

The R-package surveillance was written with the aim of providing a
test-bench for surveillance algorithms. From the Comprehensive R Archive
Network (CRAN) the package can be downloaded together with its source
code. It allows users to test new algorithms and compare their results
with those of standard surveillance methods. A few real world outbreak
datasets are included together with mechanisms for simulating surveillance
data. With the package at hand, comparisons like the one described by [Hut-
wagner et al.| (2005) should be easy to conduct.

The purpose of this document is to illustrate the basic functionality of
the package with R-code examples. Section [2] contains a description of the
data format used to store surveillance data, mentions the built-in datasets
and illustrates how to create new datasets by simulation. Section [3|contains
a short description of how to use the surveillance algorithms and illustrate
the results. Further information on the individual functions can be found in
the on-line documentation of the package, which is also provided in printed
form as an Appendix of this document.

2 Surveillance Data

Denote by {y;;t =1,...,n} the time series of counts representing the sur-
veillance data. Because such data typically are collected on a weekly basis,
we shall also use the alternative notation {y;;j} with j = {1,...,52} being
the week number in year i = {—b,...,—1,0}. That way the years are in-
dexed such that most current year has index zero. For evaluation of the
outbreak detection algorithms it is also possible for each week to store — if
known — whether there was an outbreak that week. The resulting multivari-
ate series {(y, X¢) ;t = 1,...,n} is in surveillance given by an object of
class disProg (disease progress), which is basically a list containing two
vectors: the observed number of counts and a boolean vector state indicat-
ing whether there was an outbreak that week. A number of time series are
contained in the data directory, mainly originating from the SurvStat@RKI
database at http://wwwa3.rki.de/SurvStat/ maintained by the Robert Koch
Institute, Germany (Robert Koch-Institut, [2004). For example the object
k1 describes Kryptosporidosis surveillance data for the German federal state
Baden-Wiurttemberg 2001-2005. The peak in 2001 is due to an outbreak
of Kryptosporidosis among a group of army-soldiers in boot-camp (Robert
Koch Institute, 2001). In surveillance the readData function is used to
bring the time series on disProg form. The SurvStat@RKI database at
http://wwwa3.rki.de/SurvStat/ maintained by the Robert Koch Institute,
Germany, uses a 53 weeks a year format; therefore a conversion with cor-
rect53to52 is necessary.

> data(kl)
> plot(kl, main = "Kryptosporidiosis in BW 2001-2005")

http://www3.rki.de/SurvStat/
http://www3.rki.de/SurvStat/

Kryptosporidiosis in BW 2001-2005

— Infected
+ Outbreak

No. infected
100 150 200
Il Il I}

50

o J MMMWMM

4

2 05

| 1] | 1] a 1] | 1] |
time

For evaluation purposes it is also of interest to generate surveillance data
using simulation. The package contains functionality to generate surveillance
data containing point-source like outbreaks, for example with a Salmonella
serovar. The model is a Hidden Markov Model (HMM) where a binary
state X, t =1,...,n, denotes whether there was an outbreak and Y is the
number of observed counts, see Fig.[1]

Figure 1: The Hidden Markov Model

The state X; is a homogenous Markov chain with the following transition
matrix

Xe\Xee1 | 0 1
0 p1-p
1 1-r r

Hence 1 — p is the probability to switch to an outbreak state and 1 —r is
the probability that X = 1 is followed by X{+1 = 1. Furthermore, the
observation Y¢ is Poisson-distributed with log-link mean depending on a
seasonal e [edt and time trend, i.e.

logue = A-sin(w - (t+¢)) + a + pt.

In case of an outbreak (X = 1) the mean increases with a value of K,
altogether
Yi CPO(pe + K - Xy). €]

The model in corresponds to a single-source, common-vehicle outbreak,
where the length of an outbreak is controlled by the transition probability
r. The daily numbers of outbreak-cases are simply independently Poisson
distributed with mean K. A physiologically better motivated alternative
could be to operate with a stochastic incubation time (e.g. log-normal or
gamma distributed) for each individual exposed to the source, which results

in a temporal di [udion of the peak. The advantage of is that estimation
can be done by a generalized linear model (GLM) using X; as covariate
and that it allows for an easy definition of a correctly identified outbreak:
each X; = 1 has to be identified. More advanced setups would require
more involved definitions of an outbreak, e.g. as a connected series of time
instances, where the number of outbreak cases is greater than zero. Care is
then required in defining what a correctly identified outbreak for time-wise
overlapping outbreaks means.

In survei l lance the function sim.pointSource is used to simulate such
a point-source epidemic; the result is an object of class disProg.

> sts <- sim.pointSource(p = 0.99, r = 0.5, length = 400,
+ A =1, alpha = 1, beta = 0, phi = 0, frequency = 1,
+ state = NULL, K = 1.7)

> plot(sts)

— Infected
+ Outbreak

30
I}

No. intected
20

10

08

n 1l | v 1 1l | \Y n
time

20,

<

3 Surveillance Algorithms

Surveillance data often exhibit strong seasonality, therefore most surveillance
algorithms only use a set of so called reference values as basis for drawing
conclusions. Let yot be the number of cases of the current week (denoted
week t in year 0), b the number of years to go back in time and w the number
of weeks around t to include from those previous years. For the year zero
we use Wp as the number of previous weeks to include — typically wo = w.
Altogether the set of reference values is thus defined to be

L1 LI 1 L1
w1 L
R(W!W()! b) = L1 y—i:t+j @ YO:t+k L1
i=1j=—w k=—wg

Note that the number of cases of the current week is not part of R(w, wg, b).

A surveillance algorithm is a procedure using the reference values to cre-
ate a prediction Vot for the current week. This prediction is then compared
with the observed yq.¢: if the observed number of cases is much higher than
the predicted number, the current week is flagged for further investigations.
In order to do surveillance for time 0 : t an important concern is the choice
of b and w. Values as far back as time —b : t —w contribute to R(w, wg, b)
and thus have to exist in the observed time series.

Currently, we have implemented four dilerknt type of algorithms in
surveillance. The Centers for Disease Control and Prevention (CDC)
method (Stroup et al., [1989), the Communicable Disease Surveillance Cen-
tre (CDSC) method (Farrington et al., [1996)), the method used at the Robert
Koch Institute (RKI), Germany (Altmann| 2003), and a Bayesian approach
documented in Riebler| (2004). A detailed description of each method is be-
yond the scope of this note, but to give an idea of the framework the Bayesian
approach developed in|Riebler| (2004) is presented: Within a Bayesian frame-
work, quantiles of the predictive posterior distribution are used as a measure
for defining alarm thresholds.

The model assumes that the reference values are identically and inde-
pendently Poisson distributed with parameter A and a Gamma-distribution
is used as Prior distribution for A. The reference values are defined to be

RBayes = R(W,wo,b) = {y1,...,Yn} and yo: is the value we are trying to
predict. Thus, A [Qa(a,pB) and yij|]A [Pb(A), i = 1,...,n. Standard
derivations show that the posterior distribution is

1

Aly,....yn CGR(a+ i, B +n).
i=1
Computing the predictive distribution
f(yorlys, ... yn) = F(yoxlA) F(Aly1, ..., yn) dA
0
we get the Poisson-Gamma-distribution

r— 1
YO:tIyla---ayn Ga(a+ Y|1B +n)1

i=1
which is a generalization of the negative Binomial distribution, i.e.

yoitly1, ..., yn CNEgBin(a+ y;, BE;L)-
i=1
Using the Je [rely’s Prior Ga(%,O) as non-informative Prior distribution for
A the parameters of the negative Binomial distribution are
 i— P | I— B +n
a+ Y=g+ Yij and
i=1 Yi:j I:@ayes

— |RBayes|
[3+n+1 |RBayes|+1.

Using a quantile-parameter a, the smallest value yq is computed, so that
Pysyg)=1l—aqa.

Now
Aot = 1 (Yo:t = Ya),
i.e. if yo.t = yq the current week is flagged as an alarm. As an example, the

Bayesl method uses the last six weeks as reference values, i.e. R(w, wg, b) =
(6, 6,0), and is applied to the k1 dataset with a = 0.01 as follows.

> k1.b660 <- algo.bayes(kl, control = list(range = 27:192,
+ b=0,w=6, alpha = 0.01))
plot(kl.b660, disease = "k1"™, firstweek = 1, startyear = 2001)

\Y

Analysis of k1 using bayes(6,6,0)

8

7 n — Infected
N -- Threshold
A Alarm
+ Outbreak

No. infected
100
Il

2001 2002 2002 2002 2002° 2003 “2003 2003 2003 2004

2001 #2001 2001

i I} Iil \% | I} l‘”time v | 1 Iil \Y% |

Several extensions of this simple Bayesian approach are imaginable, for
example the inane over-dispersion of the data could be modeled by using
a negative-binomial distribution, time trends and mechanisms to correct
for past outbreaks could be integrated, but all at the cost of non-standard
inference for the predictive distribution. Here simulation based methods like
Markov Chain Monte Carlo or heuristic approximations have to be used to
obtain the required alarm thresholds.

In general, the surveillance package makes it easy to add additional
algorithms — also those not based on reference values — by using the existing
implementations as starting point.

The following call uses the CDC and Farrington procedure on the simu-
lated time series sts from page [4l Note that the CDC procedure operates
with four-week aggregated data — to better compare the upper bound value,
the aggregated number of counts for each week are shown as circles in the
plot.

> cntrl <- list(range = 300:400, m =1, w =3, b =5, alpha = 0.01)
> sts.cdc <- algo.cdc(sts, control = cntrl)
> sts.farrington <- algo.farrington(sts, control

cntrl)

> par(mfcol = c(1, 2))
> plot(sts.cdc, legend = F)
> plot(sts.farrington, legend = F)

Analysis of sts using cdc(4*,0,5) Analysis of sts using farrington(3,0,5)

— Infected N — Infected
8 9 . --- Threshold T --- Threshold
S | A Alarm Y 5 < A Alarm

: o | + Outbreak ; Y o + Outbreak

30 40
Il

No. infected
20
Il

No. infected

10

A

o . o J il MR
2001 2001 2002 2002 2001 2001% 2002 2002

Typically, one is interested in evaluating the performance of the various
surveillance algorithms. An easy way is to look at the sensitivity and speci-
ficity of the procedure — a correct identification of an outbreak is defined as
follows: if the algorithm raises an alarm for time t, i.e. A =1 and Xy = 1 we
have a correct classification, if Ay = 1 and X; = 0 we have a false-positive,
etc. In case of more involved outbreak models, where an outbreak lasts for
more than one week, a correct identification could be if at least one of the
outbreak weeks is correctly identified, see e.g. [Hutwagner et al.| (2005).

To compute various performance scores the function algo.quality can
be used on a SurvRes object.

> print(algo.quality(kl1l.b660))

TP FP TN FN Sens Spec dist mlag
[1,] 2 101540 1 0.9390244 0.06097561 0

This computes the number of false positives, true negatives, false negatives,
the sensitivity and the specificity. Furthermore, dist is defined as

1
(Spec — 1)2 + (Sens — 1)2,

that is the distance to the optimal point (1,1), which serves as a heuristic
way of combining sensitivity and specificity into a single score. Of course,
weighted versions are also imaginable. Finally, lag is the average number
of weeks between the first of a consecutive number of X; = 1’s (i.e. an
outbreak) and the first alarm raised by the algorithm.

To compare the results of several algorithms on a single time series we
declare a list of control objects — each containing the name and settings of
the algorithm we want to apply to the data.

control = list(list(funcName = "rkil"), list(funcName = "rki2"),
list(funcName = "rki3"), list(funcName = "bayesl"),
list(funcName = "bayes2'™), list(funcName = "bayes3"),
list(funcName = "cdc™, alpha = 0.05), list(funcName = "farrington”,

control <- lapply(control, function(ctrl) {

>

+ =

+

+

+ alpha = 0.05))

>

+ ctri$range <- 300:400
+ return(ctrl)

+ 3

In the above, rkil, rki2 and rki3 are three methods with reference values
Rrki1(6,6,0), Rrki2(6,6,1) and Rkiz(4,0,2) all called with a = 0.05. The
methods bayesl-bayes3 is the Bayesian algorithm using the same setup of
reference values. The CDC Method is special, since it operates on aggregated
four-week blocks. To make everything comparable a common o = 0.05 level
is used for all algorithms. All algorithms in control are applied to sts

using:

> algo.compare(algo.call(sts, control =

TP FP
rki(6,6,0) 1 6
rki(6,6,1) 11
rki(4,0,2) 11
bayes(6,6,0) 1 14
bayes(6,6,1) 1 8
bayes(4,0,2) 1 5
cdc(4*,0,5) 1 4
farrington(3,0,5) 1 3

N
94
99
99
86
92
95
96
97

FN sens spec

OO OO0 oOoOoo

1

PR R RR PR

0.
.99
.99
.86
.92
.95
.96
.97

O OO OO OoOOo

94

control))

dist m
.06 0
.010
.01 0
.14 0
.08 0
.05 0
.04 0
.03 0

O OO O0OO0OO0OOoOOo

A test on a set of time series can be done as follows. Firstly, a list
containing 10 simulated time series is created. Secondly, all the algorithms
specified in the control object are applied to each series. Finally the results
for the 10 series are combined in one result matrix.

> ten <- lapply(1:10, function(x) {

+ sim_pointSource(p = 0.975, r = 0.5, length = 400,

+ A =1, alpha = 1, beta = 0, phi = 0, frequency = 1,
+ state = NULL, K = 1.7)

+ 3

> ten.surv <- lapply(ten, function(ts) {

+ algo.compare(algo.call(ts, control = control))

+ D

\Y

algo.summary(ten.surv)

TP FP TN FN sens spec dist mlag

rki(6,6,0) 32 23 940 15 0.68 0.98 0.32 4.27
rki(6,6,1) 34 5958 13 0.72 0.99 0.28 2.93
rki(4,0,2) 35 4959 12 0.74 1.00 0.26 1.98
bayes(6,6,0) 40 90 873 7 0.85 0.91 0.18 1.32
bayes(6,6,1) 41 53 910 6 0.87 0.94 0.14 0.72
bayes(4,0,2) 45 42 921 2 0.96 0.96 0.06 0.00
cdc(4*,0,5) 21 34 929 26 0.45 0.96 0.55 8.05
farrington(3,0,5) 35 12 951 12 0.74 0.99 0.26 2.94

A similar procedure can be applied when evaluating the 14 surveillance
series drawn from SurvStat@RKI (Robert Koch-Institut, 2004). A problem
is however, that the series after conversion to 52 weeks/year are of length 209
weeks. This is insu [cieht to apply e.g. the CDC algorithm. To conduct the
comparison on as large a dataset as possible the following trick is used: The
function enlargeData replicates the requested range and inserts it before
the original data, after which the evaluation can be done on all 209 values.

> range = (2 * 4 * 52) + 1:length(kl$observed)

> control <- lapply(control, function(cntrl) {

+ cntril$range = range

+ return(cntrl)

+ 31

> outbrks <- c("m1", "m2", "m3", "m4", "m5", "ql_nrwh",

+ "g2", '"sl1", "s2", "s3", "k1", "nl1", "n2", "hl_nrwrp')
> outbrks <- lapply(outbrks, function(name) {

+ eval (substitute(data(name), list(name = name)))

+ enlargeData(get(name), range = 1:(4 * 52), times = 2)
+ D

> one.survstat.surv <- function(outbrk) {

+ algo.compare(algo.call(outbrk, control = control))
+}

> algo.summary(lapply(outbrks, one.survstat.surv))

TP FP TN FN sens spec dist mlag

rki(6,6,0) 38 62 2646 180 0.174 0.977 0.826 5.43
rki(6,6,1) 65 83 2625 153 0.298 0.969 0.703 5.57
rki(4,0,2) 80 106 2602 138 0.367 0.961 0.634 5.43
bayes(6,6,0) 61 206 2502 157 0.280 0.924 0.724 1.71
bayes(6,6,1) 123 968 1740 95 0.564 0.643 0.564 1.36
bayes(4,0,2) 162 920 1788 56 0.743 0.660 0.426 1.36
cdc(4*,0,5) 65 94 2614 153 0.298 0.965 0.703 7.14
farrington(3,0,5) 37 53 2655 181 0.170 0.980 0.831 5.64

In both this study and the earlier simulation study the Bayesian approach
seems to do quite well. However, the extent of the comparisons do not make
allowance for any more supported statements. Consult the work of
for a more thorough comparision using simulation studies.

4 Multivariate surveillance

As of version 0.9-2 surveillance supports the visualization of multivariate
time series of counts. An (multivariate) object of class disProg contains ma-
trices with the observed number of counts and the respective state chains,
where each column represents an individual time series. Additional elements
of the disProg-object are a neighbourhood matrix and a matrix with pop-
ulation counts. However, only modelling of the time series as by
is currently available. In the near future the surveillance algorithms
will also be extended to handle these multivariate data.

For example, consider the weekly counts of new measels cases for each
“Kreis” (area) of the administrative district “Weser-Ems” in Lower Saxony,
Germany, in 2001 and 2002 (Robert Koch-Institut, 2004). Figure [2 shows a
map of the m = 15 areas. The corresponding m < m neighbourhood matrix
has elements 1 if two areas share a common border and is 0O otherwise.

Figure 2: Map of the administrative district “Weser-Ems”

In the package surveillance the measels data are already available in

10

the form of a disProg-object.

> data(measels.weser)

> plot(measels.weser, title = "Measels in Weser-Ems 2001-2002",
+ xaxis.years = TRUE, startyear = 2001, firstweek = 1)
Measels in Weser—-Ems 2001-2002
—— 3402 ---- 3451 3454 ---- 3457 3460
- 3403 3452 3455 ——- 3458 --- 3461
8 | 3404 -—-— 3453 3456 -—-— 3459 3462 ‘\‘
o i
o <
o ‘
f_‘j o T o
E 81 N
5 SR
g T
od RPN U WY S PR Vs e o o e o
20012002001 2001 2002 2002 2002 20022003
| Il 1l v M I 1 v |
time

The number of counts for each area can also be looked at and plotted
as individual time series. Here, the x-axis is the week number since 1st of
January 2001 and the y-axis is the number of measels cases.

> plot(measels.weser, as.one = FALSE, xaxis.years = FALSE)

4 3402 B4 3403 B4 3404 B4 3451 B4 3452
4 =3 =3 =3 =3
53 53
4 2 2
]]]
B B2 B2 B2

10
10
10
10

4 JL A»MLV[“ b4 Lot L b4 b4 1 D,JMJ’"MM_»’N’MWL._._L

T T
0 20 40 60 80 100 O 20 40 60 80 100 O 20 40 60 80 100 O 20 40 60 80 100 O 20 40 60 80 100

il 3453 B4 3454 B4 3455 B4 3456 B 3457
4 =3 =3 = =
S 53
4 2 2 =3 =3
2]]
= = o o

L
10

1 M ’M “ B B B
4 HM b4 Il b4 b4 b 4
T

T T
0 20 40 60 80 100 O 20 40 60 80 100 O 20 40 60 80 100 O 20 40 60 80 100 O 20 40 60 80 100

4 3458 B 3459 =3 3460 =3 3461 =3 3462
) 1) 1) o)
4 =) =) =3 =}
= = = =
4 2 4 =3 =3 2 4
2] 2] 2]
=) =) =) =3

L
10

4 JL =} =g =g
= =] B
I b4 r s b 4] b 4 i b 4

T T
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

11

The data are analysed using the model proposed by Held et al.| (2005).
A call to the function algo.hhh fits a Poisson or negative binomial model
with mean

L 1
Hit = AYit—1+@ Yjt—1+Nivie, 1=1,....mt=1...,n,
jria
where j [1ldenotes all neighbours of i, to a multivariate time series of
counts. Itis estimated by maximum likelihood using numerical optimization
The nj; are standardiﬁd population counts and log vj; = a; +t+
=1 YsSin(wst) + dscos(wst) with Fourier frequencies ws.

For the weekly measels data ws = 2sn/52 (i.e. period=52). In the
following, the model specified in cntrl is fitted to the data. The counts
are assumed to be negative binomial distributed with mean p;; and variance
Hit+H2/¢. A linear time trend B, seasonal parameters y; and By (i.e. S = 1)
as well as the autoregressive parameters A and ¢ are included to specify the
mean. All in all, there are 2S + m + 4 parameters to be estimated for
the negative binomial model. In case of a Poisson model, the number of
parameters reduces by one as the overdispersion parameter { is omitted.

> cntrl <- list(linear = TRUE, nseason = 1, period = 52,
+ neighbours = TRUE, negbin = TRUE, lambda = TRUE)
> measels.hhh <- algo.hhh(measels.weser, control = cntrl)

Depending on the inital values for the parameters, the optimization al-
gorithm might not converge or only find a local maximum as the parameter
space is high-dimensional. It is therefore reasonable to try multiple starting
values.

The function create.grid takes a list with elements in the form of
param = c(lower,upper, length) to create a matrix of starting values. For
each parameter a sequence of length length from lower to upper is built
and the resulting grid contains all combinations of these parameter values. A
call to algo.hhh.grid conducts a grid search until either all starting values
are used or a time limit maxTime (in seconds) is exceeded. The result with
the highest likelihood is returned.

> cntrl <- list(linear = TRUE, nseason = 1, period = 52,

+ neighbours = TRUE, negbin = TRUE, lambda = TRUE)

> grid <- create.grid(list(beta = c(-0.5, 0.5, 3), nseason = 1,

+ gammaDelta = c¢(-0.5, 0.5, 3), phi = c(0.1, 0.9, 5),

+ psi = ¢(0.3, 12, 5), lambda = ¢(0.1, 0.9, 5)))

> algo.hhh.grid(measels.weser, control = cntrl, thetastartMatrix = grid,
+ maxTime = 1800)

size of grid: 1125
grid search stopped after 3 iterations

12

Algorithms did not converge, please try different starting values!

5 Discussion and Future work

Many extensions and additions are imaginable to improve the package. For
now, the package is intended as an academic tool providing a test-bench
for integrating new surveillance algorithms. Because all algorithms are im-
plemented in R, performance has not been an issue. Especially the current
implementation of the Farrington Procedure is rather slow and would benefit
from an optimization possible with fragments written in C.

One important improvement would be to provide more involved mech-
anisms for the simulation of epidemics. In particular it would be interest-
ing to include multi-day outbreaks originating from single-source exposure,
but with delay due to varying incubation time (Hutwagner et al., |2005)
or SEIR-like epidemics (Andersson and Britton] 2000). However, defining
what is meant by a correct outbreak identification, especially in the case of
overlapping outbreaks, creates new challenges which have to be met.

6 Acknowledgements

We are grateful to K. Stark and D. Altmann, RKI, Germany, for discussions
and information on the surveillance methods used by the RKI. Our thanks
to C. Lang, University of Munich, for his work on the R-implementation and
M. Kobl, T. Schuster and M. Rossman, University of Munich, for their initial
work on gathering the outbreak data from SurvStat@RKI. The research was
conducted with financial support from the Collaborative Research Centre
SFB 386 funded by the German research foundation (DFG).

References

Altmann, D. (2003). The Surveillance System of the Robert Koch Institute,
Germany. Personal Communication.

Andersson, H. and Britton, T. (2000). Stochastic Epidemic Models and their
Statistical Analysis, volume 151 of Springer Lectures Notes in Statistics.
Springer-Verlag.

Farrington, C. and Andrews, N. (2003). In Brookmeyer, R. and Stroup,
D., editors, Monitoring the Health of Populations, chapter Outbreak De-
tection: Application to Infectious Disease Surveillance, pages 203-231.
Oxford University Press.

13

Farrington, C. P., Andrews, N. J., Beale, A. D., and Catchpole, M. A.
(1996). A statistical algorithm for the early detection of outbreaks of
infectious disease. Journal of the Royal Statistical Association. Series A,
159:547-563.

Held, L., Hohle, M., and Hofmann, M. (2005). A statistical framework for the
analysis of multivariate infectious disease surveillance counts. Statistical
Modelling, 5:187-199.

Hutwagner, L., Browne, T., Seeman, G., and Fleischhauer, A. (2005). Com-
paring abberation detection methods with simulated data. Emerging In-
fectious Diseases, 11:314-316.

Riebler, A. (2004). Empirischer Vergleich von statistischen Methoden zur
Ausbruchserkennung bei Surveillance Daten. Master’s thesis, Department
of Statistics, University of Munich. Bachelor’s thesis.

Robert Koch-Institut (2004). SurvStat@RKI.
http://wwwa3.rki.de/SurvStat. Date of query: September 2004.

Robert Koch Institute (2001). Epidemiologisches Bulletin 39. Available from
http://www.rki.de.

Stroup, D., Williamson, G., Herndon, J., and Karon, J. (1989). Detection
of aberrations in the occurence of notifiable diseases surveillance data.
Statistics in Medicine, 8:323-329.

14

	Introduction
	Surveillance Data
	Surveillance Algorithms
	Multivariate surveillance
	Discussion and Future work
	Acknowledgements

