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Abstract

The central moments of the multivariate normal distribution are functions of its n×n
variance-covariance matrix Σ. These moments can be expressed symbolically as linear
combinations of products of powers of the elements of Σ. A formula for these moments
derived by differentiating the characteristic function is developed. The formula requires
searching integer matrices for matrices whose n successive row and column sums equal
the n exponents of the moment. This formula is implemented in R, with R functions
to display moments in LATEX and to evaluate moments at specified variance-covariance
matrices included.
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1. Introduction

The central moments of an n-dimensional random vector X are defined as

mk1,...,kn = E[(X1 − µ1)
k1(X2 − µ2)

k2 · · · (Xn − µn)
kn ], (1)

where E[· · · ] denotes expected value. Suppose that X is distributed according to the multi-
variate normal distribution with mean µ and variance-covariance matrix

Σ = (σij) (2)

where the variance terms are σii, i = 1, . . . , n, the covariance terms are σij , i 6= j, and by
symmetry σij = σji. For the multivariate normal distribution the central moments are not
functions of the mean vector µ, and depend only on the variance-covariance terms σij .

Simple cases are familiar. Setting µ to 0,

m2 = E[X2
1 ] = σ1,1 (3)

m1,2 = E[X1X2] = σ1,2 (4)

Slightly more complicated cases can be computed directly or by manipulating simple expres-
sions obtained for moments of the form E[X1 · · ·Xn] (Wikipedia 2009). For example,

m2,2 = E[X2
1X

2
2 ] = 2σ2

1,2 + σ1,1σ2,2 (5)
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m2,1,1 = E[X2
1X

1
2X

1
3 ] = 2σ1,2σ1,3 + σ1,1σ2,3 (6)

m1,1 = E[X3
1X

1
2 ] = 3σ1,1σ1,2 (7)

Although some higher order moments follow known patterns, most are much harder to deter-
mine by simple calculations.

We wish to compute the symbolic expression of any moment mk1,...,kn in terms of the n(n+1)
symbols σij . Note that if

∑n
i=1 ki is an odd integer, the moment is 0, so that only moments

where this sum is even need be considered.

The multivariate normal distribution is fundamental to mathematical statistics, and its mo-
ments play a central role in statistical methodology. Various methods have been developed
to numerically compute them (Muirhead 1982, p. 46) and (Anderson 1971, p. 49). Kan
(2008) developed a formula (his Proposition 1) for the central moments as a repeated sum.
He gives an excellent review of other formulas that have been developed, and cites Isserlis
(1918) as deriving the first expression for the central moments. Muirhead (p. 49) used the
matrix derivatives of the multivariate normal distribution’s characteristic function to derive a
formula for multivariate cumulants. Tracy and Sultan (1993) also used matrix derivatives to
derive an expression for the distribution’s moments (their Theorem 2) based on a recurrence
relationship of the derivatives. This article develops a new explicit formula for the moments
starting with the derivatives of the characteristic function. The expression for the moments
is based on a search algorithm over certain integer matrices. The final goal of this paper is
to translate this formula into R functions that produce symbolic representations of moments
in terms of the variance-covariance terms σij .

The functions described here are based on Phillips (2010), and are available in the package
symmoments implemented in the R system for statistical computing (R Development Core
Team 2009). Both R itself and the symmoments package (as well as all other packages used
in this paper) are available under the terms of the General Public License (GPL) from the
Comprehensive R Archive Network (CRAN, http://CRAN.R-project.org/).

2. Development of the formula

The moments of any distribution can be represented by the derivatives of the distribution’s
characteristic function. The characteristic function of the multivariate normal distribution is
(Muirhead 1982, p. 5, 49)

E[eit
⊤X ] = eit

⊤µ− 1

2
t⊤Σt (8)

where t = (t1, t2, ..., tn). Within a constant, the moment is the k1, ..., kn-order derivative of
the characteristic function evaluated at t = 0:

mk1,...,kn = i−
∑n

i=1
ki

d
∑n

i=1
ki

dk1t1dk2t2 · · · dkntn
E[eit

⊤X ] |t=0 (9)

where i is the imaginary unit. Expanding the exponential into an infinite sum, this is

mk1,...,kn = i−
∑n

i=1
ki

d
∑n

i=1
ki

dk1t1dk2t2 · · · dkntn

∞
∑

ℓ=0

(it⊤µ−
1

2
(t⊤Σt))ℓ/ℓ! |t=0 (10)

http://CRAN.R-project.org/
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Since we are to compute the central moment, we will set µ = 0, so that the term it⊤µ will
not appear:

mk1,...,kn = i−
∑n

i=1
ki

d
∑n

i=1
ki

dk1t1dk2t2 · · · dkntn

∞
∑

ℓ=0

(−
1

2
(t⊤Σt))ℓ/ℓ! |t=0 (11)

Since
∑n

i=1 ki is even, the term i−
∑n

i=1
ki = (−1)−

∑n
i=1

ki/2. We note that the term i−
∑n

i=1
ki

will ultimately cancel with the negative in the infinite sum, and will be omitted for convenience
in notation.

The expression in t is

t⊤Σt =
∑

ij

σijtitj (12)

We need to find the coefficient of tℓ11 tℓ22 · · · tℓnn in

(t⊤Σt)ℓ = (
∑

ij

σijtitj)
ℓ =

∑

ij

σijtitj · · ·
∑

ij

σijtitj (13)

All products in the elements of the sum will occur. Any product will be obtained by choosing
σijtitj a certain number of times, say ℓij . Since one term is chosen from each of ℓ terms,
∑

ij ℓij = ℓ. Further, for any such matrix (ℓij), there will be a term, since it can be constructed
by choosing σijtitj from the first ℓij terms, and so forth for each (ij) until ℓ is exhausted. For
any (ℓij) there are

(

ℓ
ℓ11 . . . ℓnn

)

(14)

ways to choose the terms, where this is the multinomial coefficient. So,

(
∑

ij

σijtitj)
ℓ =

∑

{(ℓij)|
∑

ij ℓij=ℓ}

(

ℓ
ℓ11 . . . ℓnn

)

∏

ij

(σijtitj)
ℓij (15)

=
∑

{(ℓij)|
∑

ij ℓij=ℓ}

(

ℓ
ℓ11 . . . ℓnn

)

∏

ij

σ
ℓij
ij

∏

ij

(titj)
ℓij (16)

For the moment, we distinguish between σij and σji as symbols. As a result, each
∏

ij σ
ℓij
ij is

unique as determined by unique (ℓij). However, titj = tjti, so since each σij is combined with

two t’s, the total exponent in t is 2ℓ. That is, a term tℓ11 tℓ22 · · · tℓnn must have
∑n

i=1 ℓi = 2ℓ.
We need to determine the terms for which, for any (ℓ1, . . . , ℓn),

∏

ij

(titj)
ℓij = tℓ11 · · · tℓnn (17)

We will get tk in the product in the following mutually exclusive cases:

Condition Exponent of tk
i = k, j 6= k 1
i 6= k, j = k 1
i = j = k 2

(18)
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So the exponent of tk will be
∑

i=k,j 6=k

ℓij +
∑

i 6=k,j=k

ℓij + 2ℓkk (19)

This sum is obtained by adding the sum of ℓij across row k to the sum across column k, since
the diagonal element k occurs in both sums. That is, we get

∑

i

ℓik +
∑

j

ℓkj =
∑

i

(ℓik + ℓki) = ℓk (20)

We can now partition the set of (ℓij) in Equation 16 according to these sums, that is, {ℓk, k =
1 . . . n}. As stated before, the sum of the exponents, ℓk, must be 2ℓ.

(
∑

ij

σijtitj)
ℓ =

∑

{(ℓ1,...ℓn)|
∑

k ℓk=2ℓ}

∑

{(ℓ11,...,ℓnn)|
∑

i(ℓik+ℓki)=ℓk,k=1...n}





(

ℓ
ℓ11 . . . ℓnn

)

∏

ij

σ
ℓij
ij





n
∏

i=1

tℓii (21)

Since differentiation is distributive with respect to addition and multiplication by constants,
the derivative of the product of ts can be determined from the derivatives of the individual
terms:

d
∑n

i=1
ki

dk1t1dk2t2 · · · dkntn

n
∏

i=1

tℓii =
n
∏

i=1

dki

dtkii
tℓii (22)

=
n
∏

i=1

I{ki ≤ ℓi}
ℓi!

(ℓi − ki)!
tℓi−ki
i (23)

Thus,

d
∑n

i=1
ki

dk1dk2 · · · dkn
(
∑

ij

σijtitj)
ℓ =

∑

{(ℓ1,...,ℓn)|
∑

i ℓi=2ℓ}

∑

{(ℓ11,ℓ12,...,ℓnn)|
∑

i(ℓih+ℓhi)=ℓh,h=1,...,n}





(

ℓ
ℓ11 . . . ℓnn

)

∏

ij

σ
ℓij
ij





n
∏

i=1

I{ki ≤ ℓi}
ℓi!

(ℓi − ki)!
tℓi−ki
i (24)

Incorporating the constants from Equation 11, noting again that the negative signs will cancel,
the full sum is

∞
∑

ℓ=0

(
1

2
)ℓ/ℓ!

∑

{(ℓ1,...,ℓn)|
∑

i li=2ℓ}





∑

{(ℓ11,ℓ12,...,ℓnn)|
∑

j(ℓhj+ℓjh)=ℓi,h=1,...,n}

(

ℓ
ℓ11 . . . ℓnn

)

∏

ij

σ
ℓij
ij





n
∏

i=1

I{ki ≤ ℓi}
ℓi!

(ℓi − ki)!
tℓi−ki
i (25)
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Setting t = 0, only terms with ℓi = ki for all i will remain. Otherwise, the only ℓ in the
infinite sum which occurs is for ℓ =

∑n
i=1 ki/2. So this reduces to

(
1

2
)
∑n

i=1
ki/2/(

n
∑

i=1

ki/2)!





∑

{(ℓ11,...,ℓnn)|
∑

j(ℓhj+ℓjh)=ki,h=1,...,n}

( ∑n
i=1 ki/2

ℓ11 . . . ℓnn

)

∏

ij

σ
ℓij
ij





n
∏

i=1

ki!

(26)
Rearranging the terms, we have

mk1,...,kn = C
∑

{(ℓ11,ℓ12,...,ℓnn)|
∑n

j=1
(ℓjh+ℓhj)=kh,h=1,...,n}

( ∑n
i=1 ki/2

ℓ11 . . . ℓnn

)

∏

ij

σ
ℓij
ij (27)

where

C =
1

2

∑n
i=1

ki/2

(

n
∏

i=1

ki!)/(

n
∑

i=1

ki/2)! (28)

This formula shows that evaluating mk1,...,kn symbolically requires enumerating all n × n-
dimensional matrices of non-negative integers, (ℓij), which satisfy the condition

n
∑

j=1

(ℓji + ℓij) = ki, i = 1, ..., n (29)

Conceding now that the symbols σij and σji signify the same entity, we can search for (ℓij)

by looking only at terms
∏

ij σ
ℓij
ij for which i ≤ j. In fact, any other matrix for the term can

be obtained by decrementing ℓij and incrementing ℓji by the same integer for one or more

subscripts for which i < j. For any σ
ℓij
ij in the term, this can be done in ℓij +1 ways. So there

are a total of
∏

i<j(ℓij + 1) transpositions. The multinomial coefficients derived above must
be applied separately to each of these (ℓij) matrices. Thus, the full coefficient for a matrix will
include as a multiplier the sum of these coefficients over all of the

∏

i<j(ℓij + 1) transposed
matrices. Let Υ be the set of upper-triangular integer matrices, and, for any (ℓij) ∈ Υ, let
Λ((ℓij)) be the set of all integer matrices (hij) obtained by so transposing (ℓij). Then the
sum above can be decomposed in terms of Υ and Λ((ℓij)) for each (ℓij) ∈ Υ:

mk1,...,kn =

C
∑

{(ℓ11,ℓ12,...,ℓnn)∈Υ|
∑n

j=1
(ℓjh+ℓhj)=kh,h=1,...,n}

∑

{(hij)∈Λ((ℓij))}

( ∑n
i=1 ki/2

h11 . . . hnn

)

∏

ij

σ
hij

ij (30)

But by symmetry, the products in (σij) are the same for each member of Λ((ℓij)), specifically
∏

ij σ
ℓij
ij . So the final formula is

mk1,...,kn =

[

1

2

∑n
i=1

ki/2

(
n
∏

i=1

ki!)/(
n
∑

i=1

ki/2)!

]

∑

{(ℓ11,ℓ12,...,ℓnn)∈Υ|
∑n

j=1
(ℓjh+ℓhj)=kh,h=1,...,n}





∑

{(hij)∈Λ((ℓij))}

( ∑n
i=1 ki/2

h11 . . . hnn

)





∏

ij

σ
ℓij
ij (31)
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3. Discussion

Formula 31 was implemented in R (R Development Core Team 2009) with a recursive function
that determines the set of upper-triangular integer matrices that satisfy Criterion 29. A second
function calculates their associated coefficients. Additional functions were written to create
LATEX (LATEX3 Project Team 2009) code to display the moments symbolically, and to calculate
the moments for specified variance-covariance matrices.

The potential for complexity in these computations is seen from the results in Table 1. In
this table, n is the dimension of the multivariate vector and #(σij) is the number of distinct

elements in the variance-covariance matrix, N = n(n+1
2 . Size is measured by two values,

M and r. M is the total of the exponents of the moment, M =
∑n

i=1 ki. The value r
is the number of terms for a moment E[X1

1 , ..., X
1
n] with all exponents equal to 1, which

is (2M − 1)!/(2M−1(M − 1)!) (Wikipedia 2009). Example is a moment of the given Size.
Potential Terms is a maximum for the number of (ℓij) matrices to be checked for this example,
determined as the product of 1 + max(ki, kj) over i 6= j times the product of 1 + [ki/2] over
i, where [ ] denotes truncation. The last column, # Terms, is the actual number of terms in
the moment as determined by the functions.

It is clear that computation of high-order moments will be very intensive. Kan reports similar
computational difficulties. More efficient or targeted algorithms for searching the matrices in
Criterion 29 would allow higher order moments to be computed. However, it is likely that
the problem is intractable as described by Garey and Johnson (1979). For example, symbolic
computation of the central moments E[Xk1

1 · · ·Xkn
n ] for (k1, ..., kn) < (k, ..., k) for a fixed k

may be NP-hard in n , or computation of E[Xk1
1 · · ·Xkn

n ] may be NP-hard in max(k1, . . . , kn)
for fixed n.

The formula derived here could be expanded to incorporate mean terms, which would allow
computation of non-central moments. These moments could also be used to approximate other
integrals integrated against the multivariate normal distribution by using a Taylor expansion
in several variables (Fulks 1961). Such an approximation would be a linear combination of
non-central moments.

Finally, Criterion 29 might arise in other contexts, such as networks (Stergiou and Siganos
1996). For example, suppose that there are n airports and airport i can accommodate ki
arrivals or departures on a day, where a plane may take off and land at the same airport.
This network is illustrated in Figure 1. The problem is to determine the set of flights between
airports that totally expend the capacities, ki, of all airports. For this problem, ℓij represents
the number of flights from airport i to airport j, and ℓii is the number of flights which start
and end at airport i. The set of flights is the set satisfying Criterion 29.

✧✦
★✥

ki ✧✦
★✥

kj

✲

ℓij

✛

ℓji

✲✓
✒ℓii

✛ ✏
✑ℓjj

Figure 1: Airport capacity network.
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4. R functions to compute normal multivariate moments

In the R functions to compute the central moments, upper-triangular matrices (ℓij) for n
dimensions are represented as vectors of length n(n + 1), with row 1 followed by row 2, etc.
For example, for n = 2, (ℓij) is represented as (ℓ11, ℓ12, ℓ22). Each such matrix represents the
exponents for a single product of σijs. For example, (1, 2, 0) represents σ1

11σ
2
12σ

0
22 = σ11σ

2
12.

The representations are accumulated and stored internally, raising the possibility of space
allocation problems as encountered in the second to last example in Table 1. This problem
could be alleviated by saving the representation matrix to a file instead.

The function multmoments searches the integer matrices for those satisfying Criterion 29.
This is a recursive function which implements a branch-and-bound algorithm. The function
multmoments is called by callmultmoments. This function initializes variables, determines
the coefficients of the terms from the upper-triangular representations, and returns a list
consisting of the original moment vector, the set of representations, and the corresponding
set of coefficients. This list is set to class moment. The moment class has four methods: print,
toLatex, evaluate, and simulate.

The print method prints a moment object, usually the output of callmultmoments, showing
a mathematical representation of the moment, followed by the rows of the representation with
the corresponding coefficient attached.

The toLatex method uses a moment object, usually the output of callmultmoments, to
determine the LATEX code for the moment sorted lexicographically. Note that it inserts double
backslashes where LATEX requires a backslash; these can be reset to single backslashes by
writing the output to a file using the R base function writeLines, as illustrated below.

The evaluate method determines the value of a moment object for a specified variance-
covariance matrix Σ, which must be represented as an upper-triangular matrix in vector
form.

The simulate method uses Monte Carlo integration Rizzo (2008) to numerically approximate
a moment object for a specified mean and variance-covariance matrix Σ (represented as a square
matrix in vector form), with a specified number of random samples. Note that simulate uses
only the moment definition, not the representation, so can be used with any moment in
vector notation by converting the vector to a moment object. The simulate method uses the
rmvnorm function from the mvtnorm package (Genz et al. 2009).

Computation of the moments was validated by comparison to specific published cases and to
known types such as E[Xk] and E[X1

1 , . . . X
1
n], through consistency checks, and to comparison

to numerically-computed moments. For consistency, the representations for moments which
are permutations of each other must be the same within ordering across rows and columns;
for example, E[X2

1X
4
2 ] and E[X4

1X
2
2 ] have the same representations within ordering. Also,

a moment containing one or more odd powers will evaluate to 0 for a specified covariance
matrix if the component of the random variable corresponding to one of the odd powers is
independent of the other components, that is, if the off-diagonal covariance terms are zero for
this component. The functions were confirmed to have this property for a number of cases.

Further validation was done using Monte Carlo integration. Various moments of dimension
up to six were compared for two values of the covariance matrix, the identity matrix and a
covariance matrix computed from ten random normal vectors obtained using the identity co-
variance matrix and then adding 1 to the diagonal elements to increase the variability. Forty
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estimates of the moment were then computed using the simulate method, each obtained from
one million randomly generated multivariate normal vectors. From these estimates, 95% con-
fidence intervals were computed and compared to the moment estimates using the estimate
method. In the 37 experiments done using an identity matrix, the moments computed from
the symbolic representations fell outside the confidence interval in three (8.1%) of the cases.
However, in all three cases callmultmoments produced the value of zero, which is correct since
the moments contained odd powers and the components of the vectors were independent. In
the 37 experiments done using a randomly-generated matrix, the moments computed from
the symbolic representations fell outside the confidence interval in two (5.4%) of the cases
(E[X2

1X
9
2X

11
3 ] and E[X2

1X
4
2X

7
3X

7
4X

8
5 ]), where the symbolically computed values lay slightly

outside the confidence intervals. These two cases were run again using five million random
normal vectors for each of the 40 estimates, and the moments computed from the symbolic
representations fell inside the confidence intervals. These results provide further evidence
that the functions given here are correct, and in fact are superior to numerical integration in
obtaining moments, since it only requires a simple evaluation of a polynomial with integer
coefficients. Numerical integration using adaptive methods was also implemented but worked
poorly for higher dimensions (Kuonen 2003).

5. Examples of computing central moments

The following moment is computed using the code given below:

E[X1
1X

2
2X

3
3X

4
4 ] =

18σ1,2σ2,3σ3,3σ
2
4,4 + 72σ1,2σ2,3σ

2
3,4σ4,4 + 72σ1,2σ2,4σ3,3σ3,4σ4,4 + 48σ1,2σ2,4σ

3
3,4+

9σ1,3σ2,2σ3,3σ
2
4,4 + 36σ1,3σ2,2σ

2
3,4σ4,4 + 18σ1,3σ

2
2,3σ

2
4,4 + 144σ1,3σ2,3σ2,4σ3,4σ4,4+

36σ1,3σ
2
2,4σ3,3σ4,4 + 72σ1,3σ

2
2,4σ

2
3,4 + 36σ1,4σ2,2σ3,3σ3,4σ4,4 + 24σ1,4σ2,2σ

3
3,4+

72σ1,4σ
2
2,3σ3,4σ4,4 + 72σ1,4σ2,3σ2,4σ3,3σ4,4 + 144σ1,4σ2,3σ2,4σ

2
3,4 + 72σ1,4σ

2
2,4σ3,3σ3,4

(32)

The use of the toLatex and evaluate methods and writeLines is also illustrated. The file
created by writeLines can be included in a LATEX document using the \input command, or
can be included in Sweave as done here.

Compute the representation of a central moment (callmultmoments)

The following code calculates a central moment and shows the three components, moment,
representation, and coefficients.

R> m1234 <- callmultmoments(c(1,2,3,4))

R> unclass(m1234)

$moment

[1] 1 2 3 4

$representation

S(1,1) S(1,2) S(1,3) S(1,4) S(2,2) S(2,3) S(2,4) S(3,3) S(3,4) S(4,4)
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1 0 0 0 1 0 0 2 1 1 0

2 0 0 0 1 0 1 1 0 2 0

3 0 0 0 1 0 1 1 1 0 1

4 0 0 0 1 0 2 0 0 1 1

5 0 0 0 1 1 0 0 0 3 0

6 0 0 0 1 1 0 0 1 1 1

7 0 0 1 0 0 0 2 0 2 0

8 0 0 1 0 0 0 2 1 0 1

9 0 0 1 0 0 1 1 0 1 1

10 0 0 1 0 0 2 0 0 0 2

11 0 0 1 0 1 0 0 0 2 1

12 0 0 1 0 1 0 0 1 0 2

13 0 1 0 0 0 0 1 0 3 0

14 0 1 0 0 0 0 1 1 1 1

15 0 1 0 0 0 1 0 0 2 1

16 0 1 0 0 0 1 0 1 0 2

$coefficients

rep 1 rep 2 rep 3 rep 4 rep 5 rep 6 rep 7 rep 8 rep 9 rep 10 rep 11

72 144 72 72 24 36 72 36 144 18 36

rep 12 rep 13 rep 14 rep 15 rep 16

9 48 72 72 18

Print a representation of a central moment (print method)

The following shows the result of using the print method with the moment in Equation 32.

R> m1234

E[ X1^1 X2^2 X3^3 X4^4 ]:

coef S(1,1) S(1,2) S(1,3) S(1,4) S(2,2) S(2,3) S(2,4) S(3,3) S(3,4) S(4,4)

1 72 0 0 0 1 0 0 2 1 1 0

2 144 0 0 0 1 0 1 1 0 2 0

3 72 0 0 0 1 0 1 1 1 0 1

4 72 0 0 0 1 0 2 0 0 1 1

5 24 0 0 0 1 1 0 0 0 3 0

6 36 0 0 0 1 1 0 0 1 1 1

7 72 0 0 1 0 0 0 2 0 2 0

8 36 0 0 1 0 0 0 2 1 0 1

9 144 0 0 1 0 0 1 1 0 1 1

10 18 0 0 1 0 0 2 0 0 0 2

11 36 0 0 1 0 1 0 0 0 2 1

12 9 0 0 1 0 1 0 0 1 0 2

13 48 0 1 0 0 0 0 1 0 3 0

14 72 0 1 0 0 0 0 1 1 1 1

15 72 0 1 0 0 0 1 0 0 2 1

16 18 0 1 0 0 0 1 0 1 0 2



Kem Phillips 11

Compute the LATEX representation of a central moment (toLatex method)

The following shows the computation of the representation of the central moment in Equa-
tion 32.

R> toLatex(m1234)

[1] "E[X_{1}^{1}X_{2}^{2}X_{3}^{3}X_{4}^{4}]=\\\\"

[2] "18\\sigma_{1,2}\\sigma_{2,3}\\sigma_{3,3}\\sigma_{4,4}^{2}+"

[3] "72\\sigma_{1,2}\\sigma_{2,3}\\sigma_{3,4}^{2}\\sigma_{4,4}+"

[4] "72\\sigma_{1,2}\\sigma_{2,4}\\sigma_{3,3}\\sigma_{3,4}\\sigma_{4,4}+"

[5] "48\\sigma_{1,2}\\sigma_{2,4}\\sigma_{3,4}^{3}+\\\\"

[6] "9\\sigma_{1,3}\\sigma_{2,2}\\sigma_{3,3}\\sigma_{4,4}^{2}+"

[7] "36\\sigma_{1,3}\\sigma_{2,2}\\sigma_{3,4}^{2}\\sigma_{4,4}+"

[8] "18\\sigma_{1,3}\\sigma_{2,3}^{2}\\sigma_{4,4}^{2}+"

[9] "144\\sigma_{1,3}\\sigma_{2,3}\\sigma_{2,4}\\sigma_{3,4}\\sigma_{4,4}+\\\\"

[10] "36\\sigma_{1,3}\\sigma_{2,4}^{2}\\sigma_{3,3}\\sigma_{4,4}+"

[11] "72\\sigma_{1,3}\\sigma_{2,4}^{2}\\sigma_{3,4}^{2}+"

[12] "36\\sigma_{1,4}\\sigma_{2,2}\\sigma_{3,3}\\sigma_{3,4}\\sigma_{4,4}+"

[13] "24\\sigma_{1,4}\\sigma_{2,2}\\sigma_{3,4}^{3}+\\\\"

[14] "72\\sigma_{1,4}\\sigma_{2,3}^{2}\\sigma_{3,4}\\sigma_{4,4}+"

[15] "72\\sigma_{1,4}\\sigma_{2,3}\\sigma_{2,4}\\sigma_{3,3}\\sigma_{4,4}+"

[16] "144\\sigma_{1,4}\\sigma_{2,3}\\sigma_{2,4}\\sigma_{3,4}^{2}+"

[17] "72\\sigma_{1,4}\\sigma_{2,4}^{2}\\sigma_{3,3}\\sigma_{3,4}\\\\"

The LATEXrepresentation can be written to a file using the writeLines function as follows:

R> writeLines(toLatex(m1234), "yourfilename")

Compute a value of a central moment (evaluate method)

The code below evaluates the moment at the following variance-covariance matrix:

[,1] [,2] [,3] [,4]

[1,] 4 2 1 1

[2,] 2 3 1 1

[3,] 1 1 2 1

[4,] 1 1 1 2

R> evaluate(m1234, c(4, 2, 1, 1, 3, 1, 1, 2, 1, 2))

[1] 3480

Estimate a central moment using simulation (simulate method)

The value of E[X1
1X

2
2X

3
3X

4
4 ] when X has a normal distribution with mean µ = (1, 2, 0, 3) and

the same variance-covariance matrix as above could be estimated using simulate with 1000
random samples:
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R> simulate(m1234, 1000, NULL, c(1, 2, 0, 3),

+ c(4, 2, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2))

[1] 45618.33
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