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Abstract

This software fits a multivariate proportional hazards model to interval
censored event data by a Bayesian approach. Right and interval censored
data and a lognormal frailty term can be fitted. An example is studied
and the output analysed.

1 The basic model

The data, based on a sample of size n, consists of the triple (¢;,0;,%;),i =1,...,n
where t; is the time on study for subject 4, ¢; is the event indicator for subject
i (6; = 1 if event has occurred, §; = 0 if the observation is right censored), x; is
the r-dimensional vector of covariate values for subject i.

The likelihood contribution of the i-th single observation is given by

(i) (6 ) = exp {abie) + %] = o [ expln(sas

where h(s) = In[Ag(s)]. The infinite dimensional problem gets to a finite di-
mensional one by partitioning the time axis [0, oco[ into disjoint intervals I, =
[Or—1,0k[ for k =1,..., K + 1 where 6}, is the time of the k-th event and 6, = 0.
The largest event time observed is 6k and Ik 41 is taken as the interval [, ool.
The function h is constant on the intervals I}, and is set to —oo on [f, co[. The
integral in the likelihood contribution of the i-th observation can be written as
a sum.

The priors for the components of the vector 8 will be independently normal
distributed with mean 0 and a small precision 7 = 0.001. The prior for step
function h will be a autoregressive process of order one with prior information
on smoothness. Writing hy, = h(0y), k = 1,..., K the first order process is de-
fined as hy, = hy_1 + €, with e ~ N(0,0%) and hg ~ N(0,03), where hg and e,
k=1,..., K are pairwise independent. The variances are chosen as cr,% = Ao?
and A may be defined by 0y — 01 for kK > 1 with g = 0. The inverse of
the covariance matrix, ¥ 7!, is a bandmatrix of bandwidth one. The parameters

% = 79 and % = 7 are treated as hyperparameters with flat gamma priors

se(})tting both palrameters equal to 0.001.



2 Sampling procedure

Sampling for the parameter vector

Aitkin and Clayton [1] pointed out that the proportional hazards model can
interpreted as a generalized linear model.

Gamerman [2] describes how one can effectively sample the vector of covariates
in generalizes linear mixed models in a block updating step. This is a combina-
tion of the iterated least squares method (IWLS) as it is known in fitting such
models with a Metropolis-Hasting sampling.

Sampling for the baseline hazard

With the given structure of the log baseline hazard function one has to sample
from a Gaussian Markov Random Field (GMRF), see Rue [5].

Sampling for the dispersion parameters

For the dispersion parameters o2 and o7 a flat Gamma prior with rate x and
shape v is chosen. This leads to Gamma posteriors.

3 Extensions of the basic model

Data augmentation and a multiplicative frailty model is used to analyze clus-
tered interval censored event data. Data augmentation is used to interfere un-
observed event times. The potential clustering of event times within a statistical
unit is modeled by introducing an unit specific random effect or frailty term into
the proportional hazards model.

4 Example

Meisel et al. [4] present data on the shrinkage of aneurisms associated with cere-
bral arteriovenous malformations (cAVM) after embolization treatment. The
time to a shrinkage of the aneurism to below 50% of the baseline volume was of
interest. Several patients had multiple aneurisms. Each patient was inspected
at a random inspection time obs.t. The censoring variable z was set to one,
if at the inspection time sufficient shrinkage was observed, else the censoring
indicator was set to zero.

Two covariates were considered: the degree of cAMYV occlusion by embolization
(dichotomized at 50%, variable mo) and the location of the aneurism, whether
at the midline arteries or at other afferent cerebral arteries, variable lok.

The single aneurisms are not independent because aneurisms within a patient
may shrink in the same way (because the share the same "environment”). Mul-
tiple aneurisms were observed per patient. This clustering of aneurisms is indi-
cated by the grouping variable gr.

The data is loaded and inspected for the first five patients.

> library(survBayes)



Loading required package: survival
Loading required package: splines
Loading required package: coda

Attaching package 'survBayes':

The following object(s) are masked _by_ .GlobalEnv :

survBayes survBayes.b.fctn.Lambda survBayes.base survBayes.chol survBayes.control

> data(AA.data)
> AA.dataf1:11, ]

z mo gr lok t.left t.right
1 0 0 1 1 1.7698630 NA
2 0 1 2 1 0.9972603 NA
3 0 1 2 10.9972603 NA
4 0 1 2 1 0.9972603 NA
5 0 0 3 0 1.0712329 NA
6 0 0 3 11.0712329 NA
7 0 0 4 1 5.6547945 NA
8 0 0 5 1 1.5780822 NA
9 1 0 5 0 0.0000000 1.578082
101 0 5 0 0.0000000 1.578082
111 0 5 1 0.0000000 1.578082

The data is analyzed by applying the survBayes algorithm. The fit with
survBayes gives an object which stores all sampled values in the required num-
ber after the burn in. The str function gives a survey over the output. The low
number for the sample is only due to fast checking of the package in the CRAN.
Please choose at least 5000.

> AA.res <- survBayes(Surv(t.left, t.right, z * 3, type = "interval")

+ mo + lok + frailty(gr, dist = "gauss"), data = AA.data, burn.in = O,
+ number.sample = 10)
10

> str(AA.res)

List of 7
$ t.where : num [1:49] 0.0000 0.0281 0.0611 0.1305 0.1580 ...
$ 1bh : mcmc [1:10, 1:49] -1.40 -1.57 -1.57 -1.45 -1.32 ...

..— attr(*, "dimnames")=List of 2
..$ : chr [1:10] "1bh" "1bh" "1lbh" "1bh"
..$ : NULL
..— attr(*, "mcpar")= num [1:3] 1 10 1
..— attr(x, "class")= chr "mcmc"
$ beta : mecmc [1:10, 1:2] -0.519 -0.695 -0.695 -0.695 -0.695 ...
..— attr(x, "dimnames")=List of 2
..$ : NULL



..$ : chr [1:2] "mo" "lok"
..— attr(*, "mcpar")= num [1:3] 1 10 1
..— attr(x, "class")= chr "mcmc"
$ sigma.lbh : meme [1:10, 1:2] 1917.15 2.60 1796.31  15.07 2.74 ...
..— attr(*, "mcpar")= num [1:3] 1 10 1
..— attr(x, "class")= chr "mcmc"
$ alpha.cluster : mcmc [1:10, 1:83] -0.724 -0.724 -0.724 -0.724 -0.724 ...
..— attr(*, "dimnames")=List of 2
..$ : chr [1:10] "alpha.cluster" "alpha.cluster" "alpha.cluster" "alpha.cluster"
..$ : NULL
..— attr(*, "mcpar")= num [1:3] 1 10 1
..— attr(x, "class")= chr "mcmc"
$ sigma.cluster :Class 'mcmc' atomic [1:10] 0.0194 0.0310 0.0288 0.0280 0.0181
..— attr(*, "mcpar")= num [1:3] 1 10 1
$ m.h.performance: num [1:3] 4 8 0

The components are

t.where: the time points which were chosen; the range of the Kaplan Meier
estimate is divided by the number of grid points and transformed back to
the time axis;

Ibh: samples of the log baseline hazard at the grid points;
beta: samples of the vector of covariates;

sigma.lbh: samples of sigma.lbh.0 and sigma.lbh.1;
alpha.cluster: samples of the frailty values;

sigma.cluster: samples of frailty variance;

m.h.performance: number of the successful performances of the Metropolis-
Hastings step for beta, Ibh and, if appropriate, alpha

The convergence is diagnosed by mean of CODA. The Raftery-Lewis diagnostic
gives a good description of the convergence, see [3].

> raftery.diag(AA.res$beta)

Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95

You need a sample size of at least 3746 with these values of g, r and s
> raftery.diag(AA.res$sigma.lbh)

Quantile (q) = 0.025

Accuracy (r) = +/- 0.005

Probability (s) = 0.95

You need a sample size of at least 3746 with these values of g, r and s



> raftery.diag(AA.res$sigma.cluster)

Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95

You need a sample size of at least 3746 with these values of g, r and s

> raftery.diag(AA.res$alpha.cluster)

Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95

You need a sample size of at least 3746 with these values of g, r and s

This indicates that the sample size should be increased to at least 30000 sam-
ples.

The estimated coefficients and cumulative baseline hazard can be used to esti-
mated and plot group specific survival curves.

type = "s", 1ty = 5)
leg.names <- c("mo=0, lok=0", "mo=1, lok=0", "mo=0, lok=1", "mo=1, lok=1")
legend (4, 1, leg.names, 1ty = c(1, 2, 3, 5), bty = "n")

> beta.est <- apply(AA.res$beta, 2, mean)

> lambdaO <- exp(apply(AA.res$lbh, 2, mean))

> Lambda0 <- c(0, cumsum(diff (AA.res$t.where) * lambdaO[-length(lambda0)]))
> surv.base <- exp(-Lambda0)

> plot(AA.res$t.where, surv.base, type = "s", xlab = "time [years]",
+ ylab = "Survival function", 1ty = 1)

> lines(AA.res$t.where, surv.base exp(beta.est["mo"]), type = "s",

+ 1ty = 2)

> lines(AA.res$t.where, surv.base exp(beta.est["lok"]), type = "s",

+ 1ty = 3)

> lines(AA.res$t.where, surv.base exp(sum(beta.est[c("mo", "lok")])),
+

>

>
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