
svUnit - A framework for unit testing in R

Philippe Grosjean (phgrosjean@sciviews.org)

Version 0.7-3, 2010-09-05

1 Introduction

Unit testing (see http://en.wikipedia.org/wiki/Unit_test) is an approach successfully used to
develop software, and to ease code refactoring for keeping bugs to the minimum. It is also the insurance
that the software is doing the right calculation (quality insurance). Basically, a test just checks if the
code is running and is producing the correct answer/behavior in a given situation. As such, unit tests
are build in R package production because all examples in documentation files, and perhaps, test code
in ‘/tests’ subdirectory are run during the checking of a package (R CMD check <pkg>). However,
the R approach lacks a certain number of features to allow optimal use of unit tests as in extreme
programming (test first – code second):

� Tests are related to package compilation and cannot easily be run independently (for instance,
for functions developed separately).

� Once a test fails, the checking process is interrupted. Thus one has to correct the bug and
launch package checking again... and perhaps get caught by the next bug. It is a long and
painful process.

� There is no way to choose one or several tests selectively: all are run or not (depending on
command line options) during package checking.

� It is very hard, or near to impossible to program in R in a test driven development (write tests
first) with the standard tools (http://en.wikipedia.org/wiki/Test-driven_development).

� Consequently, the ‘test-code-simplify ’ cycle is not easily accessible yet to R programmer, be-
cause of the lack of an interactive and flexible testing mechanism providing immediate, or quasi
immediate feedback about changes made.

� We would like also to emphasize that test suites are not only useful to check code, they can also
be used to check data, or the pertinence of analyses.

1.1 Unit testing in R without svUnit

Besides the ”regular” testing mechanism of R packages, one can find the RUnit package on CRAN
(http://cran.r-project.org). Another package used to provide an alternate implementation of
test unit: butler , but it is not maintained any more and has given up in favor of RUnit. RUnit
implements the following features:

� Assertions, checkEquals(), checkEqualsNumeric(), checkIdentical() and checkTrue()

and negative tests (tests that check error conditions, checkException()).

� Assertions are grouped into R functions to form one test function that runs a series of related
individual tests. It is easy to temporarily inactivate one or more tests by commenting lines in the
function. To avoid forgetting tests that are commented out later on, there is special function,
named DEACTIVATED() that tags the test with a reminder for your deactivated items (i.e., the
reminder is written in the test log).

1

http://en.wikipedia.org/wiki/Unit_test
http://en.wikipedia.org/wiki/Test- driven_development
http://cran.r-project.org

1.2 Unit testing framework for R with svUnit 1 INTRODUCTION

� A series of test functions (whose name typically start with test....) are collected together in a
sourceable R code file (name starting with runit....) on disk. This file is called a test unit.

� A test suite (object RUnitTestSuite) is a special object defining a battery of tests It points to
one or several directories containing test units. A test suite is defined by defineTestSuite().

� One or more test suites can be run by calling runTestSuite(). There is a shortcut to define and
run a test suite constituted by only one test unit by using the function runTestFile(). Once
the test is run, a RUnitTestData object is created that contains all the information collected
from the various tests run.

� One can print a synthetic report (how many test units, test functions, number of errors, fails
and deactivated item), or get a more extensive summary() of the tests with indication about
which ones failed or produced errors. The function printTextProtocol() does the same, while
printHTMLProtocol() produces a report in HTML format.

� RUnit contains also functions to determine which code is run in the original function when
tested, in order to detect the parts of the code not covered by the test suite (code coverage
function inspect() and function tracker()).

As complete and nice as RUnit is, there is no tools to integrate the test suite in a given development
environment (IDE) or graphical user interface (GUI), as far as we know. In particular, there is no real-
time reporting mechanism used to easy the test-code-simplify cycle. The way tests are implemented
and run is left to the user, but the implementation suggests that the authors of RUnit mainly target
batch execution of the tests (for instance, nightly check of code in a server), rather that real-time
interaction with the tests.

There is also no integration with the ”regular”R CMD check mechanism of R in RUnit. There is an
embryo of organization of these tests units to make them compatible with R CMD check on the R Wiki
(http://wiki.r-project.org/rwiki/doku.php?id=developers:runit). This approach works well
only on Linux/Unix systems, but needs to be adapted for Windows.

1.2 Unit testing framework for R with svUnit

Our initial goal was to implement a GUI layer on top of RUnit, and to integrate test units as smoothly
as possible in a code editor, as well as, making tests easily accessible and fully compatible with R CMD

check on all platforms supported by R. Ultimately, the test suite should be easy to create, to use
interactively, and should be able to test functions in a complex set of R packages.

However, we encountered several difficulties while trying to enhance RUnit mechanism. When we
started to work on this project, RUnit (version 0.4-17) did not allow to subclass its objects. Moreover,
its RUnitTestData object is optimized for quick testing, but not at all for easy reviewing of its content:
it is a list of lists of lists,... requiring embedded for loop and lapply() /sapply() procedures to extract
some content. Finally, the concept of test units as sourceable files on disk is a nice idea, but it is too
rigid for quick writing test cases for objects not associated (yet) with an R packages.

We did a first implementation of the RUnit GUI based on these objects, before realizing that
it is really not designed for such an use. So, we decide to write a completely different unit testing
framework in R : svUnit, but we make it test code compatible with RUnit (i.e., the engine and objects
used are totally different, but the test code run in RUnit or svUnit is interchangeable).

Finally, svUnit is also designed to be integrated in the SciV iews GUI (http://www.sciviews.org/
SciViews-K), on top of Komodo Edit or IDE (http://www.activestate.com/komodo_edit), and to
approach extreme programming practices with automatic code testing while you write it. A rather
simple interface is provided to link and pilot svUnit from any GUI/IDE, and the Komodo Edit/IDE
implementation could be used as an example to program similar integration panels for other R GUIs.
svUnit also formats its report with creole wiki syntax. It is directly readable, but it can also be
displayed in a much nicer way using any wiki engine compatible with the creole wiki language. It is

2

http://wiki.r-project.org/rwiki/doku.php?id=developers:runit
http://www.sciviews.org/SciViews-K
http://www.sciviews.org/SciViews-K
http://www.activestate.com/komodo_edit

2 INSTALLATION

thus rather easy to write test reports in wiki servers, possibly through nightly automatic process for
your code, if you like.

This vignette is a guided tour of svUnit, showing its features and the various ways you can use it
to test your R code.

2 Installation

The svUnit package is available on CRAN (http://cran.r-project.org), and its latest development
version is also available on R-Forge (http://sciviews.r-forge.r-project.org/). You can install
it with1:

> install.packages("svUnit")

This package has no dependence other than R ≥ 1.9.0. However, if you would like to use its
interactive mode in a GUI editor, you must also install Komodo Edit or Komodo IDE and SciV iews-
K. The procedure is explaned here: http://www.sciviews.org/SciViews-K.

Once the svUnit package is installed, you can check it is working correctly on your machine with
the following example code:

> library(svUnit)

> Square <- function (x) return(x^2)

> test(Square) <- function () {

+ checkEqualsNumeric(9, Square(3))

+ checkEqualsNumeric(10, Square(3)) # This intentionally fails

+ checkEqualsNumeric(9, SSSquare(3)) # This raises error

+ checkEqualsNumeric(c(1, 4, 9), Square(1:3))

+ checkException(Square("xx"))

+ }

> clearLog()

> (runTest(Square))

* : checkEqualsNumeric(10, Square(3)) run in less than 0.001 sec ... **FAILS**

Mean relative difference: 0.1

num 9

* : checkEqualsNumeric(9, SSSquare(3)) run in less than 0.001 sec ... **ERROR**

Error in as.vector(current) :

impossible de trouver la fonction "SSSquare"

== test(Square) run in less than 0.1 sec: **ERROR**

//Pass: 3 Fail: 1 Errors: 1//

* : checkEqualsNumeric(10, Square(3)) run in less than 0.001 sec ... **FAILS**

Mean relative difference: 0.1

num 9

* : checkEqualsNumeric(9, SSSquare(3)) run in less than 0.001 sec ... **ERROR**

Error in as.vector(current) :

impossible de trouver la fonction "SSSquare"

1Install the development version with install.packages("svUnit", repos = "http://r-forge.r-project.org").

3

http://cran.r-project.org
http://sciviews.r-forge.r-project.org/
http://www.sciviews.org/SciViews-K

3 OVERVIEW OF SVUNIT

Although test unit code is compatible with both svUnit and RUnit, do not load both packages
in R memory at the same time, or you will badly mix incompatible code!

3 Overview of svUnit

You ensure that code you write in your R functions does the expected work by defining a battery of
tests that will compare the output of your code with reference values. In svUnit, the simplest way
to define such a battery of tests is by attaching it to functions loaded in R memory2. Of course, you
can also define batteries of tests that are independent of any R object, or that check several of them
together (so called, integration tests). Here is a couple of examples:

> library(svUnit)

> ## Create two R functions that include their own test cases

> Square <- function (x) return(x^2)

> test(Square) <- function () {

+ checkEqualsNumeric(9, Square(3))

+ checkEqualsNumeric(c(4, 9), Square(2:3))

+ checkException(Square("xx"))

+ }

> Cube <- function (x) return(x^3)

> test(Cube) <- function () {

+ checkEqualsNumeric(27, Cube(3))

+ checkEqualsNumeric(c(8, 28), Cube(2:3))

+ checkException(Cube("xx"))

+ }

> ## Add a separate test case

> test_Integrate <- svTest(function () {

+ checkTrue(1 < 2, "check1")

+ v <- c(1, 2, 3) # The reference

+ w <- 1:3 # The value to compare to the reference

+ checkEquals(v, w)

+ })

When you run a test in svUnit, it logs its results in a centralized logger. The idea is to get a central
repository for tests that you can manipulate as you like (print, summarize, convert, search, display
in a GUI, etc.). If you want to start new tests, you should first clean this logger by clearLog().
At any time, the logger is accessible by Log(), and a summary of its containt is displayed using
summary(Log()). So, to run test for your Square() function as well as your test Integrate integration
test, you simply do the following:

> clearLog()

> runTest(Square)

> runTest(test_Integrate)

> Log()

= A svUnit test suite run in less than 0.1 sec with:

* test(Square) ... OK

* test_Integrate ... OK

2In fact, you can attach svUnit tests to any kind of R object, not only function. This could be useful to test S3/S4
objects, or even, datasets.

4

3 OVERVIEW OF SVUNIT

== test(Square) run in less than 0.1 sec: OK

//Pass: 3 Fail: 0 Errors: 0//

== test_Integrate run in less than 0.1 sec: OK

//Pass: 2 Fail: 0 Errors: 0//

In this report, you see that all your tests succeed. Note that svUnit is making the distinction
between a test that fails (the code is run correctly, but the result is different from what was expected)
and code that raises error (it was not possible to run the test because its code is incorrect, or for
some other reasons). Note also that the function checkException() is designed to explicitly test
code that should stop() in R3. So, if that test does not raises an exception, it is considered to have
failed. This is useful to check that your functions correctly trap wrong arguments, for instance, like in
checkException(Square("xx")) here above (a character string is provided where a numerical value
is expected).

Now, let’s look what happens if we test the Cube() function without clearing the logger:

> runTest(Cube)

* : checkEqualsNumeric(c(8, 28), Cube(2:3)) run in less than 0.001 sec ... **FAILS**

Mean relative difference: 0.03571429

num [1:2] 8 27

> Log()

= A svUnit test suite run in less than 0.1 sec with:

* test(Square) ... OK

* test_Integrate ... OK

* test(Cube) ... **FAILS**

== test(Square) run in less than 0.1 sec: OK

//Pass: 3 Fail: 0 Errors: 0//

== test_Integrate run in less than 0.1 sec: OK

//Pass: 2 Fail: 0 Errors: 0//

== test(Cube) run in less than 0.1 sec: **FAILS**

//Pass: 2 Fail: 1 Errors: 0//

* : checkEqualsNumeric(c(8, 28), Cube(2:3)) run in less than 0.001 sec ... **FAILS**

3checkException() can also track warning() messages with this little trick: first convert all warnings into errors
with owarn <- options(warn = 2)$warn, run the code that should generate a warning inside checkException(), and
then restore default warning behavior with options(warn = owarn).

5

3.1 Assertions in svUnit 3 OVERVIEW OF SVUNIT

Mean relative difference: 0.03571429

num [1:2] 8 27

We note this:

1. When a test succeeds, nothing is printed by default (result is returned invisibly). But when a test
fails, or raises errors, the guilty test(s) results are printed. We expected c(8, 28) (made inten-
tionally wrong for the sake of the demonstration) from Cube(2:3) in checkEqualsNumeric(c(8,

28), Cube(2:3)), and (of course), we got c(8, 27). This test shows how svUnit presents test
failures.

2. The results of the tests on Cube() are added to the previous report. So, it is possible to build
rather easily reports that summarize tests on several objects, by adding test results in the logger
sequentially. svUnit does this naturally and transparently. Starting a new report is equally
simple: just use clearLog()...

3.1 Assertions in svUnit

The most basic item in a test suite is an assertion represented by a checkXXX() function in svU-
nit/RUnit. Five such functions are currently defined:

checkEquals(current, target) determines if data in target is the same as data in current.

checkEqualsNumeric(current, target) does the same but allows for a better comparison for num-
bers (variation allowed within a tolerance window).

checkIdentical(current, target) checks whether two R objects are strictly identical.

checkTrue(expr) only succeed if expr is TRUE. Note a difference in svUnit and RUnit (at least, in its
version 0.4-17): the RUnit function is not vectorized and expr must return a single atomic
logical value. The corresponding svUnit function also accepts a vector of logical values. In
this case, all elements of the vector must be TRUE for the test to succeed. When you make
sure that expr always returns a single logical value (for instance by using all(expr)),
both functions should be compatible.

checkException(expr) verifies that a given code raises an exception (in R, it means that a line of
code with stop() is executed).

DEACTIVATED() makes sure that all tests following this instruction (in a test function, see next
paragraph) are deactivated, and inserts a reminder in the logger about the fact that some
tests are deactivated in this suite.

For all these functions, you have an additional optional argument msg where you can provide a (short)
message to print in front of each text in the report. These functions return invisibly: TRUE if the test
succeeds, or FALSE if it fails (code is executed correctly, but does not pass the test), and NA if there
was an error (the R code of the test was not executed correctly). Moreover, these functions record
the results, the context of the test and the timing in a logger (object svSuiteData inheriting from
environment) called .Log and located in the user’s workspace. So, executing a series of assertions and
getting a report is simply done as (in its simplest form, you can use the various checkXXX() functions
directly at the command line):

> clearLog()

> checkEqualsNumeric(1, log(exp(1)))

> checkException(log("a"))

> checkTrue(1 == 2)

6

3 OVERVIEW OF SVUNIT 3.2 Manipulating the logger data

* : checkTrue(1 == 2) run in less than 0.001 sec ... **FAILS**

logi FALSE

> Log()

= A svUnit test suite run in less than 0.1 sec with:

* eval ... **FAILS**

== eval run in less than 0.1 sec: **FAILS**

//Pass: 2 Fail: 1 Errors: 0//

* : checkTrue(1 == 2) run in less than 0.001 sec ... **FAILS**

logi FALSE

As you can see, the checkXXX() functions work hand in hand with the test logger (the checkXXX()
functions also return the result of the test invisibly, so, you can also assign it to a variable if you like).
These function are mainly used for their side-effect of adding an entry to the logger.

The last command Log() prints the content of the logger. You see how a report is printed,
with a first part being a short summary by categories (assertions run at the command line are placed
automatically in the eval category: there is no better context known for them. Usually, those assertions
should be placed in test functions, or in test units, as we will see later in this manual, and the category
will reflect this organization). A detailed report on the tests that failed or raised an error is also printed
at the end of the report.

Of course, the same report is much easier to manipulate from within the graphical tree in the
Komodo’s R Unit tab, but the simple text report in R has the advantage of being independent
from any GUI, and from Komodo. It can also be generated in batch mode. Last, but not least, it
uses a general Wiki formatting called creole wiki (http://www.wikicreole.org/wiki/Creole1.0).
Figure 1 illustrates the way the same report looks like in DokuWiki with the creole plugin (http:
//www.wikicreole.org/wiki/DokuWiki) installed. Note the convenient table of content that lists
here a clickable list of all tests run. From this point, it is relatively easy to define nightly cron task
jobs on a server to run a script that executes these tests and update a wiki page (look at your particular
wiki engine documentation to determine how you can access wiki pages on the command line).

3.2 Manipulating the logger data

The svUnit package provides a series of functions to manipulate the logger from the command line,
in particular, stats(), summary(), metadata() and ls():

> ## Clear test exclusion list for running all test suites

> options(svUnit.excludeList = NULL)

> ## Clear the logger

> clearLog()

> ## Run all currently defined tests

> runTest(svSuiteList(), name = "AllTests")

* : checkEqualsNumeric(c(8, 28), Cube(2:3)) run in less than 0.001 sec ... **FAILS**

Mean relative difference: 0.03571429

num [1:2] 8 27

*

runTest(bar) does not work inside test functions: ... DEACTIVATED

7

http://www.wikicreole.org/wiki/Creole1.0
http://www.wikicreole.org/wiki/DokuWiki
http://www.wikicreole.org/wiki/DokuWiki

3.2 Manipulating the logger data 3 OVERVIEW OF SVUNIT

Figure 1: a svUnit test report as it appears when inserted in a wiki page (DokuWiki engine with the
creole plugin installed). Note the summary of results at the top left of the page, and the clickable
table of contents with detailed entries to easily navigate to the test log you are consulting). Timing
of the test is also clearly indicated, since it is a complementary but important information (if a test
succeeds, but calculation is way too long, it is good to know it)!

8

3 OVERVIEW OF SVUNIT 3.2 Manipulating the logger data

> ## Get some statistics

> stats(Log())[, 1:3]

kind timing time

test_Integrate OK 0.00 2011-08-01 19:30:57

testCube **FAILS** 0.00 2011-08-01 19:30:57

testSquare OK 0.01 2011-08-01 19:30:57

test_R OK 0.00 2011-08-01 19:30:57

testsvSuite OK 0.00 2011-08-01 19:30:57

testsvSuiteList OK 0.03 2011-08-01 19:30:57

testis.test OK 0.00 2011-08-01 19:30:57

testmat OK 0.00 2011-08-01 19:30:57

testbar OK 0.00 2011-08-01 19:30:57

testrunTest DEACTIVATED 0.00 2011-08-01 19:30:57

testsvTest OK 0.00 2011-08-01 19:30:57

testCreateClass OK 0.00 2011-08-01 19:30:57

testMyVirtualBaseClass.getX OK 0.00 2011-08-01 19:30:57

testMyVirtualBaseClass.setX OK 0.00 2011-08-01 19:30:57

> ## A slightly different presentation than with print

> summary(Log())

= A svUnit test suite run in less than 0.1 sec with:

* test_Integrate ... OK

* testCube ... **FAILS**

* testSquare ... OK

* test_R ... OK

* testsvSuite ... OK

* testsvSuiteList ... OK

* testis.test ... OK

* testmat ... OK

* testbar ... OK

* testrunTest ... DEACTIVATED

* testsvTest ... OK

* testCreateClass ... OK

* testMyVirtualBaseClass.getX ... OK

* testMyVirtualBaseClass.setX ... OK

== test_Integrate (in runitAllTests.R) run in less than 0.1 sec: OK

//Pass: 2 Fail: 0 Errors: 0//

== testCube (in runitAllTests.R) run in less than 0.1 sec: **FAILS**

//Pass: 2 Fail: 1 Errors: 0//

=== Failures

[2] : checkEqualsNumeric(c(8, 28), Cube(2:3))

9

3.2 Manipulating the logger data 3 OVERVIEW OF SVUNIT

== testSquare (in runitAllTests.R) run in less than 0.1 sec: OK

//Pass: 3 Fail: 0 Errors: 0//

== test_R (in runitsvSuite.R) run in less than 0.1 sec: OK

//Pass: 1 Fail: 0 Errors: 0//

== testsvSuite (in runitsvSuite.R) run in less than 0.1 sec: OK

//Pass: 5 Fail: 0 Errors: 0//

== testsvSuiteList (in runitsvSuite.R) run in less than 0.1 sec: OK

//Pass: 6 Fail: 0 Errors: 0//

== testis.test (in runitsvTest.R) run in less than 0.1 sec: OK

//Pass: 15 Fail: 0 Errors: 0//

== testmat (in runitsvTest.R) run in less than 0.1 sec: OK

//Pass: 2 Fail: 0 Errors: 0//

== testbar run in less than 0.1 sec: OK

//Pass: 2 Fail: 0 Errors: 0//

== testrunTest (in runitsvTest.R) run in less than 0.1 sec: DEACTIVATED

//Pass: 1 Fail: 0 Errors: 0//

== testsvTest (in runitsvTest.R) run in less than 0.1 sec: OK

//Pass: 14 Fail: 0 Errors: 0//

== testCreateClass (in runitVirtualClass.R) run in less than 0.1 sec: OK

//Pass: 2 Fail: 0 Errors: 0//

== testMyVirtualBaseClass.getX (in runitVirtualClass.R) run in less than 0.1 sec: OK

10

3 OVERVIEW OF SVUNIT 3.2 Manipulating the logger data

//Pass: 3 Fail: 0 Errors: 0//

== testMyVirtualBaseClass.setX (in runitVirtualClass.R) run in less than 0.1 sec: OK

//Pass: 6 Fail: 0 Errors: 0//

> ## Metadata collected on the machine where tests are run

> metadata(Log())

$.R.version

_

platform i386-pc-mingw32

arch i386

os mingw32

system i386, mingw32

status

major 2

minor 11.1

year 2010

month 05

day 31

svn rev 52157

language R

version.string R version 2.11.1 (2010-05-31)

$.sessionInfo

R version 2.11.1 (2010-05-31)

i386-pc-mingw32

locale:

[1] LC_COLLATE=French_Belgium.1252 LC_CTYPE=French_Belgium.1252

[3] LC_MONETARY=French_Belgium.1252 LC_NUMERIC=C

[5] LC_TIME=French_Belgium.1252

attached base packages:

[1] tools stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] svUnit_0.7-6

$.time

[1] "2011-08-01 19:30:57 CEST"

> ## List content of the log

> ls(Log())

[1] "test_Integrate" "test_R"

[3] "testbar" "testCreateClass"

[5] "testCube" "testis.test"

[7] "testmat" "testMyVirtualBaseClass.getX"

[9] "testMyVirtualBaseClass.setX" "testrunTest"

11

3.2 Manipulating the logger data 3 OVERVIEW OF SVUNIT

[11] "testSquare" "testsvSuite"

[13] "testsvSuiteList" "testsvTest"

As you can see, ls() lists all components recorded in the test suite. Each component is a svTest-
Data object inheriting from data.frame, and it can be easily accessed through the $ operator. There
are, of course similar methods defined for those svTestData objects, like print(), summary() and
stats():

> myTest <- Log()$testCube

> class(myTest)

[1] "svTestData" "data.frame"

> myTest

== testCube (in runitAllTests.R) run in less than 0.1 sec: **FAILS**

//Pass: 2 Fail: 1 Errors: 0//

* : checkEqualsNumeric(c(8, 28), Cube(2:3)) run in less than 0.001 sec ... **FAILS**

Mean relative difference: 0.03571429

num [1:2] 8 27

> summary(myTest)

== testCube (in runitAllTests.R) run in less than 0.1 sec: **FAILS**

//Pass: 2 Fail: 1 Errors: 0//

=== Failures

[2] : checkEqualsNumeric(c(8, 28), Cube(2:3))

> stats(myTest)

$kind

OK **FAILS** **ERROR** DEACTIVATED

2 1 0 0

$timing

timing

0

As the logger inherits from environment, you can manage individual test data the same way as
objects in any other environment. For instance, if you want to delete a particular test data without
touching to the rest, you can use:

> ls(Log())

[1] "test_Integrate" "test_R"

[3] "testbar" "testCreateClass"

[5] "testCube" "testis.test"

[7] "testmat" "testMyVirtualBaseClass.getX"

[9] "testMyVirtualBaseClass.setX" "testrunTest"

[11] "testSquare" "testsvSuite"

[13] "testsvSuiteList" "testsvTest"

12

3 OVERVIEW OF SVUNIT 3.3 Test function

> rm(test_R, envir = Log())

> ls(Log())

[1] "test_Integrate" "testbar"

[3] "testCreateClass" "testCube"

[5] "testis.test" "testmat"

[7] "testMyVirtualBaseClass.getX" "testMyVirtualBaseClass.setX"

[9] "testrunTest" "testSquare"

[11] "testsvSuite" "testsvSuiteList"

[13] "testsvTest"

As we will see in the following section, svUnit proposes several means to organize individual
assertions in modules: test functions, test units and test suites. This organization is inspired
from RUnit, but with additional ways of using tests in interactive sessions (for instance, the ability to
attach a test to the objects to be tested).

3.3 Test function

The first organization level for grouping assertions together is the test function. A test function
is a function without arguments whose name must start with test. It typically contains a series of
assertions applied to one object, method, or function to be checked (this is not obligatory, assertions
are not restricted to one object, but good practices strongly suggest such a restriction). Here is an
example:

> test_function <- function () {

+ checkTrue(1 < 2, "check1")

+ v <- c(1, 2, 3) # The reference

+ w <- 1:3 # The object to compare to the reference

+ checkEqualsNumeric(v, w)

+ }

> ## Turn this function into a test

> test_function <- as.svTest(test_function)

> is.svTest(test_function)

[1] TRUE

A test function should be made a special object called svTest, so that svUnit can recognize it.
This svTest object, is allowed to live on its own (for instance, in the user’s workspace, or anywhere
you like). It can be defined in a R script, be saved in a ‘.RData’ file, etc... Note that this is very
different from RUnit where test must always be located in a unit test file on disk). In svUnit (not
RUnit), you run such a test simply by using runTest(), which returns the results invisibly and add
it to the logger:

> clearLog()

> runTest(test_function)

> Log()

= A svUnit test suite run in less than 0.1 sec with:

* test_function ... OK

== test_function run in less than 0.1 sec: OK

//Pass: 2 Fail: 0 Errors: 0//

13

3.3 Test function 3 OVERVIEW OF SVUNIT

Now, a test function is most likely designed to test an R object. The svUnit package also provides
facilities to attach the test function to the object to be tested. Hence, the test cases and the tested
object conveniently form a single entity that one can manipulate, copy, save, reload, etc. with all the
usual tools in R. This association is simply made using test(myobj) <-:

> ## A very simple function

> Square <- function (x) return(x^2)

> ## A test case to associate with the Square() function

> test(Square) <- function () {

+ checkEqualsNumeric(9, Square(3))

+ checkEqualsNumeric(c(1, 4, 9), Square(1:3))

+ checkException(Square("xx"))

+ }

> is.test(Square) # Does this object contain tests?

[1] TRUE

One can retrieve the test associated with the object by using:

> test(Square)

svUnit test function:

{

checkEqualsNumeric(9, Square(3))

checkEqualsNumeric(c(1, 4, 9), Square(1:3))

checkException(Square("xx"))

}

attr(,"srcfile")

<text>

And of course, running the test associated with an object is as easy as:

> runTest(Square)

> Log() # Remember we didn't clear the log!

= A svUnit test suite run in less than 0.1 sec with:

* test_function ... OK

* test(Square) ... OK

== test_function run in less than 0.1 sec: OK

//Pass: 2 Fail: 0 Errors: 0//

== test(Square) run in less than 0.1 sec: OK

//Pass: 3 Fail: 0 Errors: 0//

Now that you master test functions, you will discover how you can group them in logical units,
and associate them to R packages.

14

3 OVERVIEW OF SVUNIT 3.4 Test units

3.4 Test units

A unit is a coherent piece of software that can be tested separately from the rest. Typically, a R
package is a structured way to compile and distribute such code units in R. Hence, we need a mean
to organize tests related to this “unit” conveniently.

Since a package can contain several functions, data frames, or other objects, our unit should collect
together individual test functions related to each of these objects that compose our package. Also,
the test unit should accommodate the well-define organization of a package, and should integrate in
the already existing testing features of R, in particular, R CMD check. In both RUnit, and svUnit,
one can define such test units, and they are made code compatible between the two implementations.

A test unit is a sourceable text file that contains one or more test functions, plus possibly .setUp()

and .tearDown() functions (see the online help for further information on these special functions).
In RUnit, you must write such test unit files from scratch. With svUnit, you can “promote” one or
several test functions (associated to other objects, or “living” alone as separate svTest objects) by
using makeUnit(). Here is how you promote the test associated with our Square() function to a
simple test unit containing only one test function:

> # Create a test unit on disk and view its content

> unit <- makeUnit(Square)

> file.show(unit, delete.file = TRUE)

You got the following file whose name must start with ‘runit’, with an ‘.R’ extension (‘runit*.R’),
and located by default in the temporary directory of R. Specify another directory with the dir =

argument of makeUnit() for a more permanent record of this test unit file. Note also that .setUp()
and .tearDown() functions are constructed automatically for you. They specify the context of these
tests. This context is used, for instance, by the GUI in Komodo Edit/IDE to locate the test function
and the code being tested.

Test unit ’Square’

.setUp <-

function () {

Specific actions for svUnit: prepare context

if ("package:svUnit" %in% search()) {

.Log <- Log() ## Make sure .Log is created

.Log$..Unit <- "/tmp/RtmpBoZnId/runitSquare.R"

.Log$..File <- ""

.Log$..Obj <- ""

.Log$..Tag <- ""

.Log$..Msg <- ""

rm(..Test, envir = .Log)

}

}

.tearDown <-

function () {

Specific actions for svUnit: clean up context

if ("package:svUnit" %in% search()) {

.Log$..Unit <- ""

.Log$..File <- ""

.Log$..Obj <- ""

.Log$..Tag <- ""

.Log$..Msg <- ""

rm(..Test, envir = .Log)

}

}

15

3.4 Test units 3 OVERVIEW OF SVUNIT

"testSquare" <-

function() {

checkEqualsNumeric(9, Square(3))

checkEqualsNumeric(c(1, 4, 9), Square(1:3))

checkException(Square("xx"))

}

Compatibility of these test unit files between RUnit and svUnit was a major concern in the design of
svUnit. Consequently, code specific to svUnit (for managing the context of the tests) is embedded in a
if (``package:svUnit'' %in% search()) construct. That way, if svUnit is not loaded in memory,
this code is not executed. Note that you should avoid loading in memory both svUnit and RUnit at
the same time! If you do so, you will most likely crash your tests.

You will see further that it is possible to write much more complex test units with the same
makeUnit() function. But for the moment, let’s discuss a little bit how such test units should be
organized in R package.

If you intend to associate test units to your R package, you should respect the following conventions:

� Name your test units ‘runit*.R’.

� Place them in the ‘/inst/unitTests’ subdirectory of the package sources, or in one of its subdi-
rectories. If you place them in a subdirectory of ‘/inst/unitTests’, then you define secondary
unit tests for (optional) detailed testing of specific item in your package. Always keep in mind
that all ‘runit*.R’ files in a directory will be run one after the other. So, if you want to make
subgroups you would like to dissociate them, and locate them is separate subdirectories.

� When the package will be compiled, all these test units will be located in ‘/unitTests’ in the
compiled/installed version of your R package.

If you respect these conventions, svUnit knows where package unit tests are located and will be able
to find and run them quite easily. See, for instance, the examples in the svUnit package.

So, with test units associated to packages, you have a very convenient way to run these tests,
including from the Komodo GUI. With just a little bit more coding you can also include these test
units in the R CMD check process of your packages. You do this by means of examples in a help page
(we prefer to use examples, instead of ‘/tests’ in the R CMD check process, because examples offer a
more flexible way to run tests and you can also run them in interactive sessions through the example()
R function, which is not the case for code located in the ‘/tests’ subdirectory of your package). Here
is what you do to associate some or all of your unit tests to the R CMD check process (illustrated with
the case of the svUnit package itself):

� Define a ‘.Rd’ help file in the ‘/man’ subdirectory called ‘unitTests.<mypackage>.Rd’ where
<mypackage> is the name of your package (or whatever name you prefer).

� Fill the ‘.Rd’ file, making sure that you define an alias as ‘unitTests.<mypackage>’. Also place
a little bit of information telling how users can run your test in an interactive session.

� The important part of this file is, of course, the \examples{} section. You must first clear the
log, then run each test, and then, call the errorLog() function. That function looks if one or
more tests failed or raised an error. In this case, it stops execution of the example and causes a
dump of the test log in the R CMD check process. That way, providing that you have the svUnit
package installed in the machine where you run R CMD check, your test units will be included
nicely in the checking process of your packages, that is, they will run silently each time you check
your package if no error occurs, but will produce a detailed report in case of problems.

� Here is how your ‘.Rd’ file should looks like (exemple of the svUnit package):

16

3 OVERVIEW OF SVUNIT 3.4 Test units

\name{unitTests.svUnit}

\alias{unitTests.svUnit}

\title{ Unit tests for the package svUnit }

\description{ Performs unit tests defined in this

package by running \code{example(unitTests.svUnit)}.

Tests are in \code{runit*.R} files Located in the

’/unitTests’ subdirectory or one of its

subdirectories (’/inst/unitTests’ and subdirectories

in package sources).

}

\author{Philippe Grosjean

(\email{phgrosjean@sciviews.org})}

\examples{

if (require(svUnit)) {

clearLog()

runTest(svSuite("package:svUnit"), "svUnit")

Possibly run other tests here...

errorLog()

}

}

\keyword{utilities}

Note, however, that if the package svUnit is not available on the computer where you run R CMD check,
your tests are silently ignored (require() issues a warning, but that does not prevent the checking
process to continue). This is an intended feature in order to allow compilation of your package without
requiring svUnit. Hence, dependence to svUnit is less strict and also allows you to check your tests
using RUnit (but you have to write a dedicated function for that). Still to keep such a less strict
dependence on svUnit, you should add svUnit in the Suggests: field in the ‘DESCRIPTION’ file of
your package, not in Depends: or Imports: fields (except if you use svUnit for other purposes that
testing your package using the mechanism discussed here, of course.

Also, this approach, associated with examples, provides a very convenient and easy way to test a
package from the command line in an interactive session by running:

> example(unitTests.svUnit)

untT.U> if (require(svUnit)) {

untT.U+ clearLog()

untT.U+ runTest(svSuite("package:svUnit"), "svUnit")

untT.U+ ## No test:

untT.U+ ## Tests to run with example() but not with R CMD check

untT.U+ runTest(svSuite("package:svUnit (VirtualClass)"), "VirtualClass")

untT.U+

untT.U+ ## End(No test)

untT.U+ ## Not run:

untT.U+ ##D ## Tests to present in ?unitTests.svUnit but not run automatically

untT.U+ ##D ## Run all currently loaded packages test cases and test suites

untT.U+ ##D runTest(svSuiteList(), "AllTests")

untT.U+ ##D

untT.U+ ## End(Not run)

untT.U+ ## Don't show:

untT.U+ ## Put here test units you want to run during R CMD check but

untT.U+ ## don't want to show or run with example(unitTests.svUnit)

untT.U+

17

3.5 Test suites: collections of test functions and units 3 OVERVIEW OF SVUNIT

untT.U+ ## End Don't show

untT.U+ ## Check errors at the end (needed to interrupt R CMD check)

untT.U+ errorLog()

untT.U+ }

*

runTest(bar) does not work inside test functions: ... DEACTIVATED

In the present case, the errorLog() instruction in the examples returns nothing, because all tests
succeed. If there is an error somewhere, you will see it printed at the end of this example.

3.5 Test suites: collections of test functions and units

The highest level of organization of your tests is the test suite. A test suite is an unordered collection
of test functions and test units. You can select test units associated with R package in a very convenient
way: just specify package:myPkg and all test units in the ‘/unitTests’ subdirectory of the package
myPkg will be included (svUnit does all the required work to map these to actual directories where
the test unit files are located). Also, if you specify package:myPkg (subgroup), you will include the
test units defined in ‘/unitTests/subgroup’ in the package myPkg. Of course, you will be able to also
add test units defined in custom directories, outside of R packages (for instance for integration of
harness tests that check cross-packages, or multi-packages features of your application).

Test functions associated to your test suite receive a special treatment. Unlike runTest() applied
to a single test function, or to an object that has an associated test function, these tests are not run
from the version loaded in memory. Instead, they are first collected together in a test unit file on
disk (located in the R temporary directory, by default), and run from there. Hence, building a more
complex test unit file by collecting together several test functions is just a question of constructing a
test suite, and then, applying the makeUnit() function to this svSuite object.

Before we apply all this, you should also know the existence of one more function: svSuiteList().
This function lists all test units and test functions available in your system at a given time. So, you
don’t need to manually create lists of components. You are better to list them automatically. Of
course, this function has a lot of arguments for listing only test units in packages, only test functions,
specifying where (in which environment) the test functions are located, adding custom directories
where to look for test units, etc, etc. See the online help of this function for the description of all these
arguments. One argument is particularly important: excludeList =. This argument defines one or
several regular expressions that are used as filters to hide items from the list. This is required, since
you will certainly not want to run again and again, let’s say, the example tests associated with the
svUnit package (svUnit must be loaded in memory to run the tests, so its tests examples will always
be listed by svSuiteList(),... unless you define an adequate filter expression that will exclude them
from your list)! As the default argument suggests it, the regular expression for list exclusion could
also be recorded in options(svUnit.excludeList = ...). Here is how it works:

> ## Reset default exclusion list

> options(svUnit.excludeList = c("package:sv", "package:RUnit"))

> ## List all currently available tests

> svSuiteList()

A svUnit test suite definition with:

- Test functions:

[1] "test(Cube)" "test(Square)" "test_function" "test_Integrate"

Thus, every entry matching the regular expressions package:sv and package:RUnit are excluded
from the list. The entries package:svUnit and package:svUnit (VirtualClass match first pattern
and are thus excluded. Now, let’s clear the exclusion list to see what happens:

18

3 OVERVIEW OF SVUNIT 3.5 Test suites: collections of test functions and units

> ## Clear exclusion list

> options(svUnit.excludeList = NULL)

> svSuiteList()

A svUnit test suite definition with:

- Test suites:

[1] "package:svUnit" "package:svUnit (VirtualClass)"

- Test functions:

[1] "test(Cube)" "test(Square)" "test_function" "test_Integrate"

The test units associated with the package svUnit are now listed. You have noticed that svSuit-
eList() can also find automatically svTest objects, as well as tests attached to objects in the user’s
workspace. You can create a suite by collecting all these items together very easily:

> (mySuite <- svSuiteList())

A svUnit test suite definition with:

- Test suites:

[1] "package:svUnit" "package:svUnit (VirtualClass)"

- Test functions:

[1] "test(Cube)" "test(Square)" "test_function" "test_Integrate"

Now let’s make a test unit using tests collected in this suite:

> myUnit <- makeUnit(mySuite, name = "ExampleTests")

> file.show(myUnit, delete.file = TRUE)

This produces a file named ‘runitExampleTests.R’ located (by default) in the R temporary directory,
and which collects together all tests in the user’s workspace (either as svTest objects, or as tests
attached to other objects), plus tests suites in packages that are not in the exclusion list. Running
all tests in your suite is very simple. You still use runTest() as usual, but this time, you apply it to
your svSuite object:

> clearLog()

> runTest(mySuite)

* : checkEqualsNumeric(c(8, 28), Cube(2:3)) run in less than 0.001 sec ... **FAILS**

Mean relative difference: 0.03571429

num [1:2] 8 27

*

runTest(bar) does not work inside test functions: ... DEACTIVATED

> summary(Log())

= A svUnit test suite run in less than 0.1 sec with:

* test_function ... OK

* test_Integrate ... OK

* testCube ... **FAILS**

* testSquare ... OK

* test_R ... OK

19

3.5 Test suites: collections of test functions and units 3 OVERVIEW OF SVUNIT

* testsvSuite ... OK

* testsvSuiteList ... OK

* testis.test ... OK

* testmat ... OK

* testbar ... OK

* testrunTest ... DEACTIVATED

* testsvTest ... OK

* testCreateClass ... OK

* testMyVirtualBaseClass.getX ... OK

* testMyVirtualBaseClass.setX ... OK

== test_function (in runitmySuite.R) run in less than 0.1 sec: OK

//Pass: 2 Fail: 0 Errors: 0//

== test_Integrate (in runitmySuite.R) run in less than 0.1 sec: OK

//Pass: 2 Fail: 0 Errors: 0//

== testCube (in runitmySuite.R) run in less than 0.1 sec: **FAILS**

//Pass: 2 Fail: 1 Errors: 0//

=== Failures

[2] : checkEqualsNumeric(c(8, 28), Cube(2:3))

== testSquare (in runitmySuite.R) run in less than 0.1 sec: OK

//Pass: 3 Fail: 0 Errors: 0//

== test_R (in runitsvSuite.R) run in less than 0.1 sec: OK

//Pass: 1 Fail: 0 Errors: 0//

== testsvSuite (in runitsvSuite.R) run in less than 0.1 sec: OK

//Pass: 5 Fail: 0 Errors: 0//

== testsvSuiteList (in runitsvSuite.R) run in less than 0.1 sec: OK

//Pass: 6 Fail: 0 Errors: 0//

== testis.test (in runitsvTest.R) run in less than 0.1 sec: OK

20

4 USING SVUNIT WITH SCIVIEWS KOMODO

//Pass: 15 Fail: 0 Errors: 0//

== testmat (in runitsvTest.R) run in less than 0.1 sec: OK

//Pass: 2 Fail: 0 Errors: 0//

== testbar run in less than 0.1 sec: OK

//Pass: 2 Fail: 0 Errors: 0//

== testrunTest (in runitsvTest.R) run in less than 0.1 sec: DEACTIVATED

//Pass: 1 Fail: 0 Errors: 0//

== testsvTest (in runitsvTest.R) run in less than 0.1 sec: OK

//Pass: 14 Fail: 0 Errors: 0//

== testCreateClass (in runitVirtualClass.R) run in less than 0.1 sec: OK

//Pass: 2 Fail: 0 Errors: 0//

== testMyVirtualBaseClass.getX (in runitVirtualClass.R) run in less than 0.1 sec: OK

//Pass: 3 Fail: 0 Errors: 0//

== testMyVirtualBaseClass.setX (in runitVirtualClass.R) run in less than 0.1 sec: OK

//Pass: 6 Fail: 0 Errors: 0//

There are many other tools to manipulate svSuite objects in the svUnit package, including functions
to define the content of the suite manually (see online help).

4 Using svUnit with SciViews Komodo

If you use the SciViews Komodo GUI (see http://www.sciviews.org/SciViews-K), you can integrate
svUnit tests in this IDE and display reports in a convenient hierarchical tree presentation (Fig. 2).
If R is started from within Komodo Edit or IDE (with the SciV iews-K and SciV iews-K Unit plugins
installed), then, loading the svUnit package in R automatically installs the R Unit side panel in
Komodo at right. Its use should be straightforward:

� Select the tests you want to run in the top part,

� Click the Run button each time you want to refresh the test tree,

� Browse the tree for failures or errors (the color at the top of the panel immediately indicates if
there is a problem somewhere: green -> everything is fine, red -> there is a problem).

21

http://www.sciviews.org/SciViews-K

4 USING SVUNIT WITH SCIVIEWS KOMODO

Figure 2: Komodo Edit with SciV iews-K and SciV iews-K Unit after running tests. At right: the R
Unit panel that display (at the top) the list of available tests, and test units where you can select the
ones to run, and at the bottom, a tree with the results from last tests run. The stripe at the very top
is green if all tests succeed, and red (as here), if at least one tests failed or raised an error.

22

REFERENCES REFERENCES

� If you have failures or errors, move the mouse on top of the corresponding item in the tree, and
you got more information displayed in a tooltip,

� Click on an item to open the test unit at that place in a buffer in Komodo.

The Auto mode, when activated, sources R files currently edited in Komodo whenever you save them,
and then, refreshes the test report tree. This mode allows you to run automatically your tests in the
background while you edit your R code!

If you want to implement such a side panel in another GUI, make sure to look at the
koUnit_XXX() functions in the svUnit package. These functions allow to control the GUI in
Komodo remotely from within R, and similar functions should not be too difficult to implement
for other GUIs.

References

[1] Grosjean, Ph., 2003. SciViews: an object-oriented abstraction layer to design GUIs on top of
various calculation kernels [online: http://www.ci.tuwien.ac.at/Conferences/DSC-2003]

[2] IEEE Standards Boards, 1993. IEEE standard for software unit testing. ANSI/IEEE Std 1008-
1987. 24 pp.

[3] Ihaka R. & R. Gentleman, 1996. R: a language for data analysis and graphics. J. Comput. Graphic.
Stat., 5:299-314.

[4] Jeffries, R., 2006. Extreme programming, web site at: http://www.xprogramming.com.

[5] König, T., K. Jünemann & M. Burger, 2007. RUnit – A unit test framework for R. Vignette of
the package RUnit available on CRAN. 11 pp.

[6] R Development Core Team, 2008. R: A language and environment for statistical computing. [online:
http://www.R-project.org].

23

http://www.ci.tuwien.ac.at/Conferences/DSC-2003
http://www.xprogramming.com
http://www.R-project.org

	Introduction
	Unit testing in R without svUnit
	Unit testing framework for R with svUnit

	Installation
	Overview of svUnit
	Assertions in svUnit
	Manipulating the logger data
	Test function
	Test units
	Test suites: collections of test functions and units

	Using svUnit with SciViews Komodo

