
[1] 1.2
[1] 1.26
[1] 1.38
[1] 1.57
[1] 0.884
[1] 0.846
[1] 1.02
[1] 0.631
[1] 1.1
[1] 1.39
[1] 0.715
[1] 1.15
[1] 1.19

2The geneSetTest function from limma is implemented in the tmod function tmodGeneSetTest, and
limma’s wilcoxon.GST is essentially the same as tmodUtest

3Note that somewhat confusingly, limma’s both functions, geneSetTest and wilcoxGST, are identical.
The latter function is a synonym for geneSetTest with the option rank.only=TRUE. However, this is the
default setting for geneSetTest, which means that with the default setting, both functions return the same
results.

56

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
#i#t
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
#i#
##

[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]

© 0 0 6 OO OO LOLLLOLOLOH OO OOOKFHPHR OOFHPR OOOCOKFH,R P OOOKR P OO OGO OO

.731
.894
.87

.919
717
.42

.02

.574
.533
. 946
.19

.15

.879
.656
.546
.973
.55

.809
.926
.13

.989
. 737
.691
.08

775
.551
.02

.681
.994
.687
717
.662
.668
.994
.862
.917
.563
.842

57

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
#i#t
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
#i#
##

[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]

(ool oM oMol ol oMol oo o Moo o o o Mo o o ool c o oMol c ol o M o B c o o o B c o o B o N o]

.637
. 807
.935
.605
.815
.501
.984
. 715
.676
778
.582
.683
.589
.521
. 748
.826
.706
.509
.751
.923
.632
.533
.555
.626
.944
. 709
.533
.734
.844
.608
.564
.529
.518
.532
.623
.561
.962
.461

58

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
#i#t
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
#i#
##

[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]

(ool oM oMol ol oMol oo o Moo o o o Mo o o ool c o oMol c ol o M o B c o o o B c o o B o N o]

.58

.525
.586
.481
. 702
.642
.622
.634
.533
.693
.485
.607
.555
.579
.57

.523
.653
.553
.548
479
.543
.539
.682
.615
.492
.478
.532
.412
.597
.692
.603
. 957
.548
.46

.452
.443
.326
.352

59

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
#i#t
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
#i#
##

[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]

(ool oM oMol ol oMol oo o Moo o o o Mo o o ool c o oMol c ol o M o B c o o o B c o o B o N o]

.57

.547
.671
.394
.597
473
.627
.627
.497
.494
.443
.629
.463
.45

.455
.426
.853
.438
.388
.37

.456
.453
.518
.378

.395
.452
.473
.461
.394
.405
.419
.463
.523
473
417
.59

.661

60

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
#i#t
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
#i#
##

[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]

(ool oM oMol ol oMol oo o Moo o o o Mo o o ool c o oMol c ol o M o B c o o o B c o o B o N o]

.49

.546
.495
.453
.466
.276
.39

.426
272
.433
.446
. 457
.36

.342
.353
.365
.385
.482
.384
.53

417
. 347
.409
.485
.376
.316
.362
.384
.412
.436
. 345
.363
.273
471
.312
.377
.368
.282

61

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
#i#t
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
#i#
##

[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]

(ool oM oMol ol oMol oo o Moo o o o Mo o o ool c o oMol c ol o M o B c o o o B c o o B o N o]

.423
.269
.302
.394
.302
.299
.429
.181
.301
.376
.318
.193
.193
.193
.193
.193
.193
.193
.196
.194
.454
.189
.504

.386
.361
.335
.43

.368
.364
.308
.343
.326
.333
.326
.432
.138
. 349

62

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
#i#t
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
#i#
##

[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]

(ool oM oMol ol oMol oo o Moo o o o Mo o o ool c o oMol c ol o M o B c o o o B c o o B o N o]

.312
. 345
.284
.218
.333

.212
.255
.309
.186
.197
.309
.319
. 302
.248
.252
.113
.322
.139
.143
.219
.21

.238
.087
.383
.102
.102
.102
.216
.221
271
.157
.392
.334
.212
.0931
.193
.206

63

[1] 0.254
[1] 0.271
[1] 0.295
[1] 0.313
[1] 0.0526
[1] 0.25

[1] 0.0442
[1] 0.071
[1] 0.152
[1] 0.261
[1] 0.13

[1] 0.239
[1] 0.0498
[1] 0.0259
[1] 0.123
[1] 0.146
[1] 0.0908
[1] 0.105
[1] 0.172
[1] 0.123
[1] 0.188
[1] 0.0962

Are the results from CERNO and geneSetTest similar?

plot(res$P.vValue, gst,
log="xy", pch=19,
col="#33333366",
xlab="P Values from tmod",
ylab="P Values from geneSetTest")
abline(0,1)
abline(h=0.01, col="grey")
abline(v=0.01, col="grey")

64

le-01 1e+00
|

P Values from geneSetTest
1le-02

(90
c|> | o
[¢D)
—
@

<
o
| — O e o @a® o
(0]
— | | | |

le-18 le-14 1le-10 le-06

P Values from tmod

On the plot above, the p-values from tmod are plotted against the p-values from
geneSetTest. Asyou can see, in this particular example, both methods give very similar
results.

7.2.3 Custom module definitions
It is possible to use any kind of arbitrary or custom gene set definitions. These custom
definition of gene sets takes form of a list which is then provided as the mset parameter

to the test functions. The list in question must have the following members:

* MODULES A data frame which contains at least the columns “ID” and “Title”.
The IDs must correspond to the names of MODULES2GENES.

65

* GENES (optional) A data frame which contains at least the column “ID”. The gene
IDs must correspond to the gene IDs used in MODULES2GENES.

e MODULES2GENES A list. The names of the list are the IDs from the MODULES
data frame. The items in the list are character vectors with names of the genes that
are associated with each module.

¢ GENES2MODULES (optional) A list with the reverse mapping from genes to mod-
ules. Names on that list must correspond to GENES$ID, and the character vector
members of the list must correspond to MODULESS$ID.

The tests in the tmod package will accept a simple list that contains the above fields.
However, the function makeTmod can be used conveniently to create a tmod object.

Here is a minimal definition of such a set:

mymset <- makeTmod (
modules=data.frame(ID=c("A", "B"),
Title=c("A title",
"B title")),
modules2genes=1ist(
A=c("G1", "G2"),
B=c("G3", "G4"))
)

mymset

An object of class "tmod"
2 modules, 4 genes

Both GENES and GENES2MODULES will be automatically created by makeTmod.

Whether the gene IDs are Entrez, or something else entirely does not matter, as long
as they matched the provided input to the test functions.

7.3 Obtaining other gene sets

The tests in the tmod package can take any arbitrary module definitions. While tmod —
for many reasons — cannot distribute all module sets, it can easily import gene sets from
many sources. A few of these will be discussed below.

66

7.31 MSigDB

The MSigDB database from the Broad institute is an interesting collection of gene sets
(actually, multiple collections), including Reactome pathways, gene ontologies (GO) and
many other data sets. Moreover, it is the basis for the GSEA program.

Unfortunately, MSigDB cannot be distributed or even accessed without a free regis-
tration, which imposes a heavy limination on third party tools such as tmod. Use the
following guide to download and parse the database such that you can use it with R and
tmod.

First, you will need to download the MSigDB in XML format’. This file can be
accessed at the URL http://software.broadinstitute.org/gsea/msigdb/download_file jsp?
filePath=/resources/msigdb/6.1/msigdb_v6.1.xml — follow the link, register and log in,
and save the file on your disk (roughly 113 MB).

Importing MSigDB is easy — tmod has a function specifically for that purpose. Once
you have downloaded the MSigDB file, you can create the tmod-compatible R object with
one command’. However, the tmod function tmodImportMsigDB() can also use this for-
mat, look up the manual page:

msig <- tmodImportMSigDB('"msigdb_v6.1.xml")

msig

An object of class "tmod"
14645 modules, 32403 genes

That’s it — now you can use the full MSigDB for enrichment tests:

res <- tmodCERNOtest(tt$GENE_SYMBOL, mset=msig)

head(res)
ID Title cerno N1 AUC
M3408 M3408 GSE1432 ctrl vs ifng 24h microglia dn 239 39 0.801

*Note that even if you register with MSig, it is not possible to download the database directly from R in
the XML format.

>MSigDB gene sets can be also downloaded as “GMT” files. This format contains less information and
is therefore less usable.

67

http://software.broadinstitute.org/gsea/msigdb/download_file.jsp?filePath=/resources/msigdb/6.1/msigdb_v6.1.xml
http://software.broadinstitute.org/gsea/msigdb/download_file.jsp?filePath=/resources/msigdb/6.1/msigdb_v6.1.xml

##
##
##
##
##
##
##
##
##
##
##
##

M14329
M3010
M3286
M3288
M11976

M3408
M14329
M3010
M3286
M3288
M11976

M14329
M3010

M11976

cES P.value adj.P.val

.07
.61
.84
.75
.52
.52

E NDNMNDNPEPR ®
ga w kL ~AEDN

.97e-18 4.
.87e-17 1
.56e-17 2
.41e-16 5
.63e-16 1
.29e-16 1

35e-14

.37e-13
.22e-13
.16e-13
.06e-12
.29e-12

Go immune response
Hecker ifnbl targets
M3286 GSE13485 ctrl vs day3 yfi17d vaccine pbmc dn
M3288 GSE13485 ctrl vs day7 yfli7d vaccine pbmc dn
Go defense response

857
244
247
272
948

267 0.623
43 0.846
45 0.729
54 0.722
311 0.600

The results are quite typical for MSigDB, which is quite abundant with similar or over-

lapping gene sets. As the first results, we see, again, interferon response, as well as sets

of genes which are significantly upregulated after yellow fever vaccination — and which

are also interferon related. We might want to limit our analysis only to the 50 “hallmark”

module categories:

sel <- msig$MODULES$Category == "H"

tmodCERNOtest (t t$GENE_SYMBOL, mset=msig[sel])

##
##
##
##
##
##
##
##
##
##
##
##
##
#i#t
##

M5913
M5921
M5911
M5946
M5890
M5930
M5932
M5953
M5892

M5913
M5921
M5911
M5946

ID
M5913
M5921
M5911
M5946
M5890

M5932
M5953
M5892
P.value
8.51e-15
8.61e-09
3.19e-08
1.97e-06

Title

Hallmark interferon gamma response

Hallmark complement

Hallmark interferon alpha response

Hallmark coagulation

Hallmark tnfa signaling via nfkb
M5930 Hallmark epithelial mesenchymal transition
Hallmark inflammatory response

Hallmark kras signaling up
Hallmark cholesterol homeostasis

adj.P.val
4.,25e-13
2.15e-07
5.32e-07
2.46e-05

68

cerno
221.
217.
108.
179.
149.
212.
184.
221.

49.

B 0 O o1 & N b~ 0N

N1
41
56
20
50
47
73
62
82
14

© O 06 OO0 o 6 6

AUC
.779
.698
. 756
.678
.648
.637
.621
.605
.614

P R R R RRPRNDNRN

CES
.70
.94
.71
.79
.58
.46
.49
.35
.76

M5890 2.66e-04 2.25e-03
M5930 2.70e-04 2.25e-03
M5932 3.46e-04 2.47e-03
M5953 1.79e-03 1.12e-02
M5892 8.04e-03 4.47e-02

We see both — the prominent interferon response and the complement activation. Also,
in addition, TNF-« signalling via NF-x/3.

Other particularly interesting subsets of MSigDB are shown in the table below. “Cate-
gory” and “Subcategory” are columns in the msig$MODULES data frame.

Subset Description Category Subcategory
Hallmark Curated set of gene sets H

GO/BP Gene ontology, biological process C5 BP

GO/CC Gene ontology, cellular component c5 CC

GO/MF Gene ontology, molecular function C5 MF

Biocarta ~ Molecular pathways from Biocarta c2 CP:BIOCARTA
KEGG Pathways from Kyoto Encyclopedia of Genes and Genomes C2 CP:KEGG
Reactome Pathways from the Reactome pathway database C2 CP:REACTOME

7.3.2 Using the ENSEMBL databases through biomaRt

ENSEMBL databases for a multitude of organisms can be accessed using the R package
biomaRt.

Importantly, biomaRt allows to map different types of identifiers onto each other; this
allows for example to obtain Entrez gene identifiers (required by KEGG or GO) .

Below, we will use biomaRt to obtain gene ontology (GO) terms and Reactome path-
way IDs for genes in the Egambia data set, using the Entrez gene ID’s (column EG in the
Egambia data set).

library(biomaRt)
mart <- useMart("ensembl", dataset = "hsapiens_gene_ensembl")
bm <- getBM(filters="hgnc_symbol",

values = Egambia$GENE_SYMBOL,

69

attributes = ¢("hgnc_symbol", "entrezgene", "reactome",
mart=mart)

In the following code, we construct the modules data frame m and the gene set to gene
mappings m2g (each twice: once for GO, and once for Reactome). We only keep the terms
that have at least 10 and not more than 100 associated Entrez gene ID’s.

m2g_r <- with(bm[bm$reactome '!'= "",], split(hgnc_symbol, reactome))
m2g_g <- with(bm[bm$go_id '= "",], split(hgnc_symbol, go_id))

11 <- lengths(m2g_r)
m2g_r <- m2g_r[11 >= 5 & 11 <= 250]
11 <- lengths(m2g_g)
m2g_g <- m2g_g[11 >= 5 & 11 <= 250]

m_r <- data.frame(ID=names(m2g_r), Title=names(m2g_r))
m_g <- data.frame(ID=names(m2g_g),
Title=bm$name_1606[match(names(m2g_g), bm$go_id)])

ensemblR <- makeTmod(modules=m_r, modules2genes=m2g_r)
ensemblGO <- makeTmod(modules=m_g, modules2genes=m2g_g)

these objects are no longer necessary
rm(bm, m_g, m_r, m2g_r, m2g_g)

7.3.3 Gene ontologies (GO)

GO terms are perhaps the most frequently used type of gene sets in GSEA, in particular
because they are available for a much larger number of organisms than other gene sets
(like KEGG pathways).

There are many sources to obtain GO definitions. As described in the previous sec-
tions, GO’s can be also obtained from ENSEMBL via biomaRt and from MSigDB. In fact,
MSigDB may be the easiest way.

However, GO annotations can also be obtained from AnnotationDBI Bioconductor
packages as shown below. Note that the Entrez gene IDs are in the EG column of the

70

Ilgoiidll ,

"name_100¢

Egambia object.

library(org.Hs.eg.db)
mtab <- toTable(org.Hs.egGO)

There are over 15,000 GO terms and 250,000 genes in the mtab mapping; however,
many of them map to either a very small or a very large number of genes. At this stage,
it could also be useful to remove any genes not present in our particular data set, but that
would make the resulting tmod object less flexible. However, we may be interested only
in the “biological process” ontology for now.

mtab <- mtab[mtab$Ontology == "BP",]
m2g <- split(mtab$gene_id, mtab$go_id)
remove the rather large object
rm(mtab)

11 <- lengths(m2g)

m2g <- m2g[11 >= 10 & 11 <= 100]
length(m2g)

[1] 2224

Using the mapping and the GO. db it is easy to create a module set suitable for tmod:

library(GO.db)

gt <- toTable(GOTERM)

m <- data.frame(ID=names(m2g))

m$Title <- gt$Term[match(mID, gtgo_id)]

goset <- makeTmod(modules=m, modules2genes=m2g)
rm(gt, m2g, m)

This approach allows an offline mapping to GO terms, assuming the necessary DBI
is installed. Using AnnotationDBI databases such as org.Hs.eg.db has, however, also
two major disadvantages: firstly, the annotations are available for a small number of or-
ganisms. Secondly, the annotations in ENSEMBL may be more up to date.

71

We can now compare the results of the analysis with MSigDB. There is one hitch,
though. The authors of MSigDB decided to use their own identifiers instead of GO identi-
fiers. The GO identifiers can still be extracted from MSigDB, but can only be found in the
field EXTERNAL_DETAILS_URL. Below, the function renameMods is used to replace the
MSigDB identifiers with GO identifiers.

msig.bp <- msig[msig$MODULES$Subcategory == "BP"]

go_ids <- gsub(".*/", "", msig.bp$MODULESSEXTERNAL_DETAILS_URL)
names(go_ids) <- msig.bp$MODULESSID

msig.bp <- renameMods(msig.bp, go_ids)

Now we can run the enrichment on tt with both data sets and compare the results.
Note, however, that while systematic gene names are used in MSigDB, the object goset
was created from org.Hs.eg.db and uses Entrez identifiers. Also, we will make both
sets directly comparable by filtering for the common genes, and we will request a result
for all modules, even if they are not significant.

both <- intersect(msig.bp$MODULES$ID, goset$MODULESS$ID)
msig.bp <- msig.bp[both]
goset.both <- goset[both]

rescomp <- list()

rescomp$orghs <-

tmodCERNOtest (tt$EG, mset=goset.both, gval=Inf, order.by="n")
rescomp$msigdb <-

tmodCERNOtest (tt$GENE_SYMBOL, mset=msig.bp, qval=Inf, order.by="n")
all(rownames(rescomp$msigdb) == rownames(rescomp$orghs))

[1] TRUE

plot(rescomp$msigdb$P.Value, rescomp$orghs$P.Value, log="xy",
xlab="MSigDB GO", ylab="org.Hs.eg.db GO", bty="n")
abline(0, 1, col="grey")

72

o
S
i o
—
®
o
— O
9
o o
O
O «
a ©O
T LT
o
Q)_H
o)
)
r 8
o L
o -
o
3 ° 0
I_
)
—

I I I I
le-15 le-11 le-07 1le-03

MSigDB GO

The differences are quite apparent, and most likely due to the differences in the ver-
sions of the GO database.

7.3.4 KEGG pathways

One way to obtain KEGG pathway gene sets is to use the MSigDB as described above.
However, alternatively and for other organisms it is possible to directly obtain the path-
way definitions from KEGG. The code below might take a lot of time on a slow connection.

library(KEGGREST)
pathways <- keggLink("pathway", "hsa'")

get pathway Names in addition to IDs

paths <- sapply(unique(pathways), function(p) keggGet(p)[[1]]$NAME)
m <- data.frame(ID=unique(pathways), Title=paths)

73

m2g is the mapping from modules (pathways) to genes
m2g <- split(names(pathways), pathways)

kegg object can now be used with tmod
kegg <- makeTmod(modules=m, modules2genes=m2g)

Note that KEGG uses a slightly modified version of Entrez identifiers — each numeric
identifier is preceded by a three letter species code (e.g. “hsa” for humans) followed by a
colon:

eg <- paste@("hsa:", tt$EG)
tmodCERNOtest (eg, mset="kegg")

Again, the most important part is to ensure that the gene identifiers in the tmod object
(kegg in this case) correspond to the gene identifiers in in the ordered list.

7.3.5 Manual creation of tmod module objects: MSigDB

For the purposes of an example, the code below shows how to parse the XML MSigDB
file using the R package XML. Essentially, this is the same code that tmodImportMsigDB
is using:

library(XML)

foo <- xmlParse("msigdb_v6.1.xml")
foo2 <- xmlToList(foo)

There are over 10,000 “gene sets” (equivalent to modules in tmod) defined. Each mem-
ber of foo2 is a named character vector:

pathl <- foo2[[1]]
class(pathl)

[1] "character"

74

names (pathl)

[1] "STANDARD_NAME" "SYSTEMATIC_NAME" "HISTORICAL_NAMES"

[4] "ORGANISM" "PMID" "AUTHORS"

[7] "GEOID" "EXACT_SOURCE" "GENESET_LISTING_URL"
[10] "EXTERNAL_DETAILS_URL" "CHIP" "CATEGORY_CODE"

[13] "SUB_CATEGORY_CODE" "CONTRIBUTOR" "CONTRIBUTOR_ORG"

[16] "DESCRIPTION_BRIEF" "DESCRIPTION_FULL" "TAGS"

[19] "MEMBERS" "MEMBERS_SYMBOLIZED" "MEMBERS_EZID"

[22] "MEMBERS_MAPPING" "FOUNDER_NAMES" "REFINEMENT_DATASETS"

[25] "VALIDATION_DATASETS"

For our example analysis, we will use only human gene sets. We further need to make
sure there are no NULLSs in the list.

orgs <- sapply(foo2, function(x) X["ORGANISM"])

unique(orgs)

[1] "Homo sapiens" "Mus musculus" "Rattus norvegicus"
[4] "Danio rerio" "Macaca mulatta" NA

foo3 <- foo2[orgs == "Homo sapiens"]

foo3 <- foo3[! sapply(foo3, is.null)]

Next, construct the MODULES data frame. We will use four named fields for each
vector, which contain the ID (systematic name), description, category and subcategory:

modules <- t(sapply(foo3,
function(x)
X[c("SYSTEMATIC_NAME", "STANDARD_NAME", "CATEGORY_CODE", "SUBCATEGORY_CODE") 1))
colnames(modules) <- c¢("ID", "Title", "Category", "Subcategory")
modules <- data.frame(modules, stringsAsFactors=FALSE)

Then, we create the modules to genes mapping and the GENES data frame. For this,
we use the MEMBERS_SYMBOLIZED field, which is a comma separated list of gene symbols
belonging to a particular module:

75

m2g <- lapply(foo3,
function(x) strsplit(x["MEMBERS_SYMBOLIZED"], ",")[[111)
names(m2g) <- modules$ID

mymsig <- makeTmod(modules=modules, modules2genes=m2g)
mymsig

An object of class "tmod"
14645 modules, 32403 genes

From now on, you can use the object mymsig with tmod enrichment tests.

Note that it is not necessary to create the members GENES and GENES2MODULES
manually. The reverse mapping from genes to modules, GENES2MODULES, will be auto-
matically inferred from MODULES2GENES. If no meta-information on genes is provided
in GENES, then a minimal data frame will be created with one column only (ID).

76

Chapter 8

Case studies

8.1 Metabolic profiling of TB patients

8.1.1 Introduction

One of the main objectives in writing tmod was the ability to analyse metabolic profil-
ing data and other uncommon data sets. In 2012, we have analysed metabolic profiles
of serum collected from patients suffering from tuberculosis (TB) and healthy controls
(Weiner 3rd et al. 2012). It turned out that there are huge differences between these two
groups of individuals, involving amino acid metabolism, lipid metabolism and many oth-
ers. In the course of the analysis, we found correlations between the metabolites which are
not explained fully by the metabolic pathways. For example, cortisol is correlated with
kynurenine due to the immunoactive function of these molecules indicating an activation
of the immune system, and not because these two molecules are linked by a synthesis pro-
cess. Vice versa, kynurenine and tryptophan were not directly correlated, even though
these molecules are clearly linked by a metabolic process, because tryptophan is not an

immune signalling molecule, while kynurenine is.

The tmod package includes both, the data set used in the Weiner et al. paper and
the cluster definitions (modules) published therein. In the following, we will use these
modules to analyse the metabolic profiles'.

!Formally, this is not correct, as the modules were derived from the data set that we are going to analyse,

however it serves for demonstration purposes

77

First, we load the data modules and the data set to analyse.

data(modmetabo) ## modules
data(tbmprof)

ids

<- rownames(tbmprof)

tb <- factor(gsub("\\..*", "" ids))

sex

<- factor(gsub(".*\\.([MF])\\..*", "\1", ids))

table(tb, sex)

sex

tb F M
Hit HEALTHY 58 34
Hit TB 25 19

8.1.2 Differential analysis

The metabolic profiling data has not exactly a normal distribution, but that varies from

one compound to another. It is possible to normalize it by ranking, but we can simply use

the wilcoxon test to see differences between males and females as well as TB patients and

healthy individuals.

wcx.tbh <- apply(tbmprof, 2, function(x) wilcox.test(x ~ tb, conf.int=T))
wex.tbh <- t(sapply(wcx.tb, function(x) c(x$estimate, x$p.value)))

wcX.sex <- apply(tbmprof, 2, function(x) wilcox.test(x ~ sex, conf.int=T))
wcXx.sex <- t(sapply(wcx.sex, function(x) c(x$estimate, x$p.value)))

wcx <- data.frame(ID=colnames(tbmprof),

E.tb=wcx.tb[,1], pval.tb=wcx.tb[, 2],
E.sex=wcx.sex[,1], pval.sex=wcx.sex[,2],
row.names=colnames(tbmprof))

The data frame contains the results of all tests. We can now test both the healthy/tb

comparison and the male/female comparison for enrichment in metabolic profiling mod-

ules. Instead ordering the feature identifiers, we use the option “input.order” to deter-

mine the sorting.

78

ids <- wcx$ID

res <- list()

res$tb <- tmodCERNOtest(ids[order(wcx$pval.tb)], mset=modmetabo)
res$tb

#it ID Title cerno N1
ME.107 ME.107 Amino acids cluster 104.6 18
ME.37 ME.37 Kynurenines, taurocholates and cortisol cluster 116.9 25
MP.2 MP.2 Amino Acid 99.2 28
AUC CcES P.value adj.P.val

ME.107 0.882 2.91 1.28e-08 5.39e-07
ME.37 0.884 2.34 2.82e-07 5.91e-06
MP.2 0.706 1.77 3.36e-04 4.70e-03

res$sex <- tmodCERNOtest(ids[order(wcx$pval.sex)], mset=modmetabo)
res$sex

#t ID Title cerno N1 AUC cES P.Value adj.P.val
ME.26 ME.26 Hormones cluster 62.5 10 0.920 3.12 2.92e-06 0.000123
MS.1 MS.1 Steroid 61.0 11 0.873 2.77 1.59e-05 0.000335

ME.69 ME.69 Cholesterol cluster 45.1 11 0.819 2.05 2.55e-03 0.035649

Both these result tables are concordant with previous findings. The enriched modules
in male vs female comparison are what one would expect. In TB, a cluster consisting of
kynurenine, bile acids and cortisol is up-regulated, while amino acids go down. We can
take a closer look at it using the evidencePlot function.

Why is there a module called “Amino acid cluster” and another one called “Amino
acid”? The “cluster” in the name of the module indicates that it has been build by cluster-
ing of the profiles, while the other module has been based on the biochemical classification
of the molecules. This information is contained in the Category column of the MODULES
data frame:

modmetabo$MODULES[c("ME.107", "MP.2"),]

#t ID Title Category
ME.107 ME.107 Amino acids cluster Cluster
MP.2 MP.2 Amino Acid Pathway

79

To get an overview for both of these comparisons at the same time, we can use the
tmodPanelPlot function. The size of the blobs below corresponds to the AUC values from
the tables above.

tmodPanelPlot(res)
)
=] o
Amino Acid (MP.2)
Amino acids cluster (ME.107) @
Kynurenines, taurocholates and cortisol cluster (ME.37) C\
Hormones cluster (ME.26)
Steroid (MS.1)
P value:
[[
0.01 0.001 10 107 10°
Effect size:
0.5 0.92

This, unfortunately, does not tell us in which group the metabolites from a given mod-
ules are higher. For this, we can use the “estimate” from the wilcox.test above and a
parameter for tmodPanelPlot called “pie”. To create the value for this parameter — a list
that describes, for each condition and for each module, how many metabolites change in
one direction, and how many change in the other.

pie.data <- wcx[,c("E.sex", "E.tb")]

colnames(pie.data) <- c("sex", "tbh")

pie <- tmodDecideTests(wcx$ID, lfc=pie.data, 1lfc.thr=0.2, mset=modmetabo)
tmodPanelPlot(res, pie=pie, pie.style="rug", grid="between")

80

Amino acids cluster (ME.107)

sex

0
o=}

Amino Acid (MP.2)

Kynurenines, taurocholates and cortisol cluster (ME.37) ||l

P value:

0.01

Effect size:

il
0.

5

0.001

Hormones cluster (ME.26)
Steroid (MS.1)

107

0.92

We see now that the cortisol cluster is higher in TB, while amino acids are found at

lower concentration in the patients. Also, we see that most of the steroids found (cluster

ME.26 and module MS.1) are lower in females. The latter is not surprising if we inspect it

closely.

wcX <- wcx[order(wcx$pval.sex),]
showModule (wcx[,c("E.sex",

##
##
##
##
##
##
#i#t
##
##
##
##
##
##
##

HMDB00493
HMDB0OO365
HMDB02759
M.37186

HMDB03818.

M.32619

HMDB03818
HMDB01032
HMDB02802
HMDB0OO063
HMDB04026

HMDB00493

1

E.sex

-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.

87
64
62
50
39
36
46
27
10
12
08

pval.sex
.04e-06
.03e-05
.07e-04
.49e-04
.54e-04
.42e-04
.35e-03
.28e-03
.85e-02
.55e-01
.35e-01

WKL, oo 00~ WwEREr R R B~

5alpha-androstan-3beta,17beta-diol disulfate

"pval.sex")], wcx$ID,

ID
HMDB00493
HMDB0O365
HMDB02759

M.37186

HMDB03818.1

M.32619
HMDB03818
HMDB01032
HMDB02802
HMDB0OOO63
HMDB04026

81

"MS.1", mset=modmetabo)

Name Pathway
Lipid

HMDBOO365 epiandrosterone sulfate Lipid

HMDB02759 androsterone sulfate Lipid
M.37186 5alpha-androstan-3alpha,17beta-diol monosulfate (1) Lipid
HMDB03818.1 4-androsten-3beta,17beta-diol disulfate (2) Lipid
M.32619 pregn steroid monosulfate* Lipid
HMDB03818 4-androsten-3beta,17beta-diol disulfate (1) Lipid
HMDB01032 dehydroisoandrosterone sulfate (DHEA-S) Lipid
HMDB02802 cortisone Lipid
HMDBOOO63 cortisol Lipid
HMDB04026 21-hydroxypregnenolone disulfate Lipid
#it Subpathway HMDB KEGG MetabolonID
HMDBO0493 Steroid HMDBOG493 C12525 M.37190
HMDBOO365 Steroid HMDBOE365 C0O7635 M.33973
HMDB0O2759 Steroid HMDB02759 M.31591
M.37186 Steroid M.37186
HMDB03818.1 Steroid HMDB03818 C04295 M.37203
M.32619 Steroid M.32619
HMDB03818 Steroid HMDB03818 C04295 M.37202
HMDB01032 Steroid HMDB01032 C04555 M.32425
HMDB02802 Steroid HMDB02802 C0O0762 M.1769
HMDBOOO63 Steroid HMDBOGO63 COEO735 M.1712
HMDB04026 Steroid HMDB04026 C05485 M.46115

i <- "HMDB0O493" # what is it?
modmetabo$GENES[1,]

#it ID Name Pathway
HMDBOO493 HMDBO0493 5alpha-androstan-3beta,17beta-diol disulfate Lipid
Subpathway HMDB KEGG MetabolonID
HMDBO0493 Steroid HMDBOG493 C12525 M.37190

par (mfrow=c(1,2))
showGene (tbmprof[,i], sex, main=modmetabo$GENES[i, "Name'],
ylab="Relative abundance")

now for cortisol cluster
i <- "HMDBOOO63"

82

wcx <- wcx[order(wcx$pval.tb),]
showModule (wcx[,c("E.th",

##
##
##
##
##
##
##
##
##
##
#i#
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
#i#
##

M.47908
M.32599
HMDB00169
Mx.22110
HMDB0OOO63
HMDB00159
M.32807
M.46637
M.46652
HMDB00684

M.47908
M.32599
HMDB00169
Mx.22110
HMDB0OOO63
HMDB00159
M.32807
M.46637
M.46652
HMDB00684

M.47908
M.32599
HMDB00169
Mx.22110
HMDB0OOO63
HMDB0O159
M.32807
M.46637
M.46652
HMDB00684

E.th p
-7.00e-01
-8.00e-01
-6.30e-01
-6.45e-05
-5.40e-01
-2.90e-01
-1.22e+00
-1.03e+00
-8.40e-01
-3.10e-01 1.

Pathway

R O W NPE BEP ODNNDN

Lipid
Carbohydrate
Amino acid
Lipid

Amino Acid
Lipid

Amino Acid
HMDB

HMDB00169 CO
Cco
co

Co

HMDB0OOO63
HMDB0O159

HMDB00684 CO

"pval.
mset=modmetabo)[1:10,] # only

val.tb

.67e-14
.32e-10
.12e-09
.38e-08
.99e-08
.49e-08
.58e-08
.66e-08
.42e-07

79e-07

Fruct

KEGG M

0159
2794
0735
0079

0328

first 10!

ID
M.47908
M.32599

HMDB00O169
Mx.22110
HMDB0OOO63
HMDB0OO159
M.32807
M.46637
M.46652
HMDB00684

th")], wcx$ID,

"ME.37",

Name
Unknown

glycocholenate sulfate*

mannose

3-hydroxykynurenine
cortisol

phenylalanine

taurocholenate sulfate

Unknown
Unknown

kynurenine

Secondary Bile Acid

ose,

Mannose and Galactose

Tryptophan

Phenylalanine and Tyrosine
Secondary Bile Acid

etabolonID
M.47908
M.32599
M.584
Mx.22110
M.1712
M. 64
.32807
.46637
.46652
.15140

= S 4

83

Tryptophan

Subpathway

Metabolism
Metabolism
Metabolism

Steroid
Metabolism
Metabolism

Metabolism

showGene (tbmprof[,i], tb, main=modmetabo$GENES[i, "Name'],
ylab="Relative abundance")

Salpha—androstan—3beta,17beta—diol disulfate cortisol
15 3.0 o
2.5 e
Q Q
g g
g 10 4 g 2.0 1
kel el
c c
p=3 =3
o o
© © — e
2 2 15+ :
k] k]
[5) Q
x g - 114
: 1.0 -
: 0.5 - !
0 — e
uw =

HEALTHY
B

8.1.3 Functional multivariate analysis

We can practically circumvent a gene-by-gene analysis. In fact, we are rarely interested in
the p-values associated with single genes or metabolites. There is too many of them, and
the statistical power is limited by the sheer number of tests and the requirement of correc-
tion for multiple testing. In case you have not read the part on FMA above, “Functional
multivariate analysis”, in its simplest form, is simply combining a principal component
analysis (PCA) with enrichment analysis. PCA lets us explore where the variance in the
data is; enrichment analysis allows us to interprete the principal components in functional

terms.
In tmod, it can be done in a few lines of code:
pca <- prcomp(tbmprof, scale.=T)

ret <- tmodPCA(pca, genes=colnames(tbmprof), mset=modmetabo,
plot.params=list(group=tb))

84

8 —
°
c
=0
e ° °
(8]
53 2
o2
s
o
—] °
4 °
8 . % o° % I
28 f] s n
83 : 0 °°e ° s " . -
= 0 I
2= ® o go Em n"
£3 > o u
FE B 5 % ®* » nu n n
<3 E 3 o - = o % =
2 =3 u .' ¢ :‘Ill.. -
— c O
2% G5 ald ofI =y 11 -]
> o0 - L |
< To} 1]
C © — "] [] n
(] I u J5 =
= |
- C L =
w
S
- [
I
[I I I I |
-10 -5 0 5 10 15
Long Chain
Lipid Fatty Acid

Polyunsaturated Fatty Medium—chain fatty

) acids cluster
Acid (n3 and n6)

Long chain fatty
acid cluster

The ret object now contains the results of enrichments (in the ret$enrichments mem-
ber) and we can directly throw it on a panel plot:

tmodPanelPlot (ret$enrichments)

85

— N
i< c
[J] [J]
c c
o o
o o
1S IS
[e] [e]
@) (@)
Kynurenines, taurocholates and cortisol cluster (ME.37) EB
Lysolipid (MS.47)
Medium~-chain fatty acids cluster (ME.6) =)
Amino acids cluster (ME.107)
Medium Chain Fatty Acid (MS.37)
Polyunsaturated Fatty Acid (n3 and n6) (MS.40)
Long Chain Fatty Acid (MS.36) ® @
Long chain fatty acid cluster (ME.2)) ®
Lipid (MP.1) ® ®
P value:
@ @
4 -5 -6
0.01 0.001 10 10 10
Effect size:
0.5 0.95

OK, but which of the terms are characteristic for TB patients? Which for the healthy
controls? In the above, the enrichments were based on a list sorted by the absolute PCA
weights. However, we can split it into a list ordered by signed weights ordered once from
small to large values, and once from large to small values.

pca <- prcomp(tbmprof, scale.=T)

ret <- tmodPCA(pca, genes=colnames(tbmprof), mset=modmetabo,
plot.params=list(group=tb),
mode="cross"

86

Long Chain

Fatty Acid
Kynurenines, taurocholates
and cortisol cluster

Long chain fatty

Lipid

acid cluster
]
o _
N °
0 _| ® ®
—
mino acids Long chain fatty
Carbohydrate cluster acid cluster
S — ° Long Chain
° .
. ‘ . % o° . *) Fatty Acid
nurenines, taurocholates
y and cortisol cluster 0 — Soo ['. |] ")lyu-nsaturated Fatty
) oL mE Acid (n3 and n6)
Putative ’ [] - L
hypoxia-related cluster 0. .’ o . L ™ ™
© 7 - = ium—chain fatty Lipid
ﬂll - cids cluster
o _|
[l. " - L]
]
o
FI' -]

-10 -5 0 5 10 15

Amino acids iy
cluster
In essence, reading this plot is simple. First, note that this time the tag clouds on the
top and the bottom correspond to the two ends of the vertical, y axis (second component);
and the tag clouds at the left and right correspond to the two ends of the horizontal, x axis
(first PCA component).

Now, take the amino acid cluster (bottom of the plot): it is enriched at the lower end of
the y axis, which means, that features in that cluster are higher in the yellow points which
are at the bottom of the plot (lower end of the y). In other words, amino acids are higher
in healthy persons — a finding which corroborates the differential analysis above.

Similarly, “kynurenines” are at the left, lower side of the x axis, which means, that
features from this cluster are at higher levels in TB patients.

What about the male-female differences? They probably can be found in other, less
important” components. We could look for them manually, but we can also search which

’That is, components which include a smaller fraction of the total variance in the data set

87

of the responses (turned to orthogonal PCA components) is best predicted by the sex
factor.

foo <- summary(lm(pca$x ~ sex))
foo <- t(sapply(foo,

function(x) c(r=x%r.squared, pval=x$coefficients[2,4])))
head(foo[order(foo[,2]), 1)

#t r pval
Response PC5 0.2457 8.49e-10
Response PC10 0.2146 1.36e-08
Response PC7 0.0328 3.48e-02
Response PCS8 0.0221 8.39e-02
Response PC107 0.0199 1.02e-01
Response PC6 0.0192 1.08e-01

We can use the components 1 (which corresponds to TB/healthy) and components 5,
which corresponds to male/female differences, as suggested by the above calculations.

ret <- tmodPCA(pca, genes=colnames(tbmprof), mset=modmetabo,

plot.params=list(group=paste(sex, tb)),
components=c(2,5))

88

n
|] n L []
o — = ="
AR °
.. : .o; : oo
.
e 'A’-‘ v W
= _ AR _ A .
o © Al sSmR,°
0 Q *‘A - ° P
Q. 7 AA“‘ ‘s .
C o iy .
o *(7)‘ B mA,e ® 0‘
€ 5 o _| AL ¢ ¢
= = I
O Oxs A . n
I = A .
2 A A
je 2 4
o
5 S - A *
I A
A

Long Chain | ong chain fatty
Fatty Acid acid cluster

Kynurenines, taurocholates
and cortisol cluster

Lipid

Orange circles and blue triangles are females, located mostly in Q1 and Q2 (top half);
this corresponds to differences on the y axis and the tagcloud next to it (hormone cluster,
steroids etc.). On the other hand, TB patients (blue triangles and yellow circles) are in Q1
and Q4 (right-hand side), which corresponds to the TB-specific tag cloud below the y axis.

8.2 Case study: RNASeq

The example below has been extended from the edgeR package users manual.

The code below loads the data and, using org.Hs.eg.db, adds Entrez IDs and HGNC
symbols.

89

library(edgeR)

rawdata <- read.csv('"rnaseq_example.csv", stringsAsFactors=FALSE)
y <- DGEList(counts=rawdata[,4:9], genes=rawdatal[,1:3])

map <- toTable(org.Hs.egREFSEQ2EG)

y$genes$EG <- map$gene_id[match(y$genes$idRefSeq, map$accession)]
map <- toTable(org.Hs.egSYMBOL)

y$genes$Symbol <- map$symbol[match(y$genesEG, mapgene_id)]

Next, we perform differential gene expression to test for the difference between normal
tissue (N) and tumor (T).

Patient <- paste0("P.", rep(c(8, 33, 51), each=2))
Tissue <- rep(c("N", "T"), 3)

design <- model.matrix(~Patient+Tissue)

y <- calcNormFactors(y)

design <- model.matrix(~Patient+Tissue)

y <- estimateDisp(y, design, robust=TRUE)

fit <- glmQLFit(y, design)

calculate the results for coefficient of interest
1rt <- glmQLFTest(fit, coef="TissueT")

Since there are no confidence intervals for log fold changes in edgeR, we cannot com-
pute MSD, and therefore we will use the p-values to order the genes in the following code:

ord <- order(lrt$table$Pvalue)

res.rnaseq <- list()

res.rnaseq$tmod <- tmodCERNOtest(lrt$genes$Symbol[ord])
res.rnaseq$goset <- tmodCERNOtest(lrt$genes$EG[ord], mset=goset)

So far, so good. However, an alternative to using MSD is test the log fold change of
the selected contrast not against 0, but against a pre-selected threshold using the TREAT
method (McCarthy and Smyth 2009), implemented in edgeR in the function glmTreat:

90

lrt.treat <- glmTreat(fit, coef="TissueT", 1lfc=1log2(2))

ord <- order(lrt.treat$table$PValue)

res.rnaseq$treat.tmod <- tmodCERNOtest(lrt$genes$Symbol[ord])
res.rnaseq$treat.goset <- tmodCERNOtest(lrt$genes$EG[ord], mset=goset)
res.rnaseq <- res.rnaseq[c(1,3,2,4)]

tmodPanelPlot(res.rnaseq, filter.rows.pval=1le-3)

treat.goset

tmod
@ treat.tmod
goset

cell adhesion (LI.M51)
enriched for cell migration (LI.M122)
extracellular matrix, collagen (LI.M210)
cell cycle and transcription (LI1.M4.0)
cytoskeleton/actin (SRF transcription targets) (L1.M145.1)
immune activation — generic cluster (LI.M37.0)
B cell surface signature (LI.S2)
complement activation (1) (L1.M112.0)
complement activation (1) (LI.M112.1)
enriched in monocytes (ll) (LI.M11.0)
enriched in myeloid cells and monocytes (LI.M81)
platelet degranulation (GO:0002576)
muscle filament sliding (GO:0030049) ® ©
cardiac muscle contraction (GO:0060048))
skeletal muscle contraction (GO:0003009)
sarcomere organization (G0:0045214)
muscle organ development (GO:0007517)
epidermis development (GO:0008544)
peptide cross-linking (GO:0018149)

0P
(4

P value:

0.01 0.001 107 107 10°®

Effect size:

0.5 0.93

The results are very similar, but the p-values are lower.

91

References

Banchereau, Romain, Alejandro Jordan-Villegas, Monica Ardura, Asuncion Mejias,
Nicole Baldwin, Hui Xu, Elizabeth Saye, et al. 2012. “Host Immune Transcriptional
Profiles Reflect the Variability in Clinical Disease Manifestations in Patients with
Staphylococcus Aureus Infections.” PLoS One 7 (4). Public Library of Science: €34390.

Chaussabel, Damien, Charles Quinn, Jing Shen, Pinakeen Patel, Casey Glaser, Nicole
Baldwin, Dorothee Stichweh, et al. 2008. “A Modular Analysis Framework for Blood
Genomics Studies: Application to Systemic Lupus Erythematosus.” Immunity 29 (1). El-
sevier: 150-64.

Damian, Doris, and Malka Gorfine. 2004. “Statistical Concerns About the GSEA Pro-
cedure.” Nature Genetics 36 (7). Nature Publishing Group: 663-63.

Li, Shuzhao, Nadine Rouphael, Sai Duraisingham, Sandra Romero-Steiner, Scott Pres-
nell, Carl Davis, Daniel S Schmidt, et al. 2014. “Molecular Signatures of Antibody Re-
sponses Derived from a Systems Biology Study of Five Human Vaccines.” Nature Immunol-
ogy 15 (2). Nature Publishing Group: 195-204.

Maertzdorf, Jeroen, Martin Ota, Dirk Repsilber, Hans] Mollenkopf, January Weiner,
Philip C Hill, and Stefan HE Kaufmann. 2011. “Functional Correlations of Pathogenesis-
Driven Gene Expression Signatures in Tuberculosis.” PloS One 6 (10). Public Library of
Science: e26938.

McCarthy, Davis J, and Gordon K Smyth. 2009. “Testing Significance Relative to a
Fold-Change Threshold Is a TREAT.” Bioinformatics 25 (6). Oxford University Press: 765
71.

Smyth, Gordon K. 2005. “Limma: Linear Models for Microarray Data.” In Bioinformat-
ics and Computational Biology Solutions Using R and Bioconductor, edited by R. Gentleman,

92

V. Carey, S. Dudoit, R. Irizarry, and W. Huber, 397-420. New York: Springer.

Subramanian, Aravind, Pablo Tamayo, Vamsi K Mootha, Sayan Mukherjee, Benjamin
L Ebert, Michael A Gillette, Amanda Paulovich, et al. 2005. “Gene Set Enrichment Anal-
ysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles.”
Proceedings of the National Academy of Sciences of the United States of America 102 (43). Na-
tional Acad Sciences: 15545-50.

Tomfohr, John, Jun Lu, and Thomas B Kepler. 2005. “Pathway Level Analysis of Gene
Expression Using Singular Value Decomposition.” BMC Bioinformatics 6 (1). BloMed Cen-
tral: 225.

Weiner 3rd, January, and Teresa Domaszewska. 2016. “Tmod: An R Package for Gen-
eral and Multivariate Enrichment Analysis.” Peer| Preprints 2016 (09). Peer], Inc.

Weiner 3rd, January, Shreemanta K Parida, Jeroen Maertzdorf, Gillian F Black, Dirk
Repsilber, Anna Telaar, Robert P Mohney, et al. 2012. “Biomarkers of Inflammation, Im-
munosuppression and Stress with Active Disease Are Revealed by Metabolomic Profiling
of Tuberculosis Patients.” PloS One 7 (7). Public Library of Science: e40221.

Weiner, January. 2013. Pca3d: Three Dimensional PCA Plots.
— — —. 2014. Tagcloud: Tag Clouds.

Wendt, Hans W. 1972. “Dealing with a Common Problem in Social Science: A Simpli-
fied Rank-Biserial Coefficient of Correlation Based on the U Statistic.” European Journal of
Social Psychology 2 (4). Wiley Online Library: 463-65.

Yamaguchi, Ken D, Daniel L Ruderman, Ed Croze, T Charis Wagner, Sharlene
Velichko, Anthony T Reder, and Hugh Salamon. 2008. “IFN-/3-Regulated Genes Show
Abnormal Expression in Therapy-Naive Relapsing-remitting MS Mononuclear Cells:
Gene Expression Analysis Employing All Reported Protein—protein Interactions.” Journal
of Neuroimmunology 195 (1). Elsevier: 116-20.

93

	Introduction
	Dive into tmod: analysis of transcriptomic responses to tuberculosis
	Introduction
	The Gambia data set
	Transcriptional module analysis with GSEA
	Visualizing results

	Statistical tests in tmod
	Introduction
	First generation tests
	Second generation tests
	U-test (tmodUtest)
	CERNO test (tmodCERNOtest and tmodZtest)
	PLAGE

	Permutation tests
	Introduction
	Permutation testing – a general case
	Permutation testing with tmodGeneSetTest

	Comparison of different tests

	Visualisation and presentation of results in tmod
	Introduction
	Evidence plots
	Summary tables
	Panel plots with tmodPanelPlot

	Working with limma
	Limma and tmod
	Minimum significant difference (MSD)
	Comparing tests across experimental conditions

	Using tmod for other types of GSEA analyses
	Correlation analysis
	Functional multivariate analysis
	PCA and tag clouds

	Using and creating modules and gene sets
	Using built-in gene sets (transcriptional modules)
	Accessing the tmod module data directly
	Module operations
	Using tmod modules in other programs
	Custom module definitions

	Obtaining other gene sets
	MSigDB
	Using the ENSEMBL databases through biomaRt
	Gene ontologies (GO)
	KEGG pathways
	Manual creation of tmod module objects: MSigDB

	Case studies
	Metabolic profiling of TB patients
	Introduction
	Differential analysis
	Functional multivariate analysis

	Case study: RNASeq

	References

