over, when the response data is very noisy (i.e., low signal-to-noise ratio), tgp
can be expected to partition heavily under the bprior="bflat" prior. In such
cases, one of the other proper priors like the full hierarchical bprior="b0" or
bprior="bmzt" might be preferred.

3.5 Friedman data

This Friedman data set is the first one of a suite that was used to illustrate
MARS (Multivariate Adaptive Regression Splines) [10]. There are 10 covariates
in the data (x = {x1,22,...,210}). The function that describes the responses
(Z), observed with standard Normal noise, has mean

E(Z|x) = p = 10sin(rx29) + 20(x3 — 0.5)% + 1024 + 55, (18)

but depends only on {1, ..., x5}, thus combining nonlinear, linear, and irrele-
vant effects. Comparisons are made on this data to results provided for several
other models in recent literature. Chipman et al. [5] used this data to compare
their treed LM algorithm to four other methods of varying parameterization:
linear regression, greedy tree, MARS, and neural networks. The statistic they
use for comparison is root mean-square error (RMSE)

MSE = 37 (i — 2:)%/n RMSE = vMSE

where Z; is the model-predicted response for input x;. The x’s are randomly
distributed on the unit interval.

Input data, responses, and predictive locations of size N = 200 and N’ =
1000, respectively, can be obtained by a function included in the tgp package.

> f <- friedman.1.data(200)
> ff <- friedman.1.data(1000)
> X <- f[, 1:10]

> Z <- f$Y

> XX <- ff[, 1:10]

This example compares Bayesian treed LMs with Bayesian GP LLM (not treed),
following the RMSE experiments of Chipman et al. It helps to scale the re-
sponses so that they have a mean of zero and a range of one. First, fit the
Bayesian treed LM, and obtain the RMSE.

> fr.btlm <- btlm(X = X, Z = Z, XX = XX, tree =
+ 2), pred.n = FALSE, mOrl = TRUE, verb = 0)
> fr.btlm.mse <- sqrt(mean((fr.btlm$ZZ.mean - ff$Ytrue)"2))
> fr.btlm.mse

c(0.95,

[1] 1.939446

Next, fit the GP LLM, and obtain its RMSE.
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> fr.bgpllm <- bgplim(X = X, Z = Z, XX = XX, pred.n = FALSE,

+ mOrl = TRUE, verb = 0)

> fr.bgpllm.mse <- sqrt(mean((fr.bgpllm$ZZ.mean - ff$Ytrue)"2))
> fr.bgpllm.mse

[1] 0.4241515

So, the GP LLM is 4.573 times better than Bayesian treed LM on this data, in
terms of RMSE (in terms of MSE the GP LLM is 2.138 times better).

Parameter traces need to be gathered in order to judge the ability of the GP
LLM model to identify linear and irrelevant effects.

> XX1 <- matrix(rep(0, 10), nrow = 1)
> fr.bgpllm.tr <- bgpllm(X = X, Z = Z, XX = XX1, pred.n = FALSE,
+ trace = TRUE, verb = 0)

Notice that the mOr1=TRUE has been omitted so that the 3 estimates provided
below will be on the original scale. A summary of the parameter traces show that
the Markov chain had the following (average) configuration for the booleans.

> apply(fr.bgpllm.tr$trace$XX[[1]][, 27:36], 2, mean)

bl b2 b3 b4 b5 b6 b7 b8 b9 bl0
1 1 1 0O o0 0 O 0 0 0

Therefore the GP LLM model correctly identified that only the first three input
variables interact only linearly with the response. This agrees with dimension—
wise estimate of the total area of the input domain under the LLM (out of a
total of 10 input variables).

> mean (fr.bgpllm.tr$trace$linarea$ba)
(11 7

A similar summary of the parameter traces for 3 shows that the GP LLM
correctly identified the linear regression coefficients associated with the fourth
and fifth input covariates (from (18))

> summary (fr.bgpllm.tr$trace$XX[[1]1[, 9:10])

beta4d betab
Min. : 8.623 Min. :4.309
1st Qu.: 9.370 1st Qu.:5.176
Median : 9.564 Median :5.376
Mean 9.550 Mean 5.375
3rd Qu.: 9.735 3rd Qu.:5.582
Max. :10.431 Max. :6.313

and that the rest are much closer to zero.
> apply(fr.bgpllm.tr$trace$XX[[1]][, 11:15], 2, mean)

betab beta7 beta8 beta9 betall
-0.23968561 0.37046946 0.13081722 -0.07842566 0.11911203
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