Journal of Statistical Software

MMMMMM YYYY, Volume VV, Issue II. doi: 10.18637/§ss.v000.i00

survHE: Survival analysis for health economic
evaluation and cost-effectiveness modelling

Gianluca Baio
University College London

Abstract

Survival analysis features heavily as an important part of health economic evaluation,
an increasingly important component of medical research. In this setting, it is important to
estimate the mean time to survival using limited information (typically from randomised
trials) and thus it is useful to consider parametric survival models. In this paper, we
review the features of the R package survHE, specifically designed to wrap several tools to
perform survival analysis for economic evaluation. In particular, survHE embeds both a
standard, frequentist analysis (through the R package flexsurv) and a Bayesian approach,
based on Hamiltonian Monte Carlo (via the R package rstan) or Integrated Nested Laplace
Approximation (with the the R package INLA). Using this composite approach, we obtain
maximum flexibility and are able to pre-compile a wide range of parametric models, with a
view of simplifying the modellers’ work and allowing them to move away from non-optimal
work flows, including spreadsheets (e.g., Microsoft Excel).
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1. Introduction

Broadly speaking, the objective of publicly funded health care systems (e.g., those in the UK,
Canada, Australia and many other countries around the world) is to maximise health gains
across the general population, given finite monetary resources and a limited budget. Bodies
such as the National Institute for Health and Care Excellence (NICE) in the UK provide
guidance on decision-making on the basis of health economic evaluation. This covers a suite
of analytical approaches for combining costs and consequences of intervention(s) compared to
a control or status quo, the purpose of which is to aid decision making associated with resource
allocation. To this aim, much of the recent research has been oriented towards building the
health economic evaluation on sound and advanced statistical decision-theoretic foundations,
arguably making it a branch of applied statistics (Willan and Briggs 2006; Briggs et al. 2006).
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Interventions that impact upon survival form a high proportion of the treatments appraised
by NICE (Latimer 2011). Interestingly, in order to quantify accurately the economic benefits
of a new intervention, it is necessary to estimate the mean survival time (rather than usual
summaries, such as the median time). Thus, it is necessary to extrapolate the observed
survival curve (which often only covers a limited time frame and is subject to high degree
of censoring) to a longer time horizon. Consequently, a parametric approach to the survival
analysis is usually followed and it is recommended by NICE guidelines (Latimer 2011).

A Bayesian approach is particularly helpful in economic evaluation because it allows to fully
characterise uncertainty in the model parameters. This in turn is a fundamental component
of the cost-effectiveness analysis, because it is crucial to assess the impact of this uncertainty
on the decision-making process (Briggs et al. 2006; Baio and Dawid 2011; Baio 2012), a
process termed Probabilistic Sensitivity Analysis (PSA). However, in addition to the need of
specifying suitable prior distributions that are consistent with the information available for the
case at hand, Bayesian models for survival analysis fitted using standard Markov Chain Monte
Carlo (MCMC) algorithms can be computationally intensive and sometimes have problems
with convergence. Moreover, existing Bayesian software, notably BUGS (Lunn et al. 2012) or
JAGS (Plummer 2017), require the full specification of the modelling assumptions, which often
proves an insurmountable barrier to implementation for inexperienced researchers/modellers.

Perhaps for this reason, frequentist methods to perform survival analysis with an emphasis in
economic evaluations represent the industry standard. In particular, survival analysis is often
embedded in health economic evaluations using a multi-step/multi-software approach: first
estimates from a survival model are considered. These are often obtained by published clini-
cal studies presenting point and interval estimates for the model parameters. Modellers then
usually produce a set of simulations for the model parameters using Monte Carlo (MC) proce-
dures. Finally, these simulations are used to produce a large number of survival curves, which
are fed to the economic model (for example to determine the benefits of a given intervention).
The whole process is typically performed in Microsoft Excel.

This is less than ideal. Firstly, in the MC simulations, potential correlation among the model
parameters is only approximated and not fully accounted for, potentially introducing bias in
the estimate for the survival curves and thus in the outcome of the decision-making process. A
full Bayesian approach, e.g., based on Markov Chain Monte Carlo (MCMC) would eliminate
this issue because the inference would be produced directly on the full joint distribution of the
model parameters. In addition, the clinical evidence used to inform the survival analysis for
health economic evaluation can be limited, thus emphasising the problem of uncertainty in the
extrapolation of the survival curves. The inclusion of prior information (e.g., to encode the
assumption that cancer patients’ survival should be well below that of the healthy population,
or from evidence on drugs with similar therapeutic mechanisms), which is instrumental to a
Bayesian analysis, would again improve the model performance. Non-standard models, such
as the Poly-Weibull (Demiris et al. 2015), may also be effectively implemented and used within
a Bayesian approach.

The limitations of spreadsheets such as Microsoft Excel in terms of statistical modelling (and
particularly in survival analysis) are increasingly often recognised in the health economics
literature (Williams et al. 2016; Baio and Heath 2016). With this in mind, the objective
of this work is to develop a suite of functions and tools for the freely available statistical
software R, specifically designed for the needs of modellers using survival analysis results to
build extensive models for health economic evaluation.
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2. The R package survHE

survHE is an R package specifically designed to aid in the process of survival analysis for
health economic evaluation and cost-effectiveness analysis. In fact, survHE can be actually
considered as a wrapper for three other R packages; the first one, flexsurv (Jackson 2016), is in
turn a general-purpose tool for performing several types of survival analysis using maximum
likelihood estimates (MLEs). The second one, rstan (Carpenter et al. 2015) is a relatively
new R package that can be used to perform Bayesian analysis using Hamiltonian Monte Carlo
(HMC). This is a form of Markov Chain Monte Carlo algorithm, which can be used to produce
samples from a joint posterior distribution of a set of model parameters and unobserved
quantities. Finally, the third one, INLA (Martins et al. 2013) can be used to perform fast
Bayesian computations (on a limited set of survival models) using Integrated Nested Laplace
Approximation (Rue et al. 2009). In a sense, thus, survHE is a very simple package that
specialises functions from other relevant packages and builds some other specific commands
to simplify and standardise the process of using survival data in health economic evaluation.

survHE is available from the Comprehensive R Archive Network (CRAN) as version 1.0.6
(dated 7 July 2017) and there is also a development version maintained under GitHub (https:
//github.com/giabaio/survHE).

The design for survHE is modular; sets of function have specific objectives, which can be
broadly categorised as “Data preparation”, “Model fitting and assessment” and “PSA and
extrapolation”, as shown schematically in Figure 1. These are described in details in the

following sections.
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Figure 1: A schematic of the design for survHE. The rounded boxes represent the “modules”,
a set of functions used to perform a specific task. For example, the functions digitise
and make.ipd can be used to process digitised data from published papers and recreate an
individual patient dataset. This can in turn be fed to fit.models, which estimates the
parameters for a given survival model. The output of this function can be processed to assess
model fit, or produce relevant summaries and plots. In addition, it can be fed to the function
make. surv, which simulates the survival curves and effectively performs PSA. The output of
this process can be plotted using the function psa.plot, or exported to spreadsheet via the
function write.surv

Depending on the the user’s instruction, survHE maps internally to different code, which calls
either flexsurv, rstan or INLA in the background to produce the relevant estimates. Once
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these are obtained, the output is standardised and returned in a form that is comparable
across the inferential methods. In other words, for the set of models that are implemented
in survHE, practitioners can take full advantage of the modelling capabilities of the three
packages and analyse survival data under both a frequentist or a computationally efficient
Bayesian approach, using the same syntax. More importantly, survHE also includes specific
built-in functions to simplify and standardise the process of using survival data in health
economic evaluation.

2.1. Modelling survival data: to be or not to be (Bayesian)?...

By relying on either flexsurv, INLA or rstan, survHE can fit models under the frequentist or
Bayesian framework.

In general terms, a Bayesian approach has several advantages: for example, health economic
evaluations are typically based on complex models, often made by several (correlated) mod-
ules, which may be informed by different and diverse sources of evidence. Thus, a Bayesian
approach can be beneficial to propagate the underlying uncertainty in all the model param-
eters in a principled way. As mentioned above, this is also particularly relevant in terms
of Probabilistic Sensitivity Analysis (PSA), e.g., the practice of assessing the impact of pa-
rameters uncertainty on the decision-making process. PSA is usually based on a simulation
approach to characterise the underlying uncertainty in the model parameters — a fundamen-
tally Bayesian operation.

On the other hand, in addition to the need of specifying suitable prior distributions that are
consistent with the information available for the case at hand, Bayesian models for survival
analysis fitted using MCMC can be computationally intensive and sometimes have problems
with convergence; perhaps for this reason, often practitioners use MLE-based routines to
obtain relevant estimates from the survival component of the wider economic model. These
are usually simple to obtain. In order to deal with PSA, flexsurv uses bootstrap (based on
multivariate Normal distributions), which may be a good approximation of the underlying
full joint posterior distribution of the survival parameters.

A good compromise between frequentist and fully Bayesian models is provided by INLA,
which is effectively an alternative method of performing Bayesian inference. By using a
specific (albeit rather general), clever model specification and an approximation algorithm,
INLA typically requires a computational time that is very close to that of MLE-based routines,
while also estimating an approximation to the full joint posterior distribution for the model
parameters. However, in general terms, it is a bit more complex to embed INLA within a more
complex model; in addition, currently, INLA can only fit a limited number of survival models.

For these reasons, we chose to design survHE around these three approaches: ideally, we
would build the whole economic model under a Bayesian framework and take full advantage
of the flexibility provided by MCMC estimation — this would be naturally obtained by using
rstan. Note that we choose rstan over other software such as OpenBUGS or JAGS; the reason
for this is that HMC often proves a superior mode of inference compared to Gibbs Sampling
(the MCMC algorithm upon which OpenBUGS and JAGS are based). In particular, for the
specific set of models that we consider here, HMC proves faster and more reliable in terms of
convergence than Gibbs Sampling. In addition, rstan models can be “pre-compiled” and thus
the computational time required is totally devoted to sampling from the relevant posterior
distributions, which makes a full Bayesian approach more competitive, in comparison to
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MLE-based methods.

However, despite these very useful features of rstan, we acknoledge that at times Bayesian
survival models can still be challenging from the point of view of computation (especially with
large dataset and for particularly complex model structures). In these cases, INLA is very
helpful, for the range of distributions it supports; similarly, particularly in specific settings,
some practitioners may want to use a standard approach to statistical inference and MLEs.

The combined use of survHE and its “dependencies” allows all of these options in a unified
framework. More importantly, irrespective of the way in which the inference on the survival
model is performed, survHE has a set of built-in functions that can be used to produce a
standardised post-processing of the results, for their inclusion in the economic model and PSA.

2.2. Modelling framework

The general modelling framework considered in survHE can be described as follows. The
observed data are at least made by the pair (¢;,d;), for i« = 1,...,n, where t; > 0 is the
observed time at which the event under study occurs and d; (for “dummy” variable) is an
event indicator, taking value 1 if the event actually happens, or 0 when the i—th individual is
“censored”. If d; = 1, then ¢; is indeed observed; conversely, if d; = 0, we do not know whether
the event actually occurs — it may in the future, but we just do not have this information.
Consequently, when d; = 0, then the observed ¢; does not represent the true “survival time”.
Notice here that we consider for the sake of simplicity “right censoring”, which is the most
common for applications in health economics.

The observed data ¢; are modelled using a suitable probability distribution characterised by
a density f(t; | 8), as a function of a vector of relevant parameters . This can be linked to
the survival function

t
S(t)=1-F(t)=1- / f(u| 0)du,
0
indicating the probability of an individual surviving up to time ¢, as well as to the hazard func-

tion
bt = S

which quantifies the instantaneous risk of experiencing the event. In the presence of censoring,
the resulting log-likelihood function is modified to account for the possibility of partially
observed data (in correspondence with censoring) and is expressed as

n

log L(0) = Z [d;log h(t;) +log S(ts)] - (1)

=1

This basically models the risk of experiencing the event at any time point ¢, conditionally on
the fact that the i—th unit has in fact survived up to that time point; if they have not, then
the probability of experiencing the event again is 0.

When formulating a parametric survival model, we need to specify the form of the probability
distribution assumed to describe the underlying uncertainty in the observed times. As men-
tioned above, it is good practice to test a set of (more or less) plausible parametric models for
the survival data. This is the procedure recommended by NICE guidelines (Latimer 2011).
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In general terms, we can specify the vector of relevant parameters as 8 = (u(x), a(x)). In
this notation, consistent with flexsurv, we consider: a vector of potential covariates x (e.g.,
age, sex, trial arm, etc.); a location parameter p(x), which indicates the mean or the scale
of the probability distribution; and a (set of) ancillary parameter(s) a(x), which describes
the shape or variance of the distribution. While it is possible for both u and « to explicitly
depend on the covariates x, usually the formulation is simplified to assume that these only
affect directly the location parameter.

In addition, since t > 0, we typically use a generalised linear formulation

J
9lps) = Bo+ > Biaijl+ .. ] (2)

J=1

to model the location parameter. The function g(-) is typically the logarithm; notice that here
we slightly abuse the notation and omit the dependence of p; on x. Generally speaking, (2)
can be extended to include additional terms — for instance, we may want to include random
effects to account for repeated measurements or clustering. We indicate this possibility using
the [+...] notation and highlight the fact that this is rather straightforward in a Bayesian
context (particularly for INLA, but also for rstan).

The objective of the statistical analysis is the estimation of the parameters 6, which can
then be used to obtain estimates for all the relevant quantities (e.g., the survival function),
which are then in turn used in the economic modelling, for example to estimate the transition
probabilities in a Markov model.

In a frequentist setting, the estimation procedure concerns some relevant statistics, i.e., func-
tions of the observed data and is performed via maximum likelihood estimation. Conversely, in
a full Bayesian setting, the parameters are directly modelled using a prior probability distribu-
tion, which is updated by the observed data into a posterior. It is this posterior distribution
that is the object of the inferential process. Thus, when using a Bayesian framework, the
model needs to be completed by specifying suitable prior distributions for the parameters 6.

Assuming that the location parameter is specified using a linear predictor form, on the
scale determined by the function g(-) and as a function of J covariates, we can model

B = (Bo,P1,---,87) i Normal(sug,03). Note that survHE expands any categorical covariates
to a set of dummy variables: so if a covariate has four categories, in line with R notation,
survHE considers three binary indicators. Thus the profile (0, @, @) indicates the first (ref-
erence) category, while the profiles (1, @, 0), (9, 1, 0) and (@, @, 1) indicate the second,
third and fourth category, respectively. In survHE, the number of covariates J depends on
this full expansion of the design matrix.

In both its Bayesian versions, survHE assumes by default ug = 0 and o3 = 5 for the models in
which the linear predictor is defined on the log scale and o3 = 100 for those in which the linear
predictor is defined on the natural scale and thus g(-) is the identity function. This amounts
to specifying a “minimally informative” prior on the regression coefficients that determine
the location parameter — in other words, we are not including strong prior information in
this aspect of our model. The observed data (and the censoring structure) will be mainly
driving the update to the posterior distribution. When genuine prior knowledge is present,
e.g., about the likely size of a treatment effect, it is possible to modify these priors to encode
the information in the model formulation.
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As for the ancillary parameter, the choice of prior depends on the specification of the probabil-
ity distribution selected to model the observed data. Table 1 shows a summary of the models
directly implemented in survHE. In each, by default we specify minimally informative priors
on the relevant parameters; for example, in the Weibull model, we define v ~ Gamma(a, b),
for given values of a, b.

Data model Location parameter Ancillary parameter™ survHE name
J
t; ~ Exponential(pu;) Rate: p; =exp | Bo + Z Bixij - exp,
j=1 exponential
J
t; ~ Weibull(pu;, o) Scale: u; = exp | Bo + Z Bixij Shape: a ~ Gamma(0.1,0.1) weibull,
j=1 weibullPH
J
t; ~ logNormal(u;, o) log-mean: pu; = Bo + Z Bixij log-sd: a ~ Uniform(0, 5) 1norm,
Jj=1 lognormal
J
t; ~ logLogistic(u;, o) Rate: p; =exp | Bo + Z Bixij Shape: a ~ Gamma(0.1,0.1) llogis,
j=1 loglogistic
J
t; ~ Gamma(p;, o) Rate: p; =exp | Bo + Z Bixij Shape: a ~ Gamma(0.1,0.1) gamma
j=1
J
t; ~ Gompertz(p;, o) Rate: p; = exp | Bo + Z Bixij Shape: a ~ Gamma(0.1,0.1) gompertz
=1
J
t; ~ Gen Gamma(u;, o) Location: p; = Bo + Z Bjxij a = (0,q) gengamma,
j=1 Scale: ¢ ~ Gamma(0.1,0.1) gengamma.orig
Shape: ¢ ~ Normal(0, 100)
J
t; ~ Gen F(u;, o) Location: p; = Bo + Z Bjxij o = (0,q,p) genf,
i=1 Scale: ¢ ~ Gamma(0.1,0.1) genf.orig

Shape(1): log(p) ~ Normal(0, 0.5)
Shape(2): g ~ Normal(0, 2.5)
* The distributions presented for the ancillary parameters are the default used by survHE

Table 1: A list of distributions supported by survHE

All the models presented in Table 1 are available using MLE and HMC as inferential engines.
On the other hand, INLA currently only handles Exponential, Weibull, log-Normal and log-
Logistic models. The names presented in the rightmost column can be used when calling
survHE. We mostly follow the notation of flexsurv, but also allow for some specific differences
in the INLA notation: for example, the log-Logistic distribution can be referred to using
flexsurv (1logis), or INLA notation (loglogistic). survHE will internally map the different
strings of text and select the correct routine.

Notice also that, in line with flexsurv and INLA, survHE allows the two versions of the
Weibull model, i.e., using an Accelerated Time Failure (AFT, weibull) or a Proportional
Hazard (PH, weibullPH) parameterisation. When the interest is in estimating the effect of
some covariates on the survival time, these two versions yield of course different estimates.
However, in the case of health economic evaluation, the interest is really in producing an
estimate of the distribution of the survival curves. survHE internally maps the estimated
coefficients to the correct transformation so as to estimate S(t) correctly, irrespective of
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the original parametrisation. For example, when the AFT parameterisation is used, then
(0%
S(t) = exp (— (i) ), while for the PH parameterisation S(t) = exp (—pu;t®).

The “original” parameterisation of the Generalised F and Generalised Gamma distributions
(respectively genf.orig and gengamma.orig) are currently available only when the estimation
is performed using MLE in flexsurv (this is mostly for backward compatibility).

2.3. Example

In the following, we use a running example to present the features of survHE. Suppose that
the user has a suitable dataset, perhaps obtained from a trial, in which data are recorded
for the time at which observations are made, a censoring indicator taking value 1 if an event
(e.g., progression to a cancerous state, or death) has actually occurred at that time and 0 if
the individual has been censored (e.g., we have not observed any event at the end of follow
up), as well as an arm indicator, specifying whether the individual to whom the data refer
belongs in the control or the active treatment arm of the trial. Of course, other variables may
be observed, e.g., relevant covariates, such as sex, age or co-morbidity.

For the moment we consider the simple case in which the data are available in the R workspace
as a data-frame (say, data) that can be partially visualised using the following command:

R> rbind(head(data), tail(data))
to show the first 6 and the last 6 rows:

ID_patient time censored arm

1 1 0.03 0 0
2 2 0.03 o 0
3 3 0.92 o 0
4 4 1.48 o 0
5 5 1.64 o 0
6 6 1.64 0o 0
362 362 13.97 1 1
363 363 14.56 1 1
364 364 14.56 1 1
365 365 14.85 1 1
366 366 16.07 1 1
367 367 18.16 1 1

The dataset consists of 367 individuals in total, grouped in two arms (here arm = 0 indicates
the controls and arm = 1 indicates the active treatment).

3. MLE via flexsurv

survHE allows the user to define in R a vector of model names (in the format that flexsurv or
INLA can recognise). We could for instance decide that we want to consider the Exponential,
Weibull, Gamma, log-Normal, log-Logistic and Generalised Gamma models for our analysis.

We can do this in R by using the following commands.

R> mods <- c("exp”, "weibull"”, "gamma”, "lnorm”, "llogis", "gengamma")
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This syntax defines a vector of model names to be used by flexsurv in the fitting process.
These must adhere with survHE convention, as specified above.

At this point, we are almost ready to actually perform the survival analysis using the 6 models
specified above; before we can do this, however, we need to specify the model “formula”, for
example as the following.

R> formula <- Surv(time, censored) ~ as.factor(arm)

This creates an object instructing R to analyse the data using a survival model in which the
only covariate is the treatment arm, interpreted as an R “factor” (i.e., a categorical variable).

The survHE function fit.models can be used to actually perform this analysis in batches,
e.g., by typing the command

R> m1 <- fit.models(formula = formula, data = data, distr = mods)

The function fit.models takes as mandatory inputs the analysis formula, the name of the
dataset to be used and the type of distribution(s) to be fitted. Just like in this case, this may be
a vector, in which case fit.models will store all the different analyses in the resulting object.

Executing the command above creates an object m1 in the class survHE, in which the results of
the survival analyses are stored for each parametric model considered. The usual R command

R> names(m1)

returns the names of the several elements in the list.

[1] "models” "model.fitting” "method” "misc”

The object models is itself a list, in this case containing 6 elements (one for each of the
parametric models fitted). For example, the first one can be accessed using the standard R
notation m1$models[[1]] (i.e., using “double square brackets”) and can be inspected typing
the command

R> names(m1$models[[1]1]1)

[1] "call” "dlist” "aux" "ncovs”

[51 "ncoveffs” "mx" "basepars” "covpars”

[91 "AIC" "data” "datameans” "N"

[13] "events" "trisk” "concat.formula” "all.formulae”
[17] "dfns” "res” "res.t" "cov"

[21] "coefficients” "npars” "fixedpars" "optpars”

[25] "loglik” "logliki” "cl” "opt”

The quantities included in the model objects are the standard output from flexsurv. Typically,
the user does not need to access or manipulate them directly (that is the point of survHE!); in
fact, other survHE functions will use these to produce plots or further analyses. Users familiar
with R programming can however access them to post-process their results and customise even
further the output provided by survHE.

The other elements of the object m1 are:
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e model.fitting: a list storing some suitable statistics that can be used to assess, well...
model fitting. These are the Akaike, Bayesian and Deviance Information Criteria (AIC,
BIC and DIC, respectively). The former two can be estimated using both the Bayesian
and frequentist approach, while the latter is specific to Bayesian modelling. Thus, in
this case, the R call

R> m1$model.fitting
will return the following results

$aic
[1] 1274.576 1203.130 1203.504 1214.984 1208.494 1204.785

$bic
[1] 1282.387 1214.846 1215.220 1226.700 1220.211 1220.406

$dic
[11 NA NA NA NA NA NA

— note that because we are storing the results obtained from fitting 6 models in the
same object, the elements $aic, $bic and $dic are vectors. In general, the model
associated with the lowest information criterion tends to be associated with a better fit,
as we discuss in §6.4.

e method: a string describing the method used to fit the model(s). In this case the code

R> m1$method

returns the output
[-l:l ”m].e"

e misc: a list containing some miscellanea — these are mainly used internally by the
other functions in survHE to do plots and tables or other calculations. Specifically, the
elements of this objects are

— time2run: the time used to run the model(s) (in seconds);
— formula: the R object containing the formula used to define the model(s);

— km: the Kaplan-Meier estimate produced automatically by survHE (using the func-
tion npsurv from the R package rms);

— data: the data-frame containing the original data used to fit the model(s).

4. Bayesian analysis via INLA

4.1. Integrated Nested Laplace Approximation

Integrated Nested Laplace Approximation (INLA; Rue et al. 2009) can be used to perform
direct numerical calculation of posterior densities in a wide sub-class of Bayesian hierarchi-
cal models (called Latent Gaussian Models, LGMs), avoiding time-consuming Markov chain
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Monte Carlo simulations. INLA implementation covers models of the form

yi| ¢, ~ pyi| d,9)
ol ~ Normal(O,Q_l('lp))
Y o~ p(y),

where y; is the observed variable, ¢ is a set of main parameters (which may and often has a
very large dimension) and ¥ is a set of “hyperparameters”; so that the full set of parameters
is @ = (¢, ). The main restrictions of the INLA formulation are the fact that the number
of hyperparameters needs to be small (for computational convenience) and the form of the
prior imposed on ¢. This is a multivariate Normal distribution where the precision (i.e.,
inverse variance) matrix @~!(¢) depends on the hyperparameters and exploits conditional
independences across the parameters. This general structure is called a Gaussian Markov
Random Field (GMRF; Rue and Held 2005).

The basic principle is to approximate the posterior density for ¢ and v using a series of
nested Normal approximations. The algorithm uses numerical optimisation to find the mode
of the posterior, while the marginal posterior distributions are computed using numerical
integration over the hyperparameters. INLA is a very fast method of inference and can be
applied to many models that can be written in the form of LGMs — for example generalised
linear models (including structured components, such as simple random effects, as well as
spatial or temporal effects).

On the other hand, not all models can be easily framed within the LGM formulation. In addi-
tion, INLA’s estimate are, by definition, approximations to the full joint posterior distribution
of the model parameters. Thus, there is a trade-off between the computational complexity and
the accuracy of the estimation. In many general cases, INLA produces a good compromise by
allowing a good level of accuracy (often comparable with simulation methods such as MCMC
that, if run for long enough, are guaranteed to give the “exact” value) and running time, often
in the same order as standard ML algorithms.

4.2. Using survHE to fit models with INLA

When fitting models using a Bayesian approach via INLA, survHE allows the user to select
a vector of distributions; as mentioned above, currently, INLA and its R implementation
allow four survival models: Exponential, Weibull, log-Normal and log-Logistic. The user can
specify a vector distr = c("exp", "weibull”, "lognormal”, "loglogistic"), or select
only a subset of those models, or may be run the fit.models command separately for each
of them. If a distribution is specified that is not allowed in INLA, then survHE will fall back
on the MLE specification and use flexsurv instead.

One important distinction is in the way in which flexsurv and INLA handle the names of the
distributions to be fitted and the formula specifying the model. As for the latter, the correct
notation is the following: "exponential”, "weibull”, "lognormal” and "loglogistic" —
these do not directly match the flexsurv notation. As mentioned above, to avoid issues,
survHE recodes internally the names given to the distributions. Thus, if the user specifies
the additional option method = "inla" in the call to fit.models, then the string "exp”
(which would be accepted by flexsurv) will be recoded to "exponential”, which is required
by INLA. Similarly if a distribution that is accepted by flexsurv is given by the user in INLA

11
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terminology but the method is either unspecified or specifically set to "mle” in the call to
fit.models, then survHE will recode the name of the distribution in flexsurv terms.

With regards to the model formula, INLA requires that this is specified using the notation

R> formula <- inla.surv(time, event) ~ ...

where time and event are the variables in which the times and the event indicator are stored
and ... is a suitable form for the combination of covariates to be used. Again, survHE tries
to simplify the modeller’s life by fixing the code provided for the formula, depending on the
value specified for the option method. So if method = "inla" but the formula is specified
using the flexsurv terminology, survHE will recode this to make it acceptable to INLA.

A suitable call to fit.models using INLA is the following.

R> m2 <- fit.models(formula = formula, data = dat, distr = distr.inla, method = "inla")

where distr.inla is a vector of strings containing names from the four models available
in INLA.

When method is set to "inla"”, then other options become available to the call to fit.models,
which allow the user to customise the underlying setting of the Bayesian model and inferential
procedure. In particular, it is possible to add the following arguments.

e dz; this defines the step length for the grid search over the hyperparameters space
(default = 0.1). As mentioned above, INLA estimates the value of the hyperparameters
in the model (e.g., the shape of a Weibull distribution), using a grid search. The finer this
grid, the more accurate (but more computationally expensive!) the resulting estimates
for all the parameters, e.g., for both the shape and scale of the Weibull distribution.

e diff.logdens; defines the difference in the log-density for the hyperparameters to
stop the numerical integration used to obtain the marginal posterior distributions (de-
fault = 5). Again, this is related to how the hyperparameters are estimated in the first
stage of the nested algorithm. Decreasing this difference is likely to increase the compu-
tational time, since the estimation of the hyperparameters will become more accurate.

e control.fixed; defines the default for the prior distributions, unless specified by the
user. By default, INLA assumes that “fixed effects” associated with covariates are
modelled using a Normal with mean 0 and variance 1000, while the overall intercept is
modelled using a Normal with 0 mean and even smaller precision. survHE overrules this
and sets the precision of the covariates in the linear predictor to 1/5% = 0.04 — this is
consistent with the default setting used when HMC is selected as the inferential engine.

e control.family; a list of options controlling the model for the observed data. If distr
is a vector, this can be provided as a named list of options; for example:

R> m2 <- fit.models(formula = formula, data = dat, distr = distr, method = "inla",
+ control.family = list(weibull = list(param = c(.1, .1)), lognormal = list(
+ initial = 2)))

would instruct INLA to assume a Gamma(0.1,0.1) prior distribution for the shape
parameter of the Weibull model and to use an initial value of 2 for the approximation
routine of the log-Normal model. Notice that in this case, the names of the elements of
the list need to be the same as those given in the vector distr.
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Using INLA advanced controls is very powerful and allows much flexibility in fitting the
models. However, some knowledge and understanding of the INLA syntax and philosophy is
required. Guidance is provided in the INLA help functions as well as, for example, in Rue
et al. (2009); Blangiardo et al. (2013) and Blangiardo and Cameletti (2015).

Back to the running example, we may fit the models in INLA using the following code.

R> m2 <- fit.models(formula, data, c("exp”, "weibull”, "llogis"”, "lnorm"), method =
+ "inla", control.family = list(exponential = list(), weibull = list(param =
+ c(.1,.1)), loglogistic = list(), lognormal = list(initial = 1)))

Note that it may be necessary to fiddle with the control. family option to successfully fit some
of these models — for example, without specifying the initial value for the log-Normal model,
in the case of the data given in the object data, INLA (and thus fit.models) would crash.

5. Bayesian analysis via HMC

5.1. Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC; Radford 2011; Betancourt 2017) is one of the algorithms
belonging to the general class of MCMC methods. In a nutshell, HMC is based on the physical
concept of Hamiltonian dynamics, which can be used to model the idealised situation of a
frictionless particle sliding over a surface of varying slope. Basically, the movements of the
particle depend on: i) the potential energy, a function of its current location [, which is
proportional to the height of the surface at the current position; and i) the kinetic energy,
a function of its momentum m, depending on the mass of the particle. The way in which
these movements happen can be described by a set of ordinary differential equations: this
means that if we are able to compute the derivatives of these two functions and given a set of
initial conditions specifying the starting location [y and momentum mg, at time ¢y, then we
can predict the location and momentum of the particle at any point in time, by simulating
these dynamics for a given duration.

Leaving aside all the technical difficulties, the basic intuition behind HMC is the following: the
surface of interest is the unnormalised posterior log-density for the parameters in the model

logp(0 | t) = logp(0) + logp(t | 6). 3)

In general, we are not in a position of knowing the target distribution logp(0 | t) exactly
and in closed form'. Moreover, even if we were, this would only be proportional to the
actual posterior density for the parameters (because the expression above is computed without
rescaling by the marginal log-density for the observed data t; for this reason, we use the

notation p).

However, both log-densities on the right-hand side of (3) are known because they are part of
the model specification. If we can compute the derivatives of logp(6@ | t), given initial values
for the location of the parameters € and their momentum, we can simulate Hamiltonian
dynamics. As it turns out, this is extremely efficient at exploring the (negative) posterior

n fact, the relevant target surface in HMC is described by —log 5(8 | t), but this is just a technical detail.
The general argument still holds.

13
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log-density, by proposing a move to a new position that is determined by letting the “particle”
slide over the density.

This means that if the current position is far away from the portion of the parametric space
where most of the probability mass lies, the potential energy is large and thus the “particle”
will have higher speed when sliding over a very steep surface. More specifically, unlike simpler
(and far less efficient methods) such as the Metropolis algorithm, the proposed moves will not
necessarily be characterised by symmetrical distributions and will tend to be pulled towards
the mode of the joint posterior distribution more quickly.

Especially for models where the size of 6 is very large, in comparison to other MCMC algo-
rithms such as Gibbs sampling, HMC often proves to be very efficient in computational terms.
This is mainly due to the fact that it updates the joint distribution of all the model param-
eters at once, instead of sequentially looping through each conditional distribution for one
parameter given the observed data and all the other parameters. In addition, in comparison
to other acceptance-rejection methods (e.g., the simpler Metropolis-Hastings), HMC is capa-
ble of adapting the proposal to non-symmetrical distributions, which translates to a faster
rate of convergence to the target posterior, as well as faster decay in autocorrelation. These
properties mean that Bayesian inference can be performed on models of arbitrary complexity
(thus extending the limitations of INLA), at a reduced computational time and improved
convergence, with respect to Gibbs samplers.

In practice, HMC can be very complex, because in addition to the specific computation of
possibly complex derivatives, it requires fine tuning of several parameters. However, rstan
provides a very clever system in which most of the adaptation is automatic. The user can still
specify some of the basic inputs (and at times this is crucial to improve, or even reach con-
vergence to the target posterior distributions), but rstan is a very general system to perform
HMC estimation on a very wide range of models.

5.2. Using survHE to fit models with HMC

Much of the work performed by rstan consists in determining a set of derivatives from the
model structure, that are used to apply the Hamiltonian dynamics and explore the parametric
space in an efficient way. This requires a preparatory step, which rstan does by compiling
the model in C++ (via R). This step can be quite lengthy, but interestingly it is possible
to pre-compile a model — if all that changes is the data (but not the structure and the
distributional assumptions), then the pre-compiled model can be used directly, thus saving
substantial computation time.

This is another attractive feature of rstan, because it means that survHE can pre-compile all
the standard models presented in Table 1. Thus, it is possible to estimate them by using a
command such as the following.

R> m3 <- fit.models(formula, data, distr = mods, method = "hmc")
In this case, survHE will perform the following steps:

1. Format the original data contained in the R object data in a way that can be used
by rstan;

2. Select a pre-compiled model code, depending on the distributional assumptions;
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3. Call rstan in the background to sample from the posterior distribution of the model pa-
rameters.

As with any MCMC estimation, it is important to thoroughly assess convergence — we return
to this point in §6.1. The package rstan contains specialised functions to visualise the model
output and assess convergence. For example the commands?

R> rstan::traceplot(m3$models[[2]])
R> rstan::stan_ac(m3$models[[2]])

would produce respectively a graph with the “traceplots” for the relevant variables, as shown in
Figure 2(a) and an autocorrelation plot, shown in Figure 2(b). In this case, we can be confident
that convergence is satisfactorily reached for all the variables monitored, since the traceplots
show good mixing in the two chains; autocorrelation does not seem a major problem either,
as the level of dependence in consecutive iterations wanes down relatively quickly. Additional
model checking tools are also available in the package shinystan (Stan Development Team
2016), an add-on to rstan, which creates a web-app that the user can access locally through
the default web browser.
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Figure 2: Checking model convergence using the rstan built-in facilities, for example through
inspection of the traceplots or the autocorrelation plot

There are several additional options that can be used when the inferential method is specified
to “hmc’, which we describe in the following.

e chains: the number of chains to run in the HMC (default = 2);

2In order to use the functions in the package rstan, the user needs to either load the full package using the
R command library("rstan”), or to prefix their name with the code rstan:: to make them available in the
current workspace.
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e iter: the total number of iterations (default = 2000);

e warmup: the number of “warm up” iterations (default = iter/2). The warm up is
the adaptive phase in which the basic inputs of the HMC procedure are tuned. rstan
does that automatically and once this stage is completed, the procedure is ready to
immediately sample from the posterior distributions of interest;

e thin: the number of thinning (default = 1). For example, setting thinning to some
value h, consists in selecting for inference every one in h simulations from the posteriors
and can sometimes reduce the level of autocorrelation (for an equally large number of
iterations used for the final estimation);

e control: a list specifying rstan-related options, e.g., control = list(adapt_delta =
0.85), which can be used to tune more finely the acceptance rate in the HMC procedure
(the closer this rate is to the upper limit of 1, the less likely there are to be numerically
unstable simulations);

e seed: the random seed (to make the analysis replicable);

e pars: a sting vector with the names of the relevant parameters. By default, survHE
selects the location and ancillary parameters, as well as the cofficients associated with
the covariates included in the model;

e include: a logical indicator (if set to FALSE, then the parameters specified in pars are
not saved);

e priors: alist (of lists) specifying the values for the parameters of the prior distributions
in the models (see the example below);

e cores: the number of CPU (cores) used to run the sampling procedure using rstan
(default = 1)

e save.stan: a logical indicator (default = FALSE). If TRUE, then saves the model text
file(s) to the user’s working directory. These can be used as template to modify the
basic model structure.

In practice, the user should not need to fiddle much with these optional arguments — cer-
tainly not without a clear understanding of the underlying modelling assumptions and the
implications of any change to the default structure. Perhaps the default number of chains or
iteration may be increased; or may be specific numeric values for the parameters of the prior
distributions could be defined.

For instance, the default prior for the linear predictor coefficients is 3 = (Bo,...,8s) ~
Normal(pg, o5l 541), where: pg and o are vectors of size (J +1); and Iy is the (J+1) x
(J + 1) identity matrix (see Table 2). Suppose the user wanted to select a smaller standard
deviation for the Generalised Gamma model; this can be done using the following command?®

R> m4 <- fit.models(formula, data, distr = "gengamma”, method = "hmc"”, priors = list(
+ list(sigma_beta = rep(5,2))))

3Tt is worth mentioning that, unlike OpenBUGS or JAGS (which use the mean and precision), rstan param-
eterises the Normal distribution in terms of the mean and the standard deviation.
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— note that we need to specify the values for the standard deviation for all the J = 2
covariates (the intercept and the treatment arm) and so in this case we define sigma_beta =
rep(5, 2), i.e., a vector of two elements, each equal to 5. Of course, there is nothing special
about the value 5 and we could also select different values for the intercept and the treatment
arm, e.g., sigma_beta = c(10, 2).

It is also possible to specify multiple values to modify the priors, for example

R> priors <- list(list(sigma_beta = rep(4, 2)), list(mu_beta = rep(2, 2)))
R> m4 <- fit.models(formula, data, distr = mods, method = "hmc", priors = priors)

would instruct survHE that the user wants to set: (a) the value for the standard deviation
of the parameters 3 to 4, in the first model to be considered (Exponential); and (b) the the
value for the mean of the parameters 3 to 2, for the second model (Weibull).

Because the number of models in mods is 6, then survHE will complete the list priors by
adding 4 more empty lists and survHE will use the default values for the remaining models.
Consequently, it is important that the user specifies the required values in the correct order.
For instance, if we wanted to specify 0 ~ Gamma(2,4) for the Generalised Gamma model
(the sixth in the list mods), we would need to make sure that this information is contained in
the sixth element of the list priors. This could be done by using the following code

R> priors <- list()
R> for (i in 1:5) {priors[[i]] <- list()}
R> priors[[6]] <- list(a_sigma = 2, b_sigma = 4)

which creates 5 empty lists to be associated with the first five models and the required list of
values for the sixth one. Even more succintly, the same goal can be achieved by typing the
following code?.

R> priors <- replicate(5, list())
R> priors[[6]] <- list(a_sigma = 2, b_sigma = 4)

Then we can run survHE with the same command as before.

R> m4 <- fit.models(formula, data, distr = mods, method = "hmc", priors = priors)

Table 2 shows a summary of the distributional assumptions used to define the default priors
in the models implemented by survHE using rstan, together with the names assigned to the
parameters of these distributions. For instance, if we wanted to specify a Normal(1,4) prior
for the ancillary parameter of the Gompertz model (the fourth in the vector mods), we would
need to specify the following command.

R> priors <- replicate(6, list())
R> priors[[4]] <- list(mu_alpha = 1, sigma_alpha = 4)

If the option save.stan is set to TRUE, then survHE will also save the model code as a text
file (with the extension .stan) in the current directory. The data list formatted in a way that
rstan can use is also automatically stored in the element $misc$data.stan inside the output

4We note however that, in general terms, when it is necessary to specify complex options (such as the
definition of the priors), it is perhaps a better idea to use one single distribution is used in the call to fit.models.

17



survHE: Survival analysis for health economics

Model Location parameters Ancillary parameters Natural parameters
Exponential B ~ Normal(pg, o5l s41) — Rate = exp(Bo)
pp = mu_beta = rep(@, J + 1) —
o3 = sigma_beta = rep(5, J + 1) —
Weibull B ~ Normal(ug,o5l541) a ~ Gamma(a, b) Shape = «
pg = mu_beta = rep(9, J + 1) a = a_alpha = 0.1 Scale = exp(6o)
op = sigma_beta = rep(5, J + 1) b = b_alpha = 0.1
log-Normal B ~ Normal(pg,o5l54+1) o ~ Uniform(a, b) Mean = Bo
pg = mu_beta = rep(Q, J + 1) a = a_alpha=0 Std. dev. = «
og = sigma_beta = rep(100, J + 1) b= b_alpha =25
log-Logistic B ~ Normal(ug,osls41) a ~ Gamma(a, b) Shape = «
pg = mu_beta = rep(9, J + 1) a = a_alpha = 0.1 Rate = exp(Bo)
o3 = sigma_beta = rep(5, J + 1) b = b_alpha = 0.1
Gamma B ~ Normal(pg,o5l541) o ~ Gamma(a, b) Shape = «
pp = mu_beta = rep(@, J + 1) a = a_alpha = 0.1 Rate = exp(Bo)
og = sigma_beta = rep(5, J + 1) b = b_alpha = 0.1
Gompertz B ~ Normal(pg,o5ls41) a ~ Gamma(a, b) Shape = «
pp = mu_beta=rep(0,J + 1) a = a_alpha = 0.1 Rate = exp(Bo)
o = sigma_beta=rep(5,J + 1) b = b_alpha = 0.1
Gen. Gamma (3 ~ Normal(ug,osls+1) o ~ Gamma(az1, b1) Location = S
pp = mu_beta = rep(@, J + 1) g ~ Normal(az, b2) Scale = o
op = sigma_beta = rep(100, J + 1) a1 = a_sigma = 0.1 Shape = q
by = b_sigma = 0.1
a2 =mu_Q =0
ba = sigma_Q = 100
Gen. F B ~ Normal(pg,o5l541) o ~ Gamma(ai, b1) Location = Sy
Qs = mu_beta = rep(@, J + 1) log(p) ~ Normal(agz,b2) Scale = o
op = sigma_beta = rep(100, J + 1) ¢ ~ Normal(az, b2) Shape (1) = ¢
a1 = a_sigma = 0.1 Shape (2) =p

by = b_sigma = 0.1
az =mu_P =0
by = sigma_P = 0.5
a3 =mu_Q =20
bz = sigma_Q = 2.5

Table 2: A summary of the default assumptions used for the models defined by survHE us-
ing rstan

of fit.models. The user can then modify the model structure starting from this template —
for example it is possible to change the distributional assumptions and use, e.g., a Uniform
prior for the scale o of a Generalised F model. This will require a new compilation and, at
present, the new model has to be run using rstan commands directly.

6. Summarising the results from survHE

Objects in the class survHE (such as m1, m2, m3 and m4 above) can access methods such as
print, summary and plot that can be used to summarise and visually inspect the results of
the models analysed. We describe them in the following.
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6.1. Tabular form

When the models have been estimated, we usually want to summarise the estimates using a
tabular format. survHE has a specialised function print that can do this, e.g., by typing

R> print(m1)
which returns the following table.

Model fit for the Exponential model, obtained using Flexsurvreg
(Maximum Likelihood Estimate). Running time: 0.009 seconds

mean se L95% U95%
rate 0.0824203 0.00828355 0.0676839 0.100365
as.factor(arm)1 -0.4656075 0.15427131 -0.7679738 -0.163241

Model fitting summaries
Akaike Information Criterion (AIC)....: 1274.576
Bayesian Information Criterion (BIC)..: 1282.387

In this case, the object m1 contains many models; but unless the user specifies which one to
print, survHE will assume that the first one should be used. If for example, we wanted to
visualise the estimates for the log-Logistic model (the fifth element of the string vector distr),
then we would need to type

R> print(ml1, mod = 5)
which would return the following output.

Model fit for the log-Logistic model, obtained using Flexsurvreg
(Maximum Likelihood Estimate). Running time: 0.051 seconds

mean se L95% U9s%
shape 2.233748 0.1406365 1.974434 2.52712
scale 8.160865 0.5264208 7.191658 9.26069

as.factor(arm)1 0.348356 ©.0943506 0.163432 0.53328

Model fitting summaries
Akaike Information Criterion (AIC)....: 1208.494
Bayesian Information Criterion (BIC)..: 1220.211

In both cases, survHE standardises the format of the output, so that the results are reported
for the “basic” parameters (e.g., rate, shape or scale) as well as the covariates effects. Notice
that the “basic” parameters are always reported on the natural scale, while the covariates
effects are in the scale defined by the linear predictor (as presented in Table 1). Thus, in the
cases presented above, the value of the coefficient as.factor(arm)1 represents the impact of
the treatment arm on the log scale, because both for the Exponential and the log-Logistic the
location parameter is modelled using a log link — and thus in Table 1 we write p; = exp(...).

The survHE method print has an additional option, which allows the user to visualise the
summary of the model results in the original notation used by the relevant package used to
perform the estimation. Thus, in this case typing
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R> print(ml, mod = 6, original = TRUE)

would show the results for the Generalised Gamma model (the sixth in the string vector mods)
using the original flexsurv formatting.

Call:
flexsurv::flexsurvreg(formula = formula, data = data, dist = distr)

Estimates:

data mean est L95% U95% se exp(est) L95% U95%
mu NA 2.2918 2.1357 2.4479 0.0796 NA NA NA
sigma NA 0.5871 0.4613 0.7471 0.0722 NA NA NA
Q NA 0.8507 ©.3620 1.3394 0.2493 NA NA NA

as.factor(arm)1 0.4850 0.3463 0.1743 ©0.5183 0.0878 1.4138 1.1904 1.6792
N = 367, Events: 172, Censored: 195
Total time at risk: 2612.07

Log-likelihood = -598.3923, df = 4
AIC = 1204.785

The same principles apply to survHE objects storing models fitted using either INLA or rstan.
For instance the command

R> print(m3, 6)
returns the output

Model fit for the GenGamma model, obtained using Stan (Bayesian inference via
Hamiltonian Monte Carlo). Running time: 42.361 seconds

mean se L95% u9s%
mu 2.293168 0.0848325 2.127325 2.452178
sigma 0.603824 0.0774517 0.465092 0.763628
Q 0.829105 0.2641518 0.337638 1.360960
as.factor(arm)1 0.344352 0.0930015 0.162244 0.526708

Model fitting summaries

Akaike Information Criterion (AIC)....: 1209.048
Bayesian Information Criterion (BIC)..: 1224.872
Deviance Information Criterion (DIC)..: 1204.997

For HMC models, even more importantly, when using the option original = TRUE we are able
to look at helpful convergence statistics, which should be used to assess whether the MCMC
procedure has been successful in exploring the relevant posterior distributions. For example,
we could use the code

R> print(m3, mod = 2, original = TRUE)
which returns the following output.

Inference for Stan model: WeibullAF.
2 chains, each with iter=2000; warmup=1000; thin=1;
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post-warmup draws per chain=1000, total post-warmup draws=2000.

mean se_mean sd 2.5% 97.5% n_eff Rhat
beta[1] 2.33073 0.00149 0.05214 2.23019 2.43722 1227 1.00197
betal[2] ©.34504 0.00261 0.08030 ©0.18907 0.50086 947 1.00563
alpha 1.79961 0.00278 ©.10315 1.59378 2.00339 1380 1.00062
scale 10.29943 0.01545 ©.53901 9.30161 11.44115 1217 1.00185

Samples were drawn using NUTS(diag_e) at Tue Nov 8 13:39:35 2016.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).

The table displays the original output from rstan. Here, the coefficient beta[1] is the intercept
(log scale), while the coefficient betal[2] is the effect of the only covariate included in the
model. The estimates are reported as the mean, Monte Carlo error (se_mean), standard
deviation, an approximate 95% credible interval and then the effective sample size n_eff and
the Potential Scale Reduction (PSR) Rhat.

The effective sample size gives an indication of the underlying autocorrelation in the MCMC
samples — values close to the total number of iterations, or at any rate not too low, indicate a
low level of autocorrelation (which is what we want). The PSR is an analysis-of-variance-type
of statistics, indicating for each variables whether convergence is reached. If the procedure
is ran on more than one parallel chain, then Rhat is computed as a function of the ratio of
the variance within to the variance between chains — if this is close to 1 and definitely less
than 1.1, convergence can be satisfactorily declared. If not, it may be necessary for example
to increase the number of iterations.

Further optional inputs to the print methods are digits (default = 6), which determines
the number of digits printed in the table; and nsim, the number of MC simulations used to
compute the interval estimation for the INLA procedure (default = 100)°.

6.2. Visual interpretation

Once an object of the class survHE has been created using the command fit.models, it is
possible to visualise the resulting survival curve(s) by simply using the plot method. This
command works irrespective of the underlying inferential engine. For example, the command

R> plot(m1)

displays the graph shown in Figure 3(a).

The plot method allows to display the output from different models. For example, we may
be interested in comparing the survival curves from some of the models obtained using either
MLE or HMC. We could do this by using the following command.

R> plot(ml, m3, mod = c(2, 3, 8, 9), colors = c("blue”, "green”, "red"”, "yellow"),
+ labs = c("Weibull (MLE)", "Gamma (MLE)", "Weibull (HMC)", "Gamma (HMC)"))

5Technically, INLA estimates the marginal distributions of the model parameters. The joint posterior can
then be obtained by a simulation approach using the INLA function inla.posterior.sample.
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Figure 3: Graphs produced by the plot method in survHE

This command instructs survHE to stack together the objects m1 and m3, which basically
produces a single survHE object containing 12 models (6 from m1 and 6 from m3). The option
mod = c(2, 3, 8, 9) selects the models in positions 2, 3, 8 and 9 (i.e., the second and third
from m1 and then the second and third from m3). The option colors can be used to select the
colours with which to plot each curve on the graph and similarly the option labs overwrites
survHE default setting and writes a specific text in the label. The resulting graph is shown
in Figure 3(b).

The full list of the options for the method plot in survHE is given below.
e main: a string specifying the title of the plot (default at NULL);
e xlab: a string specifying the label to print on the z-axis of the graph (default = "time");

e ylab: a string specifying the label to print on the y-axis of the graph (default =
"Survival”);

e lab.trt: a (vector of) string(s) indicating the labels associated with the strata defining
the different survival curves to plot. Default to the value used by the Kaplan-Meier
estimate given by the call to fit.models;

e cex.trt: the factor by which the size of the font used to write the strata is resized
(default = 0.8);

e n.risk: alogical variable. If TRUE (defaults) writes the number at risk at different time
points (as determined by the Kaplan-Meier estimate);

e newdata: a list (of lists) providing the values for the relevant covariates to stratify the
survival curves. If NULL, then survHE will use the mean value for all the covariates if at
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least one is a continuous variable, or the full combination of the categorical covariates,
in line with flexsurv;

e xlim: a vector determining the limits for the x-axis;

e colors: a vector of characters defining the colours in which to plot the different sur-
vival curves;

e labs: a vector of characters defining the names of the models fitted;

e add.km: a logical variable. If TRUE (the default value), then also add the Kaplan-Meier
estimates of the data to the plot.

Most of these options are actually trivial; perhaps only newdata deserves a more detailed
explanation. survHE follows the philosophy of flexsurv to construct the survival curves. Con-
sequently, when the model contains categorical covariates, a single survival curve is estimated
for each combination of their modalities. Consider for example the following command.

R> m5 <- fit.models(Surv(time,censored) ~ as.factor(arm) + as.factor(sex), data = data,
+ distr = "exp")

This estimates the survival times via MLE using an Exponential model and controlling for
the effect of the treatment arm and the individuals’ sex. The estimates are as follows.

Model fit for the Exponential model, obtained using Flexsurvreg
(Maximum Likelihood Estimate). Running time: 0.011 seconds

mean se L95% U95%
rate 0.0918686 0.0109122 0.0727882 ©.1159506
as.factor(arm)1 -0.4509553 0.1545386 -0.7538454 -0.1480651
as.factor(sex)1 -0.2460077 0.1540280 -0.5478969 ©0.0558816

Model fitting summaries
Akaike Information Criterion (AIC)....: 1274.005
Bayesian Information Criterion (BIC)..: 1285.721

As shown in Figure 4(a), this simple model already becomes complex to visualise, because
there are 4 strata identified by the two covariates, each of which is binary. Things become
even more complicated if we mix a continuous and a categorical covariate, e.g., treatment and
age. Thus, it may be helpful then to plot the results using a different strategy. For example
we can define a list in which we specify the value for the covariates that we want to use to
compute the survival curves, e.g.,

R> m5 <- fit.models(Surv(time,censored) ~ as.factor(arm) + age, data = data, distr =
+ Ilexpll)

R> newdata <- list(list(arm = @, age = mean(data$age)), list(arm = 1, age = mean(

+ datas$age)))

which would create two “profiles” by varying the treatment arm and keeping the value for sex to
the observed average in the data. The resulting plot can be obtained using the following code.

R> plot(m5, newdata = newdata)
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Figure 4: Graphs produced by the plot method in survHE when using different combination
of the covariates values

which produces the graph in Figure 4(b). When the option newdata is used, it is probably
best to plot a single model in a graph — even if the survHE object contains many (just like
m1, m2 or m3), the option mod can be used to select only one of them, as showed above. When
selecting the “profile” to be specified in the list newdata, the order in which the covariates are
entered must be the same in which they appear in the model formula.

6.3. Estimation of the mean survival time

As mentioned earlier, in a health economic evaluation it is of interest to estimate the mean
survival time — this is the quantity that is relevant to determine for example the effectiveness
of a given intervention. For some of the parametric models described above, the mean survival
time can be computed analytically. For example, for a Weibull model, this is

E[T] = /Oootf(t 1 0)dt = /OOOS(t)dt:uF <1+ ;) ,

where (1 is the scale, « is the shape and I'(+) is the Gamma function.

More generally, it is possible to approximate this quantity using the “trapezium rule” over a
large enough time horizon as

E[T] ~ % S 7S+ 1) - S,

teT

where 7 = {0, (t+7),(t +27),...,(t + K1)} is a discrete set of (K + 1) time points and 7
is an arbitrarily small increment. Notice that in order to approximate the mean sufficiently
well, it is important to extend the range T long enough so that all the survival curves actually



Journal of Statistical Software 25

fade out to 0. Also, the smaller the increment 7, the more trapezoids are fitted under the
survival curve and thus the better the approximation. In practice, there is a trade-off between
the level of approximation and the computational time required for the calculation.

survHE automatically performs this calculation by means of the method summary; so for
example, the R code

R> summary(m1)

produces the following output.

Estimated average survival time distributionx

mean sd 2.5% median 97.5%
as.factor(arm)1=0 7.908986 0.8855609 6.120897 7.90922 9.656117
as.factor(arm)1=1 11.684795 0.8513160 10.003279 11.69654 13.298515

*Computed over the range: [0.03-20.92] using 1000 simulations.
NB: Check that the survival curves tend to @ over this range!

Because the user has not specified a time range over which to compute the mean survival,
survHE assumes the observed range of times (in this case [0.03 — 20.92]). As is obvious from
Figure 3, in this range the survival curves have not reached 0 and thus the estimated mean
survival is certainly biased downwardly. To correct this, it is sufficient to use the code

R> summary(ml, t = seq(@, 60))

which instructs survHE to compute the means over a range of times between 0 and 60, with
default unit increments. The resulting values are substantially different.

Estimated average survival time distributionx

mean sd 2.5% median 97.5%
as.factor(arm)1=0 12.11621 1.205998 10.05541 11.96503 14.70078
as.factor(arm)1=1 18.45192 1.822470 15.01798 18.44269 22.27354

*Computed over the range: [0-60] using 1000 simulations.
NB: Check that the survival curves tend to @ over this range!

Incidentally, the analytic average values are 12.16317 and 19.72865 for the control and treat-
ment arm, respectively. The estimate produced by the summary command can be improved
by selecting a longer time horizon and/or a lower value for the increment 7, e.g., t = seq(9,
100, 0.1). It is also possible to increase the number of simulations used to characterised
uncertainty in the underlying parameters (and hence survival curves). The default value of
1000 can be modified by specifying the optional argument nsim to a different value. Similarly,
it is possible to specify a specific “profile”, in terms of the covariates included in the model by
using the optional argument newdata. So for example, the command

R> summary(ml, t = seq(@, 60), newdata = list(list(arm = 1)))

produces an estimate of the distribution of the mean survival time for the treated. Finally, the
user can also include a vector labs in the call to summary, which contains a suitable number
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of text strings that can be used to label the values in the resulting table, for example labs =
c("Controls”, "Treated").

6.4. Model assessment

Health economics guidelines suggest that the assessment of the models is done by comple-
menting the visual inspection with some more formal testing. The suggested way is through
the use of a specific Information Criterion (IC), such as Akaike IC (AIC) or the Bayesian IC
(BIC). These statistics are based on the model deviance —2log £(0) and a penalty function,
which typically depends on the number of parameters and the complexity of the model —
the rationale being that models that are too complex tend to “overfit” the data; this means
that they may do very well at estimating the data at hand, but usually have poor predictive
ability of other data.

An additional IC which is specific to Bayesian models is the Deviance IC (DIC), proposed
by Spiegelhalter et al. (2002)%. survHE then computes an estimate of AIC and BIC for any
inference engine and also an estimate of the DIC for models fitted in either INLA or rstan’.

The results of model fit can be visually inspected using the survHE function model.fit.plot
as in the examples below.

R> model.fit.plot(ml)

R> model.fit.plot(ml, type = "bic")

R> model.fit.plot(ml, m3, mod = c(1, 2, 3, 7, 8, 9), type = "dic”, mar = c(4, 7, 3, 0.5),
+ xlim = c(1200, 1290), models = c("Exponential (MLE)", "Weibull (MLE)", "Gamma (MLE)",
+ "Exponential (HMC)", "Weibull (HMC)", "Gamma (HMC)"))

Notice that in panel (c) of Figure 5 for some of the models the bar is not plotted: this is
because for model m1 the DIC cannot be computed, as it is fitted using MLE.

There are many optional arguments to the model.fit.plot function:

e type: a string specifying the statistic to be used (possible values are ’aic’, ’bic’
or 'dic’);

e xlim: a vector determining the limits for the x-axis;
e digits: the number of digits to print next to each bar;
e main: the title of the graph;

e mar: a vector specifying the margins of the R graph. The default value is c(4, 6, 3,
1.3);

5Tn fact, for Bayesian models obtained via HMC, survHE also computes the DIC using the slightly different
definition suggested by Gelman et al. (2013); the two versions of the DIC may differ in the presence of extreme
asymmetry or multi-modality in the posterior distributions. The alternative estimates for the DIC are stored
in the element $model.fitting$dic2 of a survHE object, but are only present if the inferential method is
set to "hmc".

"Notice that rstan does not provide measures of model fit based on Information Criteria. There are several
arguments to prefer other methods to assess the performance of a statistical model, for example the posterior
predictive check, as discussed in Gelman et al. (2013). However, because NICE guidelines suggest using AIC
and BIC (and, by extension, DIC), survHE computes the relevant model fit statistics and reports them using
the print method and the model.fit.plot function.
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e cex.names: the factor by which the size of the font used to write text on the graph is
resized (default = 0.8);

e models: a string of text specifying the names for the models (on the y-axis).

7. Probabilistic sensitivity analysis
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Unlike standard epidemiological analysis where the objective is often to estimate the effect of
some relevant covariates on the survival time, in health economic evaluation the goal is rather
to produce an estimate of the entire survival curve over a long period of time (or at any rate,
a longer period than the observed follow up). This estimate is then used to populate the
economic model, e.g., by obtaining estimates of the transition probabilities between states in
a Markov model. More importantly, we need to quantify the impact of uncertainty in the
model parameters on the decision-making process and thus we typically repeat this exercise
for a large number of times, upon varying the value of the parameters that determine the
survival curves. In a fully Bayesian approach this uncertainty is induced by the full joint
posterior distribution of the parameters.

survHE is designed to perform this task directly in R, through the function make.surv. A
typical call is as follows

R> psa <- make.surv(fit = m3, nsim = 1000, t = seq(.1, 63))

which generates an object psa containing, among other things, nsim = 1000 simulations for
the survival curves. In the above case, m3 contains in fact 6 different models (upon varying the
distributional assumptions), but because the user has not specified a value for the input mod
(in this case a number between 1 and 6), make.surv uses the first one, i.e., the Exponential,
by default. Adding the option mod = 6 to the call to make.surv would consider the sixth
model (Generalised Gamma) instead.

The resulting output psa can be accessed directly by the user. The command
R> names(psa)

shows that it comprises several elements

n

[11 "s” "sim” "nsim” mat” "des.mat"”

each of which can be accessed using either the “double bracket” or the “dollar” notation in R
e.g., psas$s or psal[[3]]. A brief description of each of these elements is in the following.

e S: a list — for each simulated value of the parameters, a list with the survival curves
associated with the configuration of the covariates;

e sim: simulated values for the main parameters (e.g., scale, shape, rate, mean, sd) for
each configuration of the covariates;

e nsim: the number of simulations saved;

e mat: a list — for each configuration of covariates a matrix with nsim rows and as many
columns as time points with the survival curves (to be read row-wise);

e des.mat: a design matrix with the combination of the covariates used (each represents
an element in the lists S and mat).

The reason why make.surv creates so many outputs is mainly for internal convenience. In
fact, this is a central function in how survHE works and it is called internally by other utility
functions (e.g., plot and print). By and large, the user does not need to manipulate the
output directly.

The list of inputs for the make.surv function is as follows.
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e fit: the result of the call to the fit.models function, containing the model fitting (and
other relevant information), e.g., m3 from above;

e mod: the index of the model. The default value is 1, but the user can choose which
model to visualise, if the call to fit.models has a vector argument for the input distr;

e t: the vector of times to be used to create the survival curves. By default, survHE uses
the times observed in the original data, but the user can specify a longer follow up (this
is actually a useful feature for the purpose of performing a health economic evaluation
and PSA);

e newdata: alist (of lists), specifiying the values of the covariates at which the computation
is performed. For example ’list(list(arm = @), list(arm = 1))’ will create two
survival curves, one obtained by setting the covariate ’arm’ to the value 0 and the
other by setting it to the value 1. In line with flexsurv notation, the user needs to
either specify the value for all the covariates or for none (in which case, newdata is
set to NULL’, which is the default). If some value is specified and at least one of the
covariates is continuous, then a single survival curve will be computed in correspondence
of the average values of all the covariates (including the factors, which in this case are
expanded into indicators);

e nsim: the number of simulations from the distribution of the survival curves. The default
is at nsim = 1, in which case uses the point estimate for the relevant distributional
parameters and computes the resulting “average” survival curve.

To visualise the results of the PSA, survHE has a specialised function called psa.plot, which
can be used, for example as follows.

R> psa.plot(psa)

This command produces the graph in Figure 6(a). The graph shows the average survival curve
and 95% interval estimates around them. If the method is set to ’mle’, then the intervals are
obtained by multivariate Normal bootstrap, while for the Bayesian models they are obtained
using samples from the relevant posterior distributions.

The user can specify the labels for the z- and y-axis (respectively by including the additional
arguments xlab = "..."” and ylab = "..."). In addition, if no colour specification is given
by the user, e.g., in the form col = c("blue”, "red"), then survHE will randomly choose a
colouring scheme. Finally, the parameter alpha (default at 0.1) determines the transparency
of the curves; values for alpha close to 0 imply greater transparency, while values closer to 1
create a solid plot (with no transparency). A fully customised call to psa.plot is as follows
and produces the graph in Figure 6(b).

n

R> psa.plot(psa, xlab = "Extrapolated time", ylab = "Estimation of the survival curves”,
+ alpha = 0.2,col = c("dark grey”, "black”), main = "PSA to survival curves”, xpos =
+ 30, ypos = 1, cex.txt = .95, offset = 1.5, nsmall = @, digits = 2)

Notice that it is possible to control the labelling of the profile of covariates associated with
each curve, in terms of the font size and appearance (e.g., the number of digits printed and
the position along the x— and y— axes of the graph).

29
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Figure 6: Probabilistic sensitivity analysis for the survival curves

7.1. Exporting the results to Microsoft Excel

Once the PSA samples are available for the survival curves, it may be easy to continue
building the economic model using R. In fact, this is the strategy that we advocate (Baio
and Heath 2016). However, we acknowledge that practitioners use Microsoft Excel to produce
the economic assessment. Thus, survHE has a specialised function, called write.surv, that
allows the user to export the simulations for the survival curves to a .x1s(x) file, so that they
can be easily used when constructing e.g., a Markov model in Microsoft Excel.

As mentioned above, the user can actually manipulate the output of the call to make.surv
independently and so in a way bypass write.surv entirely. However, survHE tries to simplify
the work process and can be used as follows.

R> write.surv(psa, file = "temp.x1s")

which produces the following output in R

1000 simulation(s) for the survival curve:
[[11] = 1,as.factor(arm)1=0
[[2]1] = 1,as.factor(arm)1=1

Written to file: temp.xls

and creates a spreadsheet containing the relevant simulations. The R output clarifies that the
resulting spreadsheet contains two tables: the first one is for the survival curves considering
the treatment arm set to 0 (e.g., controls), while the second one is for the intervention arm
(set to 1). Different model specifications would create a different number of matrices (with
nsim rows and as many time points for columns) depending on the covariates combinations.
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8. Advanced models

While the models presented in Table 1 are likely to produce at least one “good” candidate
in most situations, it is possible that more complex model structures may be needed to
accommodate a particular data set or analysis. In particular, we focus here on two “flexible”
models: the first one (which is already implemented in flexsurv) is based on cubic splines,
while the second is an extension of the standard Weibull model.

8.1. Royston-Parmar splines

Splines are numeric functions typically defined as a collection of local polynomials; the main
idea is to partition the x—axis into a set of intervals defined by “knots” and then within each
interval use a different polynomial function to approximate the underlying “true” function on
the y—axis. This construction provides great flexibility and effectively an arbitrary number of
parameters, depending on how many knots (and hence on the density with which the z—axis
is partitioned) are selected.

In the context of survival analysis, splines can be used to model flexibly (a suitable transfor-
mation of) one of the basic functions, e.g., the survival or the hazard (Royston and Lambert
2011). An increasingly popular model is the one developed by Royston and Parmar (2002).
Basically, this defines a probability distribution to model the observed and censored times as
a function of an “augmented” set of parameters @ = (3,~) and covariates (X, B). Here, 8
are the coefficients associated with the observed covariates X, exactly as in (2). In addition,
for each individual (and, hence, observed time) in the dataset, we consider a set of (M + 2)
“basis” function B; = (B, Bi1,- - ., Bim), where

Bim = (log ti - km)i - )\m(log ti - kmzn)i - (]— - )\m)(log ti - kmaa})ia )\m - M

maxr — vmin

and (logt; — a)4+ = max {0, (logt; — a)}. The vector of knots is defined as ki = 0 < k1 <
. oo < kmae = 00; typically, the M “internal” knots are set up in terms of the quantiles of the
observed distribution of the times. For example, if we set M = 3, survHE would automatically
consider the three quartiles (¢1, g2, ¢3), representing the 25%—, 50%— and 75%—percentiles of
the observed times distribution.

The Royston-Parmar (RP) model defines a modified linear predictor

M2 J

M= YmBim |+ Y B Xy|
m=0 7=0

which is used to model directly log (—log S(t;)) = log H (¢;) = n; (notice that we use the [+...]
notation here to highlight the fact that the model may not include any covariate X and thus
only rely on the splines structure)®.

Given this set up, it is possible to prove that

log h(t;) = —logt; + logm; +n; (4)

8In fact, there are three different versions of the RP model; the one presented here is the “proportional
hazard”, which can be seen as an extension to the basic Weibull PH model. The other two versions extend
the log-Logistic model by setting log (1/S(t) — 1) = n; (“proportional odds”) and the log-Normal model using
®~1 (S(t)) = m: (“probit model”). Currently, all are implemented in flexsurv, while only the PH model is
implemented in survHE using HMC.

31
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and
log S(ti) = —exp(n;), (5)

with n} = " M*2 B! the first derivatives B], are easy to compute, recalling that %i:: =
3z%. Substituting (4) and (5) into (1), we can completely characterise the resulting likelihood.
The RP model is directly available in flexsurv and is also implemented under a pre-compiled

HMC-based Bayesian framework in survHE. The two versions can be obtained via a specialised
call to fit.models.

R> formula <- Surv(time, censored) ~ as.factor(arm)
R> m6 <- fit.models(formula = formula, data = data, distr = "rps”, k = 2)
R> m7 <- fit.models(formula = formula, data = data, distr "rps”, k = 2, method = "hmc")

survHE accepts the string "rps” to indicate the “Royston-Parmar Splines” distribution and
also requires the input k to specify the number M of internal knots to be used (if this is not
provided by the user, survHE assumes that k = @, which reduces the RP model to a Weibull
PH formulation). The formula is used to specify the “fixed” component of 7;, i.e., the set of
covariates in X. In this case, we use only the treatment arm.

All the usual methods are available for the resulting survHE objects m6 and m7, for example
the commands

R> print(mé)
R> print(m7)

return the summary tables

Model fit for the Royston & Parmar splines model, obtained using Flexsurvreg
(Maximum Likelihood Estimate). Running time: 0.145 seconds

mean se L95% U95%
gammao -4.652836 0.474704 -5.583239 -3.722433
gammal 2.523687 0.565148 1.416017 3.631357
gamma2 0.387949 0.331049 -0.260894 1.036792
gamma3 -0.419667 0.398441 -1.200596 0.361262

as.factor(arm)1 -0.615885 0.155792 -0.921232 -0.310538
Model fitting summaries

Akaike Information Criterion (AIC)....: 1205.235
Bayesian Information Criterion (BIC)..: 1224.761

and

Model fit for the Royston & Parmar splines model, obtained using Stan (Bayesian
inference via Hamiltonian Monte Carlo). Running time: 50.217 seconds

mean se L95% U9s%
gammao -4.667948 0.473789 -5.618594 -3.788113
gammal 2.527583 0.547405 1.475757 3.650847
gamma?2 0.386299 0.308786 -0.207955 1.006886

gamma3 -0.417838 0.370723 -1.162944 0.265064
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as.factor(arm)1 -0.622932 0.153474 -0.920748 -0.333737

Model fitting summaries

Akaike Information Criterion (AIC)....: 1205.243
Bayesian Information Criterion (BIC)..: 1224.770
Deviance Information Criterion (DIC)..: 1259.883

The Bayesian version of the RP model is much more computationally intensive, although
HMC does a very good job and keeps the time to generally acceptable levels; also, it helps
in this case to take advantage of the multi-processing capability of rstan: adding the option
cores = 2 reduces the time from 50.217 to 32.777 seconds, for 2 chains of 2000 iterations each.

In this case, there is very good agreement in the point and interval estimates for the two
versions of the model, but in general the MLE may underestimate the underlying level of
correlation among the = coefficients in particular.

8.2. Poly-Weibull

In a nutshell, the Poly-Weibull model (Berger and Sun 1993; Demiris et al. 2015) extends
the basic set up of a Weibull survival model by accounting for the possibility that in fact
the observed times are the result of a mixed data generating process, depending on several
independent Weibull components. For example, we may consider that the occurrence of the
event under study depends on M independent causes and that we are willing to model each
using a suitable Weibull distribution. In line with (1), the resulting density is

f(ti16) = h(t:)"S(t;)
M di M
= [Z amﬂimt?m_ll [exp <_ Z Mimt?m>] s
m=1 m=1

where @ = (01,...,0)) and 0,,, = (v, fim) are the shape and scale for the m—th component
of the mixture.

survHE implements this density as an add-on model to be estimated using HMC and rstan
(i.e., there is only a Bayesian version for this model). While it is in principle possible to
model both the shape and the scale as functions of a set of covariates, survHE considers the
simpler version where only the location parameter is allowed to depend on X. It is fairly
easy to modify this structure and implement a version of the rstan model in which also «;,
depend on the covariates.

Practically, survHE has a specific function to run the Poly-Weibull model. A typical call is
as in the following.

R> formula.pw <- list(Surv(time, censored) ~ 1, Surv(time, censored) ~ as.factor(arm))
R> m8 <- poly.weibull(formula.pw, data, cores = 2)

The main difference with respect to the standard call to fit.models is that the formula input
now needs to be made by a list of objects in the class formula. This is because we need
to specify a formula for each of the components that we want to fit to the mixture model
identified by the Poly-Weibull distribution. For instance, in the above example, the object
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formula.pw is a list with two elements. This instructs R to assume a model with M = 2
components and the following specification for the linear predictors

pi1 = exp (Bo1) and iz = exp (o2 + Bi2Arm) .

By default, survHE places minimally informative priors on the parameters 3,, i Normal(0, 10);
the values for the mean (mu_beta) and the standard deviation (sigma_beta) can be modified
using the option prior, as shown earlier. In addition, we need to impose an identifiabil-
ity constraint on the shape parameters a = (aq,...,ap) so that they are ordered (i.e.,
a1 < ...<ap) — see Demiris et al. (2015) for a discussion of this issue. The components of
the vector a are then given a vague prior over their entire domain.

As is often the case for mixture models, convergence to the posterior distributions may be
a crucial issue. This is essentially due to the fact that it may be very difficult (or even
impossible) for the model to distinguish two or more of the components. For example, the
above call to poly.weibull returns the following warning

Warning messages:

1: There were 16 divergent transitions after warmup. Increasing adapt_delta above 0.8
may help. See http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
2: Examine the pairs() plot to diagnose sampling problems

indicating that the HMC algorigthm has failed to fully explore the posterior density of the pa-
rameters. Possible solutions are to either include more information in the priors (e.g., by
reducing the range of variation of the coefficients in the 3,,), or to increase the value of the
acceptance rate (see §5.2). For example, the command

R> m9 <- poly.weibull(formula.pw, data, cores = 2, control = list(adapt_delta = .9,
+ stepsize = .01, max_treedepth = 100))

modifies the standard rstan settings to have a denser discrete approximation of the continuous
Hamiltonian dynamics®. This increases the running time from 35.866 to 120.126 seconds, but
successfully estimates the posterior distributions. The results can be analysed by using the
print method.

R> print(m9)

Model fit for the PolyWeibull model, obtained using Stan (Bayesian inference via
Hamiltonian Monte Carlo). Running time: 120.126 seconds

mean se L95% ugs%
shape_1 1.35248 0.527126 0.114561 1.921400

In brief, a single iteration of HMC proceeds to update the value of the parameters for max_treedepth
steps before deciding whether to accept or reject the current value. Each step is scaled by a factor stepsize,
which determines the level of the discrete approximation to the underlying continuous Hamiltonian dynamics.
Thus, increasing the target acceptance rate adapt_delta effectively forces smaller step sizes, meaning that the
algorithm will be in principle more thorough in visiting the posterior density (at the expense of computational
time). Similarly, increasing max_treedepth means that the algorithm will take more samples within each step,
thus potentially being more accurate. In practice, it is important to strike a balance and avoid too fine a
discretisation of the Hamiltonian dynamics, while guaranteeing sufficient coverage of the posterior density.
More technical details can be found in Hoffman and Gelman (2014) and Carpenter et al. (2015).



Journal of Statistical Software 35

shape_2 2.02113 ©.357700  1.655006 2.796549
(Intercept)_1 -8.12990 5.336881 -22.160829 -4.064798
(Intercept)_2 -5.16950 1.253134 -7.747451 -3.859921

as.factor(arm)1_2 -4.16059 5.112734 -17.966250 -0.358703

Model fitting summaries

Akaike Information Criterion (AIC)....: 1209.618
Bayesian Information Criterion (BIC)..: 1229.145
Deviance Information Criterion (DIC)..: 1202.083

The resulting table identifies the parameters of each component by using a suffix “_m”, so for
instance (Intercept)_1 is the intercept for the first component.

Notice that in this particular case, using a more complex model does not seem to improve
things substantially: for example, the DIC for the simpler Weibull model we fitted in the
second element of the object m3 is 1203.243 (cfr. Figure 5¢) — essentially the same as for
the Poly-Weibull model, indicating that a simpler version is perhaps to be preferred to this
specification of the more complex one. This is consistent with the potential issues in conver-
gence and identifiability, which again indicate perhaps that the Poly-Weibull model may not
be appropriate for this particular set of data.

9. Other tools

9.1. Digitising Kaplan-Meier curves from published studies

Often, the individual level data from, e.g., a clinical trial measuring the survival times are
not directly available for the health economic evaluation. Perhaps for one of the treatments
being considered, the sponsor of the trial is able to make the data available, but this could
only cover one of the relevant interventions/drugs. To overcome this limitation, usually
modellers try and use systematic reviews of the available literature to gather information
on the possible comparators.

One clever way of doing this is by “digitising” Kaplan-Meier data available from published
papers. This is done by using specific software (e.g., Digitizelt); the user needs to click
on several points on the survival curves and the values are digitised and exported to some
output files, describing the input survival times from graph reading and reported number of
individuals at risk at several time points in the follow up.

Once these two files are available, survHE takes them as input and following the algorightm
developed by Guyot et al. (2012), which can be used to map from the digitised curves back to
the unobserved Kaplan-Meier data by numerical approximation. Assuming that the Digitizelt
outcome is saved in the two files survival.txt and nrisk.txt in the current working directory,
a typical survHE call to perform this task is the following.

R> surv_inp <- "survival.txt”

R> nrisk_inp <- "nrisk.txt"

R> km_out <- "KMdata.txt”

R> ipd_out <- "IPDdata.txt”

R> digitise(surv_inp = surv_inp, nrisk_inp = nrisk_inp, km_output = km_out, ipd_output =
+ ipd_out)
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The above code first defines the input and output files and then uses the survHE command
digitise to reconstruct the original Kaplan-Meier curves and save their values, as well as a
fictional dataset, which closely resembles the one that has generated the published survival
curves. digitise also write to the R terminal the following text, to make sure that the user
can retreive the relevant files.

Kaplan Meier data written to file: KMdata.txt
IPD data written to file: IPDdata.txt

These can be then used as input data to fit the survival models and then perform the PSA.

The final feature worth mentioning is that often we will be in a position of creating several
individual level dataset to mimic data originally used to produce Kaplan-Meier estimates for
the survival curves, e.g., for many different treatments, or for the same treatment observed in
several papers. survHE has another specialised function that can be used to stack the different
files with the individual level data into a single dataset. This function is called make.ipd and
it takes as inputs: a list of all the the names of the individual level data files created as output
of digitise; the index of the file associated with the control arm (by default, this is the first
file) and the control arm will be coded as 0; and a vector of labels for the column of the
resulting data matrix. These should match the arguments to the formula specified for the
function fit.models and should be 3 elements (each representing the the time variable, the
event variable and the treatment arm). A call to this function would look like the following.

R> ipd_files <- list("IPD1.txt"”, "IPD2.txt", "IPD3.txt")
R> data <- make.ipd(ipd_files, ctr = 1, var.labs = c("time"”, "event”, "arm"))

This generates a R data.frame, which can then be fed to the fit.models function. Naturally,
make. ipd assumes that there are no other covariates in addition to the treatment arm, because
it is unlikely that digitised data are recorded for different strata, or values of additional
variables.

10. Future directions

While the current development of survHE is relatively comprehensive and already allows for
a wide range of model specifications, there are other venues that we wish to explore in the
future. In particular, we aim at making the Bayesian components (both under rstan and
INLA) even more flexible and developed. To this aim, we plan to expand the range of INLA
survival models to cover more parametric distributions as well as flexible models such as
those shown in §8. Similarly, we plan on developing more tools/models taking full advantage
of HMC — examples may include expanding the range of models, e.g., based on piecewise
exponential (and variations thereof). Another useful feature that we aim at developing is
the possibility of allowing the user to provide a customized model file, to be fed directly to
fit.models under the HMC approach. Finally, we plan on working even more closely with
modellers and health economists to implement any feature that could make the process even
smoother.

The author wishes to thank Peter Konings, William Browne and Andrea Berardi for providing
help in writing part of the original code in survHE. This work has been partially supported
by a research grant sponsored by Mapi.
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