
Introduction to tester

Gaston Sanchez
www.gastonsanchez.com/tester

1 Introduction and Motivation

tester provides human readable functions to test characteristics of some common R objects. The main
purpose behind tester is to help you validate objects, especially for programming and developing purposes
(e.g. creating R packages)

Testing objects When we write a function, more often than not, we need to validate its arguments. In
order to do so, we can use some of the already available functions in R that allow us to test whether objects
have certain features. For instance, we can use is.matrix(M) to test if M is a matrix. Likewise, if you want
to test if an object is a list, we can use the is.list() function.

The interesting part comes when we want to test for more specific characteristics, like testing if M is a numeric
matrix, or test if a number is a positive integer, or maybe if it is a decimal number. Let’s take the case in
which we want to test whether an object is a character matrix. One way to do that would be to write
something like this:

test if object is a character matrix

object = matrix(letters[1:6], 2, 3)

if (is.matrix(object) & is.character(object)) TRUE else FALSE

[1] TRUE

Now let’s say we want to test if a given number is a positive integer:

test if number is a positive integer

number = 1

if (number > 0 & is.integer(number)) TRUE else FALSE

[1] FALSE

In this case, we know that number = 1 but the test returned FALSE. The reason is that the number 1 is not
an strict integer in R. Instead, we need to declare number = 1L. Now, if we test again we will get TRUE:

test if number is a positive integer

number = 1L

if (number > 0 & is.integer(number)) TRUE else FALSE

[1] TRUE

1

http://www.gastonsanchez.com/tester

Easier tests If we just have a couple of functions, testing its arguments may not be a big deal. But when
we have dozens or hundreds of functions, even if they are not in the form of a package, testing their arguments
can be more complicated. Instead of writing expressions like the following one:

if (number > 0 & is.integer(number)) TRUE else FALSE

it would also be desirable to simply write something like this:

is_positive_integer(number)

This is precisely what tester allows us to do by providing a set of functions to test objects in a friendly way,
following the so-called literate programming paradigm. Under this paradigm, instead of writing programs
instructing the computer what to do, we write programs explaining humans what we want the computer to
do. The advantage is that when we read code, we should be able to do so as if we were reading a text. In this
sense, the goal of tester is twofold: 1) help you test objects, and 2) help you write more human readable
code.

Here is another example. Suppose we want to check if a vector has missing values. One option to answer
that quesiton is to use the function is.na():

test for missing values

is.na(c(1, 2, 3, 4, NA))

[1] FALSE FALSE FALSE FALSE TRUE

Depending on your goals, is.na() might be enough. But what if we just want to simply test if a vector has
missing values? With tester now we can with do that using the function has missing():

test for missing values

has_missing(c(1, 2, 3, 4, NA))

[1] TRUE

or equivalently

has_NA(c(1, 2, 3, 4, NA))

[1] TRUE

2 About tester

To use tester (once you have installed it), load it with the function library():

load package tester

library(tester)

2.1 Numbers

To test if we have number, as well as different types of numbers, we can use one of the following functions:

2

Testing Numbers
Function Description
is positive() tests if a number is positive
is negative() tests if a number is negative
is integer() tests if a number is an integer
is natural() tests if a number is a natural number
is odd() tests if a number is an odd number
is even() tests if a number is an even number
is positive integer() tests if a number is a positive integer
is negative integer() tests if a number is a negative integer
is decimal() tests if a number is decimal
is positive decimal() tests if a number is a positive decimal
is negative decimal() tests if a number is a negative decimal

2.2 Logical

To test if an object (or a condition) is TRUE or FALSE, we can use the following functions:

Testing Logicals
Function Description
is TRUE() tests if an object is TRUE

is FALSE() tests if an object is FALSE

true or false() tests if is TRUE or FALSE

2.3 Vectors

To test if we have different types of vectors we can use the following functions:

Testing Vectors
Function Description
is vector() tests if an object is a vector
is numeric vector() tests if an object is a numeric vector
is string vector() tests if an object is a string vector
is logical vector() tests if an object is a logical vector
is not vector() tests if an object is not a vector

2.4 Matrices

Likewise, to test if we have different types of matrices we can use the following functions:

Testing Matrices
Function Description
is matrix() tests if an object is a matrix
is numeric matrix() tests if an object is a numeric matrix
is string matrix() tests if an object is a string matrix
is logical matrix() tests if an object is a logical matrix
is square matrix() tests if an object is a string matrix
is diagonal() tests if an object is a diagonal matrix
is triangular() tests if an object is a triangular matrix
is lower triangular() tests if a matrix is lower triangular
is upper triangular() tests if a matrix is upper triangular
is not matrix() tests if an object is not a matrix

3

2.5 Data Frame

To test if we have different types of data frames we can use the following functions:

Testing Data Frames
Function Description
is dataframe() tests if an object is a data frame
is numeric dataframe() tests if an object is a numeric data frame
is string dataframe() tests if an object is a string data frame
is not dataframe() tests if an object is not a data frame

2.6 Missing Values

For testing missing values, infinite values, not numbers, tester provides the following functions:

Testing Missing Values
Function Description
has missing() tests if an object has missing values
has infinite() tests if an object has infinite values
has not a number() tests if an object has ’Not a Number’
has nas() tests if an object has NA, Inf, -Inf, NaN

2.7 Other

tester comes with many more functions that will allow you to check —in a friendly way— whether some
common R objects have certain characteristics. Some of the extra available functions are:

Testing Missing Values
Function Description
has dimension() tests if an object has dimension
is tabular() tests if an object is a matrix or data frame
is multiple() tests if a number is multiple of a given number
list of vectors() tests if an object is a list of vectors
list of numeric vectors() tests if an object is a list of numeric vectors
list of string vectors() tests if an object is a list of string vectors
list of logical vectors() tests if an object is a list of logical vectors

4

	Introduction and Motivation
	About tester
	Numbers
	Logical
	Vectors
	Matrices
	Data Frame
	Missing Values
	Other

