
area of research.

3 Examples using tgp

The following subsections take the reader through a series of examples based,
mostly, on synthetic data. At least two different b* models are fit for each
set of data, offering comparisons and contrasts. Duplicating these examples in
your own R session is highly recommended. The Stangle function can help
extract executable R code from this document. For example, the code for the
exponential data of Section 3.3 can be extracted with one command.

> Stangle(vignette("exp", package="tgp")$file))

This will write a file called “exp.R”. Additionally, each of the subsections that
follow is available as an R demo. Try demo(package="tgp") for a listing of
available demos. To invoke the demo for the exponential data of Section 3.3 try
demo(exp, package="tgp"). This is equivalent to source("exp.R") because
the demos were created using Stangle on the source files of this document.

Each subsection (or subsection of the appendix) starts by seeding the random
number generator with set.seed(0). This is done to make the results and
analyses reproducible within this document, and in demo form. I recommend
you try these examples with different seeds and see what happens. Usually
the results will be similar, but sometimes (especially when the data (X, Z) is
generated randomly) they may be quite different.

Other successful uses of the methods in this package include applications to
the Boston housing data [14, 13], and designing an experiment for a reusable
NASA launch vehicle [11, 12] called the Langely glide-back booster (LGBB).

3.1 1-d Linear data

Consider data sampled from a linear model.

zi = 1 + 2xi + ε, where εi
iid

∼ N(0, 0.252) (15)

The following R code takes a sample {X,Z} of size N = 50 from (15). It
also chooses N ′ = 99 evenly spaced predictive locations X̃ = XX.

> X <- seq(0, 1, length = 50)

> XX <- seq(0, 1, length = 99)

> Z <- 1 + 2 * X + rnorm(length(X), sd = 0.25)

Using tgp on this data with a Bayesian hierarchical linear model goes as
follows:

> lin.blm <- blm(X = X, XX = XX, Z = Z)

14

burn in:

r=1000 d=[0]; n=50

Sampling @ nn=99 pred locs:

r=1000 d=[0]; mh=1 n=50

r=2000 d=[0]; mh=1 n=50

r=3000 d=[0]; mh=1 n=50

> plot(lin.blm, main = "Linear Model,", layout = "surf")

> abline(1, 2, lty = 3, col = "blue")

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

1.
5

2.
0

2.
5

3.
0

Linear Model, z mean

x1

z

Figure 3: Posterior predictive distribution using blm on synthetic linear data: mean and
90% credible interval. The actual generating lines are shown as blue-dotted.

MCMC progress indicators are echoed every 1,000 rounds. The linear model
is indicated by d=[0]. For btlm the MCMC progress indicators are boring,
but we will see more interesting ones later. In terminal versions, e.g. Unix, the
progress indicators can give a sense of when the code will finish. GUI versions of
R—Windows or MacOS X—can buffer stdout, rendering this feature essentially
useless as a real–time indicator of progress. Progress indicators can be turned
off by providing the argument verb=0. Further explanation on the verbosity of
screen output and interpretations is provided in Appendix B.2.

The generic plot method can be used to visualize the fitted posterior pre-
dictive surface (with option layout = ’surf’) in terms of means and credible
intervals. Figure 3 shows how to do it, and what you get. The default option
layout = ’both’ shows both a predictive surface and error (or uncertainty)
plot, side by side. The error plot can be obtained alone via layout = ’as’.
Examples of these layouts appear later.

If, say, you were unsure about the dubious “linearness” of this data, you
might try a GP LLM (using bgpllm) and let a more flexible model speak as to
the linearity of the process.

15

> lin.gpllm <- bgpllm(X = X, XX = XX, Z = Z)

burn in:

r=1000 d=[0]; n=50

Sampling @ nn=99 pred locs:

r=1000 d=[0]; mh=1 n=50

r=2000 d=[0]; mh=1 n=50

r=3000 d=[0]; mh=1 n=50

> plot(lin.gpllm, main = "GP LLM,", layout = "surf")

> abline(1, 2, lty = 4, col = "blue")

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

1.
5

2.
0

2.
5

3.
0

GP LLM, z mean

x1

z

Figure 4: Posterior predictive distribution using bgpllm on synthetic linear data: mean and
90% credible interval. The actual generating lines are shown as blue-dotted.

Whenever the progress indicators show d=[0] the process is under the LLM in
that round, and the GP otherwise. A plot of the resulting surface is shown in
Figure 4 for comparison. Since the data is linear, the resulting predictive surfaces
should look strikingly similar to one another. On occasion, the GP LLM may
find some bendy–ness in the surface. This happens rarely with samples as large
as N = 50, but is quite a bit more common for N < 20.

To see the proportion of time the Markov chain spent in the LLM requires
the gathering of traces (Appendix B.1). For example

> lin.gpllm.tr <- bgpllm(X = X, XX = 0.5, Z = Z, pred.n = FALSE,

+ trace = TRUE, verb = 0)

> mla <- mean(lin.gpllm.tr$trace$linarea$la)

> mla

[1] 0.96

16

shows that the average area under the LLM is 0.96. Progress indicators are
suppressed with verb=0. Alternatively, the probability that input location xx

= 0.5 is under the LLM is given by

> 1 - mean(lin.gpllm.tr$trace$XX[[1]]$b1)

[1] 0.96

This is the same value as the area under the LLM since the process is stationary
(i.e., there is no treed partitioning).

3.2 1-d Synthetic Sine Data

Consider 1-dimensional simulated data which is partly a mixture of sines and
cosines, and partly linear.

z(x) =

{

sin
(

πx
5

)

+ 1

5
cos

(

4πx
5

)

x < 10
x/10− 1 otherwise

(16)

The R code below obtains N = 100 evenly spaced samples from this data
in the domain [0, 20], with noise added to keep things interesting. Some evenly
spaced predictive locations XX are also created.

> X <- seq(0, 20, length = 100)

> XX <- seq(0, 20, length = 99)

> Z <- (sin(pi * X/5) + 0.2 * cos(4 * pi * X/5)) *

+ (X <= 9.6)

> lin <- X > 9.6

> Z[lin] <- -1 + X[lin]/10

> Z <- Z + rnorm(length(Z), sd = 0.1)

By design, the data is clearly nonstationary. Perhaps not knowing this, a
good first model choice for this data might be a GP.

> sin.bgp <- bgp(X = X, Z = Z, XX = XX, verb = 0)

Figure 5 shows the resulting posterior predictive surface under the GP. Notice
how the (stationary) GP gets the wiggliness of the sinusoidal region, but fails
to capture the smoothness of the linear region. This is because the data comes
from a process that is nonstationary.

So one might consider a Bayesian treed linear model (LM) instead.

> sin.btlm <- btlm(X = X, Z = Z, XX = XX)

burn in:

GROW @depth 0: [0,0.424242], n=(43,57)

GROW @depth 1: [0,0.252525], n=(26,19)

GROW @depth 2: [0,0.131313], n=(14,13)

r=1000 d=[0] [0] [0] [0]; n=(11,19,17,53)

17

