releases of the package. I am especially grateful to my thesis advisor, Her-
bie Lee, whose contributions and guidance in this project have been invaluable
throughout.

A Implementation notes

The treed GP model is coded in a mixture of C and C++: C++ for the tree data
structure (7°) and C for the GP at each leaf of 7. The code has been tested on
Unix (Solaris, Linux, FreeBSD, 0SX) and Windows (2000, XP) platforms.
It is useful to first translate and re-scale the input data (X) so that it lies in
an RN™X dimensional unit cube. This makes it easier to construct prior distri-
butions for the width parameters to the correlation function K(-,-). Proposals
for all parameters which require MH sampling are taken from a uniform “sliding
window” centered around the location of the last accepted setting. For exam-
ple, a proposed a new nugget parameter g, to the correlation function K(-,-) in

region r, would go as
“ Unif 3 4
~ uni TIvy SYv | -
v 19739

Calculating the corresponding forward and backwards proposal probabilities for
the MH acceptance ratio is straightforward.

For more details about the MCMC algorithm and proposals, etc., please see
the original technical report on Bayesian treed Gaussian process models [13].

B Interfaces and features

The following subsections describe some of the ancillary features of the tgp
package such as the gathering and summarizing of MCMC parameter traces,
the progress meter, and an example of how to use the predict.tgp function in
a collaborative setting.

B.1 Parameter traces

Traces of (almost) all parameters to the tgp model can be collected by supplying
trace=TRUE to the b* functions. In the current version traces for the linear prior
correlation matrix (W) are not provided. I shall illustrate the gathering and
analyzing of traces through example. But first, a few notes and cautions.
Models which involve treed partitioning may have more than one base model
(GP or LM). The process governing a particular input x depends on the coordi-
nates of x. As such, tgp records region—specific traces of parameters to GP (and
linear) models at the locations enumerated in the XX argument. Even traces of
single—parameter Markov chains can require hefty amounts of storage, so record-
ing traces at each of the XX locations can be an enormous memory hog. A related
warning will be given if the product of |XX|, (BTE[2]-BTE[1])/BTE[3] and R
is beyond a threshold. The easiest way to keep the storage requirements for

33

traces down is to control the size of XX and the thinning level BTE[3]. Finally,
traces for most of the parameters are stored in output files. The contents of the
trace files are read into R and stored as data.frame objects, and the files are
removed. The existence of partially written trace files in the current working
directory (CWD)—while the C code is executing—means that not more than
one tgp run (with trace = TRUE) should be active in the CWD at one time.
Consider again the exponential data. For illustrative purposes I chose XX
locations (where traces are gathered) to be (1) in the interior of the interesting
region, (2) on/near the plausible intersection of partition boundaries, and (3) in
the interior of the flat region. The hierarchical prior bprior = "b0" is used to
leverage a (prior) belief the most of the input domain is uninteresting.

> exp2d.data <- exp2d.rand(n2 = 150, 1lh = 0, dopt = 10)
> X <- exp2d.data$X

> Z <- exp2d.data$Z

> XX <- rbind(c(0, 0), c(2, 2), c(4, 4))

We now fit a treed GP LLM and gather traces, and also gather EI and ALC
statistics for the purposes of illustration. Prediction at the input locations X is
turned off to be thrifty.

> out <- btgpllm(X = X, Z = Z, XX = XX, corr = "exp",
+ bprior = "b0", pred.n = FALSE, Ds2x = TRUE, R = 10,
+ trace = TRUE, verb = 0)

Figure 18 shows a dump of out$trace which is a "tgptraces"—class object. It
depicts the full set of parameter traces broken down into the elements of a 1ist:
$XX with GP/LLM parameter traces for each XX location (the parameters are
listed); $hier with traces for (non—input—-dependent) hierarchical parameters
(listed); $linarea recording proportions of the input space under the LLM;
$parts with the boundaries of all partitions visited; $post containing (log)
posterior probabilities; preds containing traces of samples from the posterior
predictive distribution and adaptive sampling statistics.

Plots of traces are useful for assessing the mixing of the Markov chain. For
example, Figure 19 plots traces of the range parameter (d) for each of the 3
predictive locations XX. It is easy to see which of the locations is in the same
partition with others, and which have smaller range parameters than others.

The mean area under the LLM can be calculated as

> linarea <- mean(out$trace$linarea$la)
> linarea

[1] 0.530641

This means that the expected proportion of the input domain under the full LLM
is 0.531. Figure 20 shows a histogram of areas under the LLM. The clumps near
0, 0.25, 0.5, and 0.75 can be thought of as representing quadrants (none, one,
two, and tree) under the LLM. Similarly, we can calculate the probability that
each of the XX locations is governed by the LLM.

34

> out$trace

This ’tgptraces’-class object contains traces of the parameters
to a tgp model. Access is as a list:

1.) $XX contains the traces of GP parameters for 3 predictive
locations

Each of $XX[[1]] ... $XX[[3]] is a data frame with the
columns representing GP parameters:

[1] index lambda s2 tau2 beta0 betal Dbeta2 nug
[9] 4 b ldetK

2.) $hier has a trace of the hierarchical params:

[1] s2.a0 s2.g0 tau2.a0 tau2.g0 beta0 betal beta2
[8] d.a0 d.g0 d.al d.gl nug.a0 nug.g0 nug.al
[15] nug.gl

3.) $linarea has a trace of areas under the LLM. It is a
data frame with columns:

count: number of booleans b=0, indicating LLM
la: area of domain under LLM
ba: area of domain under LLM weighed by dim

4.) $parts contains all of the partitions visited. Use the
tgp.plot.parts. [1d,2d] functions for visuals

5.) $post is a data frame with columns showing the following:
log posterior ($lpost), tree height ($height), IS
weights ($w), tempered log posterior ($tlpost), inv-temp
($itemp), and weights adjusted for ESS ($wess)

6.) $preds is a list containing data.frames for samples from
the posterior predictive distributions data (X) locations
(if pred.n=TRUE: $Zp, $Zp.km, $Zp.ks2) and (XX) locations
(if XX != NULL: $ZZ, $ZZ.km, $ZZ.ks2), with $Ds2x when
input argument ds2x=TRUE, and $improv when improv=TRUE

Figure 18: Listing the contents of "tgptraces"—class objects.
g gp

35

V+ 4+ +VV+VVYVVYV

log(d)

trXX <- out$trace$XX
1trXX <- length(trXX)
y <- trXX[[1]1]%$d
for (i in 2:1trXX) y <- c(y, trXX[[i]]$d)
plot(log(trXX[[1]1$d), type = "1", ylim = range(log(y)),
ylab = "log(d)", main = "range (d) parameter traces")
names <- "XX[1,]"
for (i in 2:1trXX) {
lines(log(trXX[[i]1$d), col = i, 1ty = i)
names <- c(names, paste("XX[", i, ",]", sep = ""))
}
legend("bottomleft", names, col = 1:1trXX, 1ty = 1:1trXX)

range (d) parameter traces

0 5000 10000 15000 20000 25000

Index

Figure 19: Traces of the (log of the) first range parameter for each of the three XX locations

v

1
2
3

m <- matrix(0, nrow = length(trXX), ncol = 3)
for (i in 1:length(trXX)) m[i,] <- as.double(c(out$XX[i,
], mean(trXX[[i]1$b)))
m <- data.frame(cbind(m, 1 - m[, 3]))
names(m) = C(HXXIH, uxx2n’ "b”, ”pllm”)
m
XX1 XX2 b plim
0 0 1.00000 0.00000
2 2 0.64852 0.35148
4 4 0.50384 0.49616

The final column above represents the probability that the corresponding XX
location is under the LLM (which is equal to 1-b).

36

> hist(out$trace$linarea$la)

Histogram of out$trace$linarea$la

Frequency
6000 8000
]]

4000
1

2000
|

]

I T T T 1
0.0 0.2 0.4 0.6 0.8

out$trace$linareasla

Figure 20: Histogram of proportions of the area of the input domain under the LLM

Traces of posterior predictive and adaptive sampling statistics are contained
in the $preds field. For example, Figure 21 shows samples of the ALC statistic
Ao?(x). We can see from the trace that statistic is generally lowest for XX [3,]
which is in the uninteresting region, and that there is some competition between
XX[2,] which lies on the boundary between the regions, and XX[1,] which is
in the interior of the interesting region. Similar plots can be made for the other
adaptive sampling statistics (i.e., ALM & EI).

B.2 Explaining the progress meter

The progress meter shows the progress of the MCMC as it iterates through the
desired number of rounds of burn—-in (BTE[1]), and sampling (BTE[2]-BTE[1]),
for the requested number of repeats (R). The verbosity of progress meter print
statements is controlled by the verb arguments to the b* functions. Provid-
ing verb=0 silences all non—warning (or error) statements. To suppress warn-
ings, try enclosing commands within suppressWarnings(...), or globally set
options(warn=0). See the help file (?options) for more global warning set-
tings.

The default verbosity setting (verb=1) shows all grows and prunes, and a
summary of d—(range) parameters for each partition every 1000 rounds. Higher
verbosity arguments will show more tree operations, e.g., change and swap,
etc. Setting verb=2 will cause an echo of the tgp model parameters and their
starting values; but is otherwise the same as verb=1. The max is verb=4 shows
all successful tree operations. Here is an example grow statement.

37

Ds2x

trALC <- out$trace$preds$Ds2x
y <- trALC[, 1]
for (i in 2:ncol(trALC)) y <- c(y, trALC[, i])
plot (log(trALC[, 11), type = "1", ylim = range(log(y)),
ylab = "Ds2x", main = "ALC: samples from Ds2x")
names <- "XX[1,]"
for (i in 2:ncol(trALC)) {
lines(log(trALC[, i]), col = i, lty = i)
names <- c(names, paste("XX[", i, ",]", sep = ""))
}
legend("bottomright", names, col = 1:1trXX, 1ty

vV + + + VV+VYViVYy

1:1trXX)

ALC: samples from Ds2x

-20 -15 -10
| |

-25
|

-30
|

-35
|

T T T T T T
0 5000 10000 15000 20000 25000

Index

Figure 21: Traces of the (log of the) samples for the ALC statistic Ao?(X) at for each of
the three XX locations

xGROW @depth 2: [0,0.05], n=(10,29)

The *GROW* statements indicate the depth of the split leaf node; the splitting
dimension v and location v is shown between square brackets [u,v], followed
by the size of the two new children n=(n1,n2). *PRUNE* is about the same,
without printing n=(n1,n2).

Every 1000-rounds a progress indicator is printed. Its format depends on
a number of things: (1) whether parallelization is turned on or not, (2) the
correlation model [isotropic or separable], (3) whether jumps to the LLM are
allowed. Here is an example with the 2-d exp data with parallel prediction under
the separable correlation function:

(r,1)=(5000,104) d=[0.0144 0.0236] [1.047 0/0.626]; mh=2 n=(59,21)

38

