
shows that the average area under the LLM is 0.96. Progress indicators are
suppressed with verb=0. Alternatively, the probability that input location xx

= 0.5 is under the LLM is given by

> 1 - mean(lin.gpllm.tr$trace$XX[[1]]$b1)

[1] 0.96

This is the same value as the area under the LLM since the process is stationary
(i.e., there is no treed partitioning).

3.2 1-d Synthetic Sine Data

Consider 1-dimensional simulated data which is partly a mixture of sines and
cosines, and partly linear.

z(x) =

{

sin
(

πx

5

)

+ 1

5
cos

(

4πx

5

)

x < 10
x/10− 1 otherwise

(16)

The R code below obtains N = 100 evenly spaced samples from this data
in the domain [0, 20], with noise added to keep things interesting. Some evenly
spaced predictive locations XX are also created.

> X <- seq(0, 20, length = 100)

> XX <- seq(0, 20, length = 99)

> Z <- (sin(pi * X/5) + 0.2 * cos(4 * pi * X/5)) *

+ (X <= 9.6)

> lin <- X > 9.6

> Z[lin] <- -1 + X[lin]/10

> Z <- Z + rnorm(length(Z), sd = 0.1)

By design, the data is clearly nonstationary. Perhaps not knowing this, a
good first model choice for this data might be a GP.

> sin.bgp <- bgp(X = X, Z = Z, XX = XX, verb = 0)

Figure 5 shows the resulting posterior predictive surface under the GP. Notice
how the (stationary) GP gets the wiggliness of the sinusoidal region, but fails
to capture the smoothness of the linear region. This is because the data comes
from a process that is nonstationary.

So one might consider a Bayesian treed linear model (LM) instead.

> sin.btlm <- btlm(X = X, Z = Z, XX = XX)

burn in:

**GROW** @depth 0: [0,0.424242], n=(43,57)

**GROW** @depth 1: [0,0.252525], n=(26,19)

**GROW** @depth 2: [0,0.131313], n=(14,13)

r=1000 d=[0] [0] [0] [0]; n=(11,19,17,53)
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> plot(sin.bgp, main = "GP,", layout = "surf")
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Figure 5: Posterior predictive distribution using bgp on synthetic sinusoidal data: mean and
90% credible interval

r=2000 d=[0] [0] [0] [0]; n=(11,17,19,53)

Sampling @ nn=99 pred locs:

r=1000 d=[0] [0] [0] [0]; mh=3 n=(15,14,18,53)

r=2000 d=[0] [0] [0] [0]; mh=4 n=(14,14,19,53)

r=3000 d=[0] [0] [0] [0]; mh=4 n=(12,16,19,53)

r=4000 d=[0] [0] [0] [0]; mh=4 n=(13,16,18,53)

r=5000 d=[0] [0] [0] [0]; mh=4 n=(13,15,19,53)

Grow: 0.8403%, Prune: 0%, Change: 36.3%, Swap: 84%

MCMC progress indicators show successful grow and prune operations as they
happen, and region sizes n every 1,000 rounds. Specifying verb=3, or higher
will show echo more successful tree operations, i.e., change, swap, and rotate.

Figure 6 shows the resulting posterior predictive surface (top) and trees (bot-
tom). The MAP partition (T̂ ) is also drawn onto the surface plot (top) in the
form of vertical lines. The treed LM captures the smoothness of the linear re-
gion just fine, but comes up short in the sinusoidal region—doing the best it
can with piecewise linear models.

The ideal model for this data is the Bayesian treed GP because it can be
both smooth and wiggly.

> sin.btgp <- btgp(X = X, Z = Z, XX = XX, verb = 0)

Figure 7 shows the resulting posterior predictive surface (top) and MAP T̂ with
height=2.

Finally, speedups can be obtained if the GP is allowed to jump to the LLM
[13], since half of the response surface is very smooth, or linear. This is not
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> plot(sin.btlm, main = "treed LM,", layout = "surf")
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> tgp.trees(sin.btlm)

x1 <> 5.45455

x1 <> 2.0202

0.0106 
11 obs

1

0.0045 
17 obs

2

x1 <> 9.29293

0.0128 
19 obs

3

0.0037 
53 obs

4

 height=3, log(p)=60.319

x1 <> 2.22222

0.0147 
12 obs

1 x1 <> 9.29293

x1 <> 5.45455

0.0045 
16 obs

2

0.0076 
19 obs

3

0.0058 
53 obs

4

 height=4, log(p)=60.5183

Figure 6: Top: Posterior predictive distribution using btlm on synthetic sinusoidal data:

mean and 90% credible interval, and MAP partition (T̂ ); Bottom MAP trees for each height
encountered in the Markov chain showing σ̂

2 and the number of observation n, at each leaf.

shown here since the results are very similar to those above, replacing btgp

with btgpllm. The example in the next subsection offers a comparison for 2-d
data.
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Figure 7: Posterior predictive distribution using btgp on synthetic sinusoidal data: mean

and 90% credible interval, and MAP partition (T̂ )

3.3 Synthetic 2-d Exponential Data

The next example involves a two-dimensional input space in [−2, 6] × [−2, 6].
The true response is given by

z(x) = x1 exp(−x2

1
− x2

2
). (17)

A small amount of Gaussian noise (with sd = 0.001) is added. Besides its di-
mensionality, a key difference between this data set and the last one is that
it is not defined using step functions; this smooth function does not have any
artificial breaks between regions. The tgp package provides a function for data
subsampled from a grid of inputs and outputs described by (17) which concen-
trates inputs (X) more heavily in the first quadrant where the response is more
interesting. Predictive locations (XX) are the remaining grid locations.

> exp2d.data <- exp2d.rand()

> X <- exp2d.data$X

> Z <- exp2d.data$Z

> XX <- exp2d.data$XX

The treed LM is clearly just as inappropriate for this data as it was for the
sinusoidal data in the previous section. However, a stationary GP fits this data
just fine. After all, the process is quite well behaved. In two dimensions one has
a choice between the isotropic and separable correlation functions. Separable is
the default in the tgp package. For illustrative purposes here, I shall use the
isotropic power family.

> exp.bgp <- bgp(X = X, Z = Z, XX = XX, corr = "exp",

+ verb = 0)
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