
stratEst: Strategy Estimation in R∗

Fabian Dvorak

University of Konstanz

fabian.dvorak@uni.kn

This version: December 2018

Abstract

stratEst is a statistical software package which can be used to characterize the choices of
a sample of individuals as a mixture of individual strategies. Strategies can be estimated
from the data or supplied by the user in the form of deterministic finite-state automata.
The package uses the EM algorithm (Dempster et al., 1977) and the Newton-Raphson
method to obtain maximum-likelihood estimates of the population shares and choice pa-
rameters of the strategies. The number and the complexity of strategies can be restricted
by the user or selected based on information criteria. The package also features an exten-
sion of strategy estimation in the spirit of latent class regression to assess the effects of
covariates on strategy use.

Keywords: experimental games, individual differences, mixture models

JEL Classification: C13, C87, C91, C92

∗Please cite this document as: Dvorak, F. (2019). stratEst: Strategy Estimation in R. Working paper
version December 2018. http://fabian-dvorak.com/software/stratEst-paper-181201.pdf. I would like to thank
Yongping Bao, Yves Breitmoser, Karsten Donnay, Urs Fischbacher, Konstantin Käppner and Susumu Shikano
for helpful comments. I am particularly grateful to Sebastian Fehrler for many inspiring conversations. All
remaining errors are my own.

1 Introduction

stratEst is a software package for the statistical computing environment R (R Development

Core Team, 2008). The package implements variants of the strategy estimation method (Dal

Bó and Fréchette, 2011). The goal of strategy estimation is to characterize the choices of a

sample of individuals as a mixture of individual strategies. Strategy estimation is similar to

mixture modeling (McLachlan and Peel, 2005), cluster analysis (Kaufman and Rousseeuw,

1990), and latent class analysis (Lazarsfeld, 1950). All three methods essentially group

several entities into several unobservable classes. In the case of strategy estimation, the

entities are individuals and the unobservable classes are strategies in the sense of game-

theory. A strategy is a complete action plan which prescribe a behavioral response for every

situation in a game.1

Different variants of strategy estimation exist (Dal Bó and Fréchette, 2011; Breitmoser, 2015;

Dvorak and Fehrler, 2018). In one variant, theory indicates a set of reasonable candidate

strategies and the researcher is interested to estimate the frequency of the strategies in the

population given the sampled data. In another variant, reasonable candidate strategies are

unknown and the researcher wants to learn something about the the choice parameters of the

strategies while imposing some basic assumptions on the number and the general structure

of the strategies. In yet another variant, the researcher is interested in how strategy use is

influenced by covariates such as treatment conditions or time.

The main challenge for strategy estimation software is to guarantee a sufficient degree of

flexibility across the different variants of the method for large number of games. To address

this issue, the stratEst package handles strategies in the form of deterministic finite-state

automata.2 Deterministic finite-state automata map all possible situations of a game into

a finite set of strategy-specific states. The behavioral response of an individual following a

certain strategy is then a function of the the strategy-specific state and not the situation

itself. The handling of strategies as deterministic finite-state automata offers a concise way

to customize strategies for many different games and even works for games with infinitely

many situations.

The current version of the package is limited to the estimation of strategies which prescribe

discrete choices. The central modeling assumption is that the observed actions are indepen-

dent draws from a multinomial distribution with parameters defined by the current state

1Researchers not interested in social interaction may think of a strategy as a behavioral algorithm for a
specific decision-making environment instead.

2The strategy estimation variants two and three can in principle also be conducted based on R packages
for cluster analysis like Flexmix (Leisch, 2004), poLCA (Linzer and Lewis, 2011) and randomLCA (Beath,
2011). The disadvantage of (mis)using these packages for strategy estimation is that all candidate strategies
must have the same simple structure and cannot be reasonably adapted to the game or the decision-making
environment.

1

of the strategy used. Maximum-likelihood estimates for the model parameters are obatined

based on variants of the Expectation-Maximization algorithm (Dempster et al., 1977) and

the Newton-Raphson method. To increase speed the estimation procedures, stratEst uses in-

tegration of C++ and R through Rcpp (Eddelbuettel and François, 2011) as well as the open

source linear algebra library for the C++ language RppArmadillo (Sanderson and Curtin,

2016). Package development is supported by the packages devtools (Wickham et al., 2018b),

testthat (Wickham, 2011), roxygen2 (Wickham et al., 2018a), knitr (Xie, 2018), and R.rsp

(Bengtsson, 2018).

The introduction continues with information on how to install the package and two examples.

Section 2 of the paper illustrates how strategies are represented as deterministic finite-state

automata. Section 3 introduces the strategy estimation method. The general model and

algorithm that is used to obtain maximum-likelihood estimates of the model parameters

is introduced. Section 4 covers model selection. It explains how the number of model

parameters can be restricted by the user or selected based on information criteria. Section

5 introduces the extension of the strategy estimation method in the spirit of latent class

regression to assess the role of covariates for strategy use. Section 6 explains the estimation

procedures for the standard errors of the model parameters. Section 7 illustrates the validity

of the estimation procedures based on a simulation exercise. Section 8 gives an overview

over the syntax of the estimation function and its input and output objects.

Installation

The most recent CRAN version of the stratEst package can be installed by executing the

following code in the R console:

install.packages("stratEst")

You can also install the most recent development version of the package from GitHub using

the devtools package:

install.packages("devtools")

library(devtools)

install github("fdvorak/stratEst")

After successful installation, the package is loaded into memory and attached to the search

path in the usual way by:

library(stratEst)

Now the package is ready to use.

2

An introductory example

In this example, the stratEst package is used to perform strategy estimation based on the

fictitious data depicted in Figure 1. It will be useful to assume that the data set contains

the data of two individuals playing four periods of a helping game with each other. In each

period, both individuals simultaneously decide to help the other individual or not. Helping is

costly but receiving help implies a monetary benefit which exceeds the costs of helping. Each

row of the data shown in Figure 1 represents the action of one individual in one period of the

game. The first four columns identify the individual, the pairwise matching of individuals,

the game, and the period within the game. The fifth column contains a dummy variable

which is one if the individual helped the other individual in the respective period and zero

otherwise.

Figure 1: Fictitious data of a helping game

id group game period help
62 13 4 1 1
62 13 4 2 1
62 13 4 3 0
62 13 4 4 1
87 13 4 1 1
87 13 4 2 0
87 13 4 3 1
87 13 4 4 0

The goal of strategy estimation is to explain the actions of the two individuals based on

strategies that take the behavior of the other individual into account. Two tasks have to be

completed by the user before the estimation can be performed.

The first task is to define a common set of inputs and outputs for the candidate strategies.

Inputs represent information that can be observed by a player at a certain stage of the game

and potentially influence her continuation strategy. Outputs represent possible actions at

a certain stage of the game. If both individual can observe their actions, it is natural to

define the action profile of the previous period as the new information the strategies react

to on a regular basis. In the following, the action profiles (help, help), (help, no), (no, help),

(no, no) will be represented by the input values 1, 2, 3, and 4 respectively. The input value 0

is special and must be used at the beginning of a game when no information about past play

is available. For the outputs, the two possible actions no help and help will be represented

by the values 1 and 2 in the following. Top complete the first task, the data depicted in

Figure 1 must be stored as an R data frame augmented by the variables input and output

(see Subsection 8.1 for information on other data structures). This is achieved by executing

3

the following statements in the R console:

id <- c(62,62,62,62,87,87,87,87)

game <- c(4,4,4,4,4,4,4,4)

period <- c(1,2,3,4,1,2,3,4)

input <- c(0,1,2,3,0,1,3,2)

output <- c(2,2,1,2,2,1,2,1)

data <- as.data.frame(cbind(id,game,period,input,output))

The second task is to define which outputs follow after a each possible combination of inputs

for each candidate strategy. In the following two candidate strategies are defined. One

reciprocal strategy, that randomizes in the first period and subsequently helps if the other

participant helped in the previous period, and one alternating strategy, that helps with

probability 0.9 in uneven periods and with unknown probability in even periods.3 Each

of these two strategies can be represented by a deterministic finite-state automaton (see

Section 2 for more information). The following code creates an R matrix which contains the

deterministic finite-state automaton representations of the two strategies:

strategies <- matrix(c(1,2,3,1,2,0.5,0,1,0.1,NA,0.5,1,0,0.9,NA,2,2,2,2,1,

3,3,3,2,1,2,2,2,2,1,3,3,3,2,1),5,7)

Printed out in the console, the matrix looks like this:

> strategies

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 1 0.5 0.5 2 3 2 3

[2,] 2 0.0 1.0 2 3 2 3

[3,] 3 1.0 0.0 2 3 2 3

[4,] 1 0.1 0.9 2 2 2 2

[5,] 2 NA NA 1 1 1 1

Each row of the matrix represents one state of an automaton. The first three rows of the

matrix define the reciprocal strategy. The last two rows of the matrix define the alternating

strategy. The first column of the matrix enumerates the states of within each automaton.

A row with the value 1 in the first column represents the start state of the automaton. By

definition, a strategy is in its start state whenever the current input is zero. The second

3Inspection of the data reveals, that the reciprocal strategy perfectly describes the behavior of participant
62 while the alternating strategy provides a better description of the behavior of participant 87. With more
data, such inference will of course not be possible and it will be necessary to define reasonable candidate
strategies based on theory.

4

column indicates the probability of the output which has the lowest output value for the

respective state. In the example, the output with the lowest value is the one that represents

no help and the probability to observe this action as output in the start state is one half

for the reciprocal strategy. The third column indicates the probability of the output with

the next higher value which represents the action help. The pattern according to which

an automaton moves from one state to the next over the periods of the game is defined

in columns four to seven. The value 2 in the first row of column four indicates that the

reciprocal strategy moves from state 1 to state 2 if the input is 1. The value 3 in the first

row of column five indicates that the reciprocal strategy moves from state 1 to state 3 if the

input is 2, and so on.4 Rows four and five of the matrix strategies define the alternating

strategy in a similar fashion. The fact that the probability to help in even periods is ex-ante

unknown is indicated by inserting NA in column two.5

The central function of the package is the function stratEst(). It is the estimation function

which implements all variants of strategy estimation (see Section 8 for more information).

The following code is executed in the console to obtain maximum-likelihood estimates of the

population shares and the choice parameters of the two candidate strategies:

model <- stratEst(data,strategies)

The output objects of the function are stored as anR object of type list and can be called by

using the syntax model$object where object can be one of the output objects (see Subsec-

tion 8.2). To display the estimates of the population shares and the final strategy matrix the

objects model$ shares and model$strategies can be used to display the following results:

> model$shares

[,1]

[1,] 0.5

[2,] 0.5

> model$strategies

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 1 0.5 0.5 2 3 2 3

[2,] 2 0.0 1.0 2 3 2 3

[3,] 3 1.0 0.0 2 3 2 3

[4,] 1 0.1 0.9 2 2 2 2

[5,] 2 1.0 0.0 1 1 1 1

The first element of the vector model$shares indicates that the estimated share of individ-

uals in the sample that use the first strategy defined in strategies is 50%. The second

4Note that inputs were defined such that inputs 1 and 3 indicate help of the other participant in the
previous period. As the reciprocal strategy moves to state 2 after these inputs, and helps with probability
of one. The probability to help after observing input 2 or 4 which indicate no help, is zero as the strategy
moves to state 3.

5Whenever NA is supplied for a model parameter, stratEst will estimate this parameter from the data.
See Section 3 for information on the general model and its parameters.

5

element reveals that the estimated share of the second strategy is also 50%. The matrix

model$strategies returns the strategies which correspond to the estimated population

shares in model$shares. The format of the matrix corresponds to the format of the in-

put object strategies. The last element in the second column of the estimated strategies

indicates that the ex-ante unknown probability to help in even periods when using the al-

ternating strategy is estimated to be zero which coincides with the behavior of the second

individual in period four.

Repeated prisoner’s dilemma example

This example illustrates how to perform strategy estimation based on data from an indef-

initely repeated prisoner’s dilemma.6 It is shown how to replicate the results of Dal Bó

and Fréchette (2011) which was the first paper that performed strategy estimation. The

paper reports results on the evolution of cooperation in the indefinitely repeated prisoner’s

dilemma across six different treatments. The six treatments differ in the stage-game param-

eters and the continuation probability δ of the repeated game. The stage-game parameters

are depicted in Figure 2 where the parameter R is either 32, 40 or 48. For each value of R

two treatments exist with δ of 1/2 or 3/4 resulting in 2 times three between subject design

with six treatments overall. Figure 3 displays the first 8 rows of the data of the experiment

Figure 2: Stage game of Dal Bó and Fréchette (2011)
C D

C R,R 12,50

D 50,12 25,25

conducted by Dal Bó and Fréchette (2011). The first column identifies the treatment. The

second column contains an identifier of the participants. Column three enumerates the su-

pergame as each participants plays many repeated games during the experiment. Column

four indicates the period within the supergame. Column five and six contain dummy vari-

ables which indicate whether the participant and the other player cooperated in the current

period of the supergame. The data is available as an R data frame and the first 8 rows can

6The indefinitely repeated prisoner’s dilemma is special case in two ways: First, data can be submitted
in a format specific to this game. Second, the package comes with a set of 22 pre-programmed strategies for
the repeated prisoner’s dilemma listed in Tables A.1-A.3 of the Appendix.

6

Figure 3: First ten rows of data from Dal Bó and Fréchette (2011)

treatment id supergame period cooperation other cooperation
1 1 62 1 0 0
1 1 63 1 0 0
1 1 63 2 1 0
1 1 63 3 0 1
1 1 64 1 0 0
1 1 64 2 1 0
1 1 64 3 0 0

be inspected in the console by typing DF2011[1:8,].7

Dal Bó and Fréchette (2011) report the results of treatment-wise strategy frequency esti-

mation for six candidate strategies which are: Always Defect (ALLD), Always Cooperate

(ALLC), Tit-For-Tat (TFT), Grim-Trigger (GRIM), Win-Stay-Lose-Shift (WSLS), and a

trigger strategy with two periods of punishment (T2). The six strategies are included in

a set of the pre-programmed repeated prisoner’s dilemma listed in Tables A.1-A.3 of the

Appendix. The following code can be used to replicate the findings of Dal Bó and Fréchette

(2011), where treatment ∈ {1, · · · , 6} specifies the treatment number.

data <- DF2011[DF2011$treatment == 1,]

strategies <- rbind(ALLD,ALLC,GRIM,TFT,WSLS,T2)

model <- stratEst(data,strategies)

The estimated population shares can be inspected with the command model$shares and

are identical to those reported in the first column of Table 7 on page 424 of Dal Bó and

Fréchette (2011).

2 Strategies as Deterministic Finite-State Automata

Candidate strategies can be customized by the user and handed over to the estimation

function in the form of a deterministic finite-state automata (DFA). The DFA representation

of a strategy groups all situations where a strategy prescribes an identical behavioral response

into one state of the automaton. To give an example, consider the Tit-For-Tat (TFT)

7Note that the structure of the data is different to the structure explained in the previous example.
Data from a repeated prisoner’s dilemma can also be used in the form displayed in Figure 3. The estimation
function will assume that data is from a repeated prisoner’s dilemma whenever this structure is used. Another
possibility is to omit the variable other cooperation and instead use a group identifier with column name
group which identifies the pairwise matching of participants for a supergame. See Subsection 8.1 more
information.

7

strategy which starts with cooperation and subsequently mimics the behavior of the other

player in the previous period. TFT cooperates if the other player cooperated in the previous

period and defects if the other player defected in the previous period. If a game continues for

several periods, there are many different situations for which TFT prescribes cooperation.

For example, in period three, if the action of the other player was defection in period one

and cooperation in period two but also if the action of the other player was cooperation in

both of the previous periods. Characterizing TFT by specifying the behavioral response in

each possible situation is a daunting task if the game has many periods.

The TFT strategy can be characterized by an automaton with only two states C and D, and

two corresponding multinomial response vectors πC = {πcC = 1, πdC = 0} and πD = {πcD =

0, πdD = 1}. The elements of the response vectors define the probability for action a ∈ {c, d}
conditional on the state s ∈ {C,D} of the TFT automaton. In state C the automaton

representation of TFT prescribes to play c. In state D it prescribes to play d. At the same

time, the TFT automaton performs deterministic state transitions conditional on the current

state of the automaton and some input. In the case of TFT, the input is the action profile

of the previous period. Let aia− j denote the action profile of the previous period where ai

indicates the own action and aj the action of the other player. In state C, TFT remains in

state C if the input is cc or dc and changes to state D if the input is dc or dd. In state D,

TFT remains in state D if the input is dc or dd and changes to state C if the input is c or

dc. The input value 0 is used to indicate the empty action profile for period one.

Figure 4: The Tit-For-Tat and Always-Defect automata

C

cd,dd

cc,dc

cc,dc cd,ddD D

The two-state TFT automaton is depicted in the left panel of Figure 4. The two states are

represented by the two nodes labeled C and D. The deterministic state transitions of the

TFT automaton are illustrated by the arrows leaving the nodes. The information next to

an arrow indicates the inputs for which the transition takes place.

To give an example of an even simpler automaton, the right panel of Figure 4 depicts the

DFA representation of the strategy which always defects (ALLD). ALLD is represented as

a DFA with only one state D with the response vector πD = {πcD = 0, πdD = 1}. Since the

automaton has only one state, the deterministic state transition function points from state

D to itself for every possible input. The fact that this transition occurs for every possible

8

input is indicated with an unlabeled arrow.

2.1 General definition

stratEst uses the following general definition of a deterministic finite-state automaton. For

a game with inputs ω ∈ Ω and discrete responses r ∈ R the DFA k ∈ K is a 4-tuple

(Sk, sk0, φk, πk). Sk is a finite set of strategy-specific states with elements s and start state

sk0 ∈ S. φk : Sk × ω → Sk is a deterministic transition function which maps every possible

combination of states and inputs into the set of states. πk is a collection of multinomial

response vectors. The collection contains one vector for each state with R elements and∑R
r=1 πksr = 1, ∀ s ∈ Sk and k ∈ K. The DFA (Sk, sk0, φk, πk) prescribes a probabilistic

response pattern for every situation of the game.

To give an example, if automaton k is the TFT automaton: Sk ∈ {C,D}, sk0 = C, φk(s, c) =

C and φk(s, d) = D, ∀ s ∈ {C,D}, πks = {πc = 1, πd = 0} if s = C and πks = {πc = 0, πd =

1} if s = D. If automaton k is ALLD: Sk ∈ {D}, sk0 = D, φk(D,ω) = D ∀ ω ∈ {c, d}, and

πks = {πc = 0, πd = 1} where s = D.

2.2 Matrix representation

A set of strategies each represented as DFA (Sk, sk0, φk, πk) can be used as a candidate set

by the estimation function. The candidate set is submitted to the estimation function in the

form of an R matrix. To continue with the examples, the numbers embraced by the brackets

in Figure 5 define a candidate set which consists of the strategies TFT and ALLD.

Figure 5: Matrix representation of a candidate set

state π1
ks φ(s, 1) φ(s, 2) φ(s, 3) φ(s, 4) 1 1 1 2 1 2

2 0 1 2 1 2
1 0 1 1 1 1



The first two rows of the matrix define the TFT automaton. The third line defines the ALLD

automaton. Each row of the matrix corresponds to one state of a strategy, starting with the

initial state sk0 of an automaton. The labels on top of the matrix illustrate the information

in the columns and are not part of the matrix which used in the estimation function. The

first column enumerates the states of strategy k. Hence, the number one in the first column

always indicates the beginning of a new automaton with its start state. Column two contains

the element of the multinomial response vectors which predicts the lowest non-zero output

9

value in the data. In the example, this is action c, since we will use the value one to

indicate cooperation and zero for defection in the data. If there are more output values

in the data, more columns have to be added after the second column which contain the

response probabilities of the strategies for these output values. The response probability for

outputs with the value zero, are always omitted. Hence, the matrix representation of TFT

is sufficient if defection is indicated with the value zero in the data. If defection is instead

indicated with the value 2, we would need to include another column after the second column

with probability values that row-wise sum up to one.

Columns three to six define the deterministic transitions between states. The numbers in

column four indicate the next state if the input is one. In the example, the input is one

if the strategy profile of the previous period was cc, and the TFT automation moves on to

state C. The numbers in column four indicate the next state if the input is two. In the

example, the input is two if the action profile of the previous period was cd, and the TFT

automation moves on to state D. The interpretation of columns five and six is the same.

No column exists for the input 0 as this input always points to the start state unconditional

of the current state.

The system of rows and columns illustrated in the example can be used to define candidate

sets for many other games. For example, imagine the goal is to analyze data of variant of

the prisoner’s dilemma with a third action e labeled with the number two in the data. The

matrix can be augmented by additional column which indicates the probability of response e

for every state. Action e can also be used as an additional input which increases the number

of possible inputs from five to ten (3 × 3 action profiles plus input 0).

Generally speaking, the strategies matrix is a matrix where each row corresponds to one

state of a strategy, starting with the start state sk0 of an automaton. The first column

enumerates the states of each strategy in ascending order. A value of one in the first column

indicates the begin of a new strategy with its start state. The columns after the first column

contain the collection of multinomial response vectors. The number of columns for the

multinomial response vectors must correspond to the number of unique non-zero outputs in

data. Without a reference output - which is labeled with a zero in the output column of

data - the columns specify the complete multinomial response distribution for each unique

value in the output column. In this case, the response probabilities in each row must sum

to one. With a reference output, the response probability for the response labeled with

zero is omitted and the response probabilities in each row must sum to a value smaller or

equal to one. The remaining columns of the strategies matrix define the deterministic state

transitions. The number of columns must equal the number of unique non-zero inputs in

the data.

stratEst contains a set of 22 strategies which have been used to describe behavior in the

10

indefinitely repeated prisoner’s dilemma (Dal Bó and Fréchette, 2011; Fudenberg et al.,

2012; Breitmoser, 2015). A documentation of the strategies can be found in the Appendix.

The strategies documented in the Appendix can also serve as further examples.

3 Strategy Estimation

Strategy estimation was first used by Dal Bó and Fréchette (2011) to estimate the population

shares of a candidate set of strategies based on a sample of experimental data from the

indefinitely repeated prisoner’s dilemma. Since the original publication, strategy estimation

has been employed in several other studies on the repeated prisoner’s dilemma (e.g. Aoyagi

and Fréchette, 2009; Aoyagi et al., 2017; Arechar et al., 2017; Camera et al., 2012; Embrey

et al., 2013; Fudenberg et al., 2012; Breitmoser, 2015).

Breitmoser (2015) extended the method by simultaneously estimating the relative frequency

of strategies and some strategy-specific response parameters from experimental data. The

possibility to estimate response parameters from data turns out to be useful when candidate

strategies are ex-ante unknown or when some strategy parameters can’t be pinned down

based on theory (as it is the case for the semi-grim strategies reported in Breitmoser, 2015).

Dvorak and Fehrler (2018) extend strategy estimation in the spirit of latent class regression.

In the latent class regression model, the prior probability to use a certain strategy is modeled

as a function of individual characteristics which allows to asses the role of covariates for

strategy use.

Section 3 proceeds by introducing the general model, the algorithm and the parameter

estimates for strategy estimation in Subsections 3.1 - 3.3. The latent class regression model

receives separate treatment in Section 5.

3.1 Model

This subsection presents the general model for strategy estimation. Consider a collection

of categorical responses r = {1, · · · , R} of individuals i = {1, · · · , N} across situations

j = {1, · · · , J} of the same game. Each situation is characterized by a unique history of past

play leading to situation j. The DFA representation of strategy k assigns an internal state

sk = {1, · · · , Sk} to each situation j. The state determines the response of the individual in

the current situation. The subscript k which indicates that states are strategy-specific will

be omitted for better readability.

Let yisr denote the number of times response r is observed in nis observations of individ-

ual i when strategy k would be in state s. The central assumption of the model is that

the probability to observe vector Yis = {yisr, · · · , yisR} follows nis independent draws from

11

a multinomial distribution with parameters πks = {πks1, · · · , πksR} where πksr ∈ [0, 1] and∑R
r=1 πksr = 1 ∀ s ∈ Sk and k ∈ K. The assumption implies that the behavior of individ-

uals is exclusively determined by the strategy they use. As a result, responses should be

conditionally independent when controlling for the underlying strategies.

If k is a pure strategy, the response probabilities πksr are the result of pure underlying

response probabilities confounded by trembling hand errors (Selten, 1975). Let ξks denote a

vector of pure underlying response probabilities with elements ξksr ∈ {0, 1} and γks ∈ [0, 1]

the probability of a tremble. The response probabilities πksr follow from

πksr = ξksr(1− γks) + (1− ξksr)
γks
R− 1

. (1)

Equation (1) describes a process in which a tremble uniformly implements one of the other

responses after a realization has been obtained based on the vector ξks. The tremble rules

out that a single response which is not predicted by a pure strategy results in a likelihood

of zero that the individual uses the strategy.

stratEst estimates the maximum-likelihood shares pk ∈ [0, 1] with
∑K

k=1 pk = 1 of individuals

in the population which follow strategy k with strategy parameters πksr or ξksr and γks in

the case of pure strategies. If it was known which individual follows which strategy, pk would

immediately follow and the maximum-likelihood estimates of the strategy parameters could

be easily obtained. However, the assignments of individuals to strategies are unknown latent

variables which have to be estimated from the data. In the incomplete model, the strategy

shares pk indicate the prior probability that individual i uses strategy k. The observed

likelihood of the incomplete model is:

L =
N∏
i=1

K∑
k=1

pk

Sk∏
s=1

(
nis

yis1, · · · , yisR

) R∏
r=1

(πksr)
yisr

Since the multinomial coefficients are constant factors of the likelihood function, stratEst

maximizes the log-likelihood function

lnL =
N∑
i=1

ln

(
K∑
k=1

pk

Sk∏
s=1

R∏
r=1

(πksr)
yisr

)
. (2)

stratEst reports the parameters p∗k, π
∗
ksr which maximize (2) under the parameter constraints

πksr ∈ [0, 1] and
∑R

r=1 πksr = 1, and pk ∈ [0, 1] and
∑K

k=1 pk = 1.

12

3.2 Algorithm

stratEst uses the Expectation-Maximization algorithm (EM, Dempster et al., 1977) to ob-

tain the maximum-likelihood estimates p∗k, π
∗
ksr of the incomplete data problem outlined in

(2). The algorithm exploits the fact that the ML estimates of the strategy parameters can

be inferred if the assignments of individuals to strategies are known. At the same time,

for known strategy parameters, the computation of the posterior probability estimates of

the assignments of individuals to strategies is straightforward. After constrained random

initialization of the model parameters, the EM algorithm iterates between the two steps

until convergence of the log-likelihood defined in (2). In the expectation step, the posterior

probability that individual i uses strategy k is calculated based on the current values of the

parameters pk and πksr according to:

θik =
pk
∏Sk

s=1

∏R
r=1(πksr)

yisr∑K
k=1 pk

∏Sk

s=1

∏R
r=1(πksr)

yisr
. (3)

In the maximization step, the posterior probability assignments are used to update the

population shares and strategy parameters. The population shares pk are updated to the

expected values of the posterior probability assignments. The strategy parameters πks are

updated based on K weighted data sets. To obtain the weighted data for strategy k, the

responses Yis of individual i are considered proportional to the posterior probability that i

uses k. The two steps are subsequently repeated until the log-likelihood converges.

Depending on the starting values used, the EM algorithm may converge to local optima. To

avoid that local optima are returned by the estimation function, stratEst executes several

runs of the EM algorithm from different starting points. stratEst uses the procedure proposed

by Biernacki et al. (2003) to avoid local optima in an efficient way. During an outer run of

the solver, several short inner runs of the EM algorithm are performed from different starting

points and only the best solution obtained from the short runs is followed until convergence.

stratEst reports the best solution found in several outer runs of the solver.

3.3 Parameter estimation

To find the maximum-likelihood estimates p∗k, π
∗
ksr, the stratEst solver starts by randomly

initializing parameter values participant to the parameter constraints. In the expectation

step of each iteration, the posterior probability that individual i uses strategy k is updated

based on the current values of the model parameters according to (3). In the maximization

step of each iteration, the model parameters are updated in order to maximize (2) conditional

on the updated posterior probability assignments. For the strategy shares pk, this requires

13

optimization with respect to a sum-to-one constraint which is achieved based on the Lagrange

multiplier function

Λ(pk, λ) = lnL+ λ

(
K∑
k=1

pk − 1

)
.

Setting the partial derivatives ∂Λ/∂pk and ∂Λ/∂λ to zero and solving for pk and λ yields

the conditions

pk = −
N∑
i=1

θik
λ

and
K∑
k=1

pk = 1

which together yield λ = −N . Substitution into the first condition shows that the updated

values of the shares follow from the updated posterior probability assignments calculated in

the expectation step since

pnewk =

∑N
i=1 θik
N

. (4)

If some shares pk′ with k′ ∈ K have fixed values specified by the user, the remaining shares are

updated according to (4) and subsequently rescaled by 1−
∑

k′∈K pk′ to fulfill the sum-to-one

constraint. The response probabilities πksr are also updated participant to the sum-to-one

constraint. Using Lagrange multipliers the updated values follow from

πksrnew =
N∑
i=1

θikyisr∑N
i=1 θiknis

. (5)

Again, if parameters πksr′ with r′ ∈ R are fixed, the remaining updated parameters are

rescaled by 1−
∑

r′∈R πksr′ to fulfill the sum-to-one constraint.

stratEst uses the following procedure to update the pure underlying response parameters and

the corresponding trembles. The pure response parameters are updated by transforming the

updated values of the corresponding mixed parameters πksr according to

ξnewksr =

1 if πnewksr > πnewksr′ ∀ r′ 6= r

0 otherwise.
(6)

Equation 6 assigns density of one to the maximum of the updated response vector πnewks .

This assures that the corresponding tremble parameters γks are as small as possible. If the

maximum is not unique, the first parameter is set to one and all others values to zero. The

updated values of the trembles can be found based on the substitution of (1) into (5). For

the update of the tremble all response probabilities affected by the tremble are taken into

14

account which yields

γnewks =
N∑
i=1

θik
∑R

r=1(yisr − nisξnewksr)
(

R−1
1−R·ξnew

ksr

)
∑N

i=1 θik ·R · nis
. (7)

Whenever parameters specified by the user are pure (i.e. zero or one), stratEst will automat-

ically estimate a tremble parameter for these parameters. For mixed parameters, no tremble

is estimated. Generally, for all response parameters which are estimated from the data, the

restriction applies that all estimated parameters have to be of the same type either pure or

mixed. Strategy parameters specified by the user are not affected by this restriction and can

be pure or mixed independent of the type of the estimated parameters.

After all model parameters have been updated based on (4) and (5), the log-likelihood of the

updated model is determined based on (2) and compared to the value from the last iteration.

The algorithm continues with the next iteration as long as the log-likelihood increased in

the current iteration.

4 Model Selection

The number of free parameters of a completely unspecified model with mixed responses

equals (K − 1) + (R − 1) ·
∑K

k=1 Sk. Depending on the number of strategies, states and

responses the number of free model parameters can be quite large. Four different approaches

can be used to reduce the number of model parameters.

1. The conventional approach fixes parameters to specific values based on theoretical

considerations. Fixed parameters are not estimated and reduce the number of free

model parameters on a one to one basis.

2. Restrictions can be imposed on the strategy parameters. The restrictions imply that

all model parameters of the same family (π, γ) which are affected by the restriction are

reduced to a single vector of parameters. Three variants exist. Either each parameter

of the same family is replaced by a single parameter vector for each strategy, for each

state or overall.

3. The number of parameters of the same family can be selected based on information

criteria. Three variants exist. The optimal number of parameter vectors of the same

family is selected for each strategy, for each state or overall.

4. The number of strategies used to describe the data can be selected based on informa-

tion criteria. For a candidate set strategies, nested models with fewer strategies are

15

estimated and the best model is selected.

The first approach is achieved by fixing the elements of inputs objects at specific values

and illustrated in Section 8. The second, third , and fourth approaches are discussed in the

following Subsections 4.1, 4.2, and 4.3.

4.1 Restrictions on strategy parameters

By default strategy parameters are assumed to be strategy-state specific, i.e. a response

vector πks is estimated for every state of every strategy in the case of mixed responses and

a response vector ξks plus a tremble γks is estimated in the case of pure responses. One

possibility to reduce the number of free parameters is to impose restrictions that some of the

estimated strategy parameters from the same family are reduced to a single parameter vector.

Restrictions can be imposed independently on the parameter vectors πks and the trembles

γks. In both families of parameters, stratEst offers three variants of restrictions. Parameters

can either be strategy-specific, state-specific or global. The first variant estimates a single

parameter vector πk or a single parameter vector ξk and a single tremble γk per strategy

which applies in all states of the strategy. The second variant estimates a single parameter

vector πs or a single parameter vector ξs and a single tremble γs which applies in all states

with the same number in the first column of the strategy matrix which enumerates the states.

The third variant estimates a single parameter vector π or a single parameter vector ξ and

a single tremble γ which apply globally across all states and strategies. It is up to the user

to decide if any of the restrictions can be justified based on theory. Please note that the

second variant does not take into account whether states have the same deterministic state

transitions across strategies.

If restrictions to the strategy parameters apply, the maximization step in the parameter

estimation is adapted accordingly. Let Zt denote the set of all states sk of strategy k

where the corresponding strategy parameters are restricted to have the same underlying

parameter vector ζt, where t ∈ {1, · · · , T} is an index for the restrictions. The individual

score contributions to ζt take all parameters affected by restriction t into account, i.e.

πnewtr =
N∑
i=1

K∑
k=1

∑
s∈Zt

θikyisr∑N
i=1

∑
s∈Zt

θiknisk
(8)

if ζt is a vector of response parameters. If the responses are pure, the updated response pa-

rameters are processed as described in Subsection and the trembles ζt are updated according

16

to

γnewt =
N∑
i=1

K∑
k=1

∑
s∈Zt

θik
∑R

r=1(yisr − nisξnewksr)
(

R−1
1−R·ξnew

ksr

)
∑N

i=1

∑
s∈Zt

θik ·R · nis
. (9)

4.2 Selection of the number of strategy parameters

stratEst executes the following procedure to select the number of strategy parameters π, ξ

and γ based on one of the three information criteria outlined in Subsection 4.4. First, an

unrestricted model is estimated with a different parameter vectors for every strategy-state

combination. A strategy-state-specific response vector πks is estimated if the response is

mixed, and a strategy-state-specific response vector ξks and a tremble γks are estimated

if the response is pure. Next, a set of candidate parameter vectors of the same family is

identified. The candidate sets of parameter vectors which are participant the selection can

be restricted based on the three variants. The selection procedure for strategy parameters can

be restricted to select the parameter vectors globally, for states across all strategies, or within

strategies. For every pairwise combination of the elements of the set of candidate parameter

vectors, a model is estimated where two candidate parameter vectors are reduced to a single

parameter vector. The procedure continues as long as the fusion of any combination of two

candidate parameter vectors improves the information criterion specified by the user.

4.3 Selection of the number of strategies

The number of strategies can be reduced based on a procedure introduced by Breitmoser

(2015). The procedure starts by estimating the complete model with K strategies. Next,

K nested models which result from deleting one strategy from the set of K strategies are

estimated. The K nested models are ranked according to their log-likelihood. The procedure

starts with the nested model with the lowest log-likelihood and compares the value of the

information criterion with the value of the complete model with K strategies. If eliminating

the strategy is recommended based on the information criterion, the procedure is repeated

starting with the reduced model with K − 1 strategies. Otherwise, the nested model with

the second lowest log-likelihood is considered. The strategy selection procedure stops if no

strategy can be eliminated.

4.4 Information criteria

Three different penalized-likelihood criteria can be used to select the number of strategy

parameters and strategies. The criteria are the Akaike Information Criterion (AIC, Akaike,

1973), the Bayesian Information Criterion (BIC, Schwarz, 1978), and the Integrated Classi-

17

fication Likelihood (ICL, Biernacki et al., 2000). The formulas for the three model selection

criteria are

AIC = −lnL+ df

BIC = −lnL+
df

2
log(N)

ICL = BIC−
N∑
i=1

K∑
K=1

θiklog(θik),

In all three formulas, df represents the number of free parameters of the model. Different

assumptions and asymptotic approximations are needed to derive the formulas above. From

the practitioner’s point of view, the main difference between the three criteria is the size of

the penalty for model complexity. ICL penalizes complexity more than BIC, and BIC more

than AIC. In practice, all three model selection criteria will often deliver the same results.

It is recommended to use AIC when it is more important to avoid underfitting of the data,

and BIC when it is more important to avoid overfitting of the data. As ICL includes an

extra penalty for the entropy of the posterior probability assignments, it is recommended to

use ICL whenever precise predictions of individual strategy use are important.

5 Latent Class Regression

stratEst features latent class regression to assess the role of covariates for strategy use. Using

the posterior probability assignments of individuals to strategies as dependent variables in a

multinomial model leads to downward biased coefficients for the effects of covariates (Bolck

et al., 2004). Latent class regression (Dayton and Macready, 1988; Bandeen-Roche et al.,

1997) is a method which models the prior probability that individual i uses strategy k as

a function of covariates. The simultaneous estimation of model parameters and coefficients

generates unbiased estimates for the effect of the covariates.

5.1 The multinomial latent class model

stratEst uses the generalized multinomial logit link function to model the effects of covariates

on the prior probability that individual i uses strategy k (see Agresti, 2003, for an intro-

duction). The model takes the probability to use the first strategy as the benchmark. Then

the the log-odds of using strategy k compared to the first strategy are modeled as a linear

function of covariates. stratEst will automatically add an intercept which will result in a

covariate matrix X with N rows and C columns if C − 1 variables are supplied. Let Xi

18

denote the the ith row of the covariate matrix X, then:

ln(pik/pi1) = Xiβk ∀ k ∈ K

where pik represent the prior probability that individual i uses strategy k and βk is a column

vector of coefficients with C elements. Algebraic manipulations of the K equations above

yield

pik =
eXiβk∑K
k=1 e

Xiβk
(10)

and the posterior probability that individual i uses strategy k is now

θik =
pik
∏Sk

s=1

∏R
r=1(πksr)

yisr∑K
k=1 pik

∏Sk

s=1

∏R
r=1(πksr)

yisr
. (11)

The log-likelihood function of the latent class regression model is:

lnL =
N∑
i=1

ln

(
K∑
k=1

pik

Sk∏
s=1

R∏
r=1

(πksr)
yisr

)
. (12)

5.2 Parameter estimation

To goal of latent class regression is to identify the maximum-likelihood parameters β∗ and

π∗ksr which maximize (12). This is achieved based a variant of the EM algorithm which uses

a Newton-Raphson step to update the coefficients during the maximization step of the EM

algorithm (Bandeen-Roche et al., 1997). After initialization, the expectation step consists of

calculating the posterior probabilities θik according to (11). In the maximization step, the

column vector of coefficient β is updated using

βnew = β −H−1β Oβ (13)

where Oβ is the score of the coefficient vector with elements:

∂lnL

∂βqk
= xiq(θik − pik) (14)

and Hβ is the Hessian of (12) for the coefficients with elements

∂2lnL

∂βbl∂βck
=

N∑
i=1

xibxic(θil(δlk − θik)− pil(δlk − pik)) (15)

19

where l, k ∈ {1, · · · , K} and b, c ∈ {1, · · · , C} and δlk = 1 if l = k and δlk = 0 otherwise.

Note that in order to calculate pik, for individual i, the row vector Xi must be complete and

missing values are not allowed in the covariate matrix.

6 Standard Errors

By default analytic standard errors are reported for all estimated model parameters. The

estimation strategy rests on the assumption that the individuals’ strategy use is the result of

independent realizations of the same stochastic process. This assumption might be violated

for instance due to matching group or session effects in experiments. Unfortunately, using

cluster robust standard errors is not a solution to this problem. Parameter estimates will

be biased in cases where normal and cluster robust standard errors diverge due to the non-

linearity of the model (see King and Roberts, 2015). One way to deal with such data is

to use the same individual identifier for all observations which belong to the same cluster.

The reported posterior probability assignments can then be interpreted as the shares of the

strategies in each cluster. For the following calculations is assumed that the strategy use of

the entities of interest i ∈ {1, · · · , N} follow independent draws from the prior distribution

of strategies.

6.1 Analytic standard errors

stratEst estimates analytic standard errors based on the empirical observed information ma-

trix (Meilijson, 1989) (see Linzer and Lewis, 2011, for an earlier application of the estimation

procedure). The empirical observed information matrix is defined as

Ie(Y, Ψ̂) =
N∑
i=1

s(Yi, Ψ̂)sT (Yi, Ψ̂), (16)

where s(Yi, Ψ̂) is the score contribution of individual i with respect to parameter vector Ψ,

evaluated at the ML estimate Ψ̂. The reported standard errors are the square roots of the

main diagonal of the inverse of Ie(Y, Ψ̂). To calculate the standard error of the parameter

ηr with
∑R

r=1 ηr = 1, the score function s(Yi, η̂r) is reparameterized in terms of log-ratios

µr = ln(ηr/η1) and the variance-covariance matrix VAR(η) is calculated based on (16).

The variance-covariance matrix VAR(η) of the parameters is approximated using the delta

method by

VAR(f(µ̂)) = f ′(µ)Ie(Y, µ̂)−1f ′(µ)T , (17)

20

where f ′(µ) is the Jacobian of the function f(µr) = ηr = emur/
∑R

r=1 µr which converts the

values back to the original units.

stratEst uses the following score vectors to calculate the empirical observed information

matrix defined in (16). The shares are reparameterized in terms of log-rations as p∗k =

ln(pk/p1) and the score contribution ∂lnL/∂p∗k of individual i is

s(Yi, p
∗
k) = θik − pk. (18)

Let f(p∗k) = pk = ep
∗
k/
∑K

l=1 e
p∗l denote the inverse of the reparameterization, then the

Jacobian f ′(p∗) has elements

∂f(p∗k)

∂p∗l
=

−pkpl if l 6= k

pk(1− pl) if l = k
(19)

and the variance-covariance matrix of the shares is approximated by (17) using the inverse

of (16) based on the score contributions defined in (18).

If πksr are mixed parameters standard errors are calculated based on the reparameterization

π∗ksr = ln(πksr/πks1) and the score contribution ∂lnL/∂π∗ksr of individual i is

s(Yi, π
∗
ksr) = θik (yisr − nisπksr) . (20)

Let g(π∗ksr) = πksr = eπ
∗
ksr/

∑R
r=1 π

∗
ksr denote the inverse of the reparameterization, then the

Jacobian g′(π∗) has elements

∂g(π∗ksr)

∂π∗ltq
=


−πksrπltq if k = l and s = t and r 6= q

πksr(1− πltq) if k = l and s = t and r = q

0 otherwise

(21)

and the variance-covariance matrix of the shares is approximated by (17) using the inverse

of (16) based on the score contributions defined in (20).

No reparameterization is needed to obtain the standard errors of the tremble parameters

since for any value of the tremble γks the sum-to-one constraint is always fulfilled for all

affected response probabilities. The score contribution ∂lnL/∂γks of individual i is

s(Yi, γ
∗
ks) = θik

R∑
r=1

yisr
πksr

(
1− ξksr
R− 1

− ξksr
)

(22)

and the variance-covariance matrix is approximated by the inverse of (16) using the score of

21

the coefficients outlined in (22).

The reported standard errors of the latent class regression coefficients βck are the square

roots of the main diagonal of (16) using the score of the coefficients outlined in (14).

6.2 Analytic standard errors with parameter restrictions

If restrictions apply, the score vectors change as before where the score contribution of

individual i is the summation over all states sk ∈ Zt where parameters are affected by

restriction t ∈ {1, · · · , T}. For mixed response probabilities, the score contribution with

respect to the underlying common parameter ∂lnL/∂π∗tr of individual i is

s(Yi, π
∗
tr) =

K∑
k=1

θik
∑
sk∈Zt

(yisr − nisπksr) . (23)

and the Jacobian g′(π∗) has elements

∂g(π∗tr)

∂π∗uq
=


−πtrπuq if t = u and r 6= q

πt(1− πu) if t = u and r = q

0 otherwise.

(24)

With restrictions, the score contribution of a tremble parameter ∂lnL/∂γt of individual i is

s(Yi, γt) =
K∑
k=1

∑
sk∈Zt

θik

R∑
r=1

yisr
πksr

(
1− ξksr
R− 1

− ξksr
)

(25)

All other model parameters are not affected by the restrictions and calculated as outlined

before.

6.3 Bootstrapped standard errors

stratEst obtains bootstrapped standard errors for the population shares and strategy pa-

rameters by resampling individuals with replacement. In each bootstrap sample m ∈ M ,

parameter estimates are obtained based on the observations of N individuals sampled in

iteration m. Estimates for the strategy parameters are generated by fixing the value of all

remaining strategy parameters of the model at the original maximum-likelihood estimate for

these parameters. Fixation of the other model parameters is crucial to maintain the original

structure of the model across the bootstrap estimates.

When performing latent class regression, analytic standard errors are reported for the aver-

22

age priors pk and the coefficient vector β. The reason is that it is likely to produce samples

which suffer from quasi-complete separation during the bootstrap procedure. Under quasi-

complete separation, ML-estimate for the latent class regression coefficients may not exist

in some bootstrap replications. In these replications, estimates of the latent class regres-

sion coefficients take very large values and bias the bootstrapped standard errors for these

estimates.

7 Simulation

This section illustrates the validity of the estimation procedures based on simulated data.

M = 1000 samples are generated. Each sample m ∈ {1, · · · ,M} consists of the binary

responses of N = 200 individuals following one of the following two strategies:

s1 =

[
1 1− γm 1 2

2 γm 1 2

]
; s2 =

[
1 πm 1 2

2 πm 1 2

]

The parameters πm and γm are independent draws from a normal distribution with mean

0.25 and variance 0.1. The assignment of individuals to strategies in sample m is influenced

by covariate vector xi which contains an intercept and a dummy variable for individual i.

The dummy variable is one for half of the individuals and zero for the other half. The

probability of using si for individual i is given by:

Pr(s = s1|xi) =
1

1 + exiβm

The elements of the coefficient vector βm are the intercept β0m and the coefficient of the

dummy variable β1m. For each sample m, the coefficients β0m and β1m are independent

draws from a normal distribution with mean zero and variance of one. Individuals are

randomly assigned to s1 with Pr(si = s1|xi). In every sample m, 20 binary responses are

generated for each individual in each of the two states. The binary responses of an individual

are independent realizations of a Bernoulli process with success probability equal to the state

specific response probability of the strategy the individual has been assigned.

The following matrix is used to submit the strategies to the solver:

strategies =


1 1 1 2

2 0 1 2

1 NA 1 2

2 NA 1 2

 (26)

23

The first two rows of the matrix correspond to s1 and the second and third row to s2.

stratEst will automatically estimate tremble parameters for both states of the first strategy

if the submitted response probabilities are one and zero. Setting the response parameters

of the second strategy to NA implies that these parameters should be estimated from the

data. To estimate the correct model specification, the estimation is restricted to only one

response parameter π and one tremble parameter γ probability. To include covariates in the

estimation, a matrix covar is generated with one column and as many rows as data. Each

row of covar which contains an observation of individual i is set to the dummy variable of

individual i. For each sample m, the following syntax is used to estimate the correct model:

stratEst(data,strategies,covar,r.responses ="global",r.trembles ="global")

Omitting the restrictions r.responses ="global" and r.trembles ="global" will esti-

mate two response parameters - one for each occurrence of NA in strategies - and two tremble

parameters - one for each occurrence of one or zero in strategies - respectively.

Table 1: Simulation exercise with two strategies

coverage probability selection

θm E(θ̂m) E(θm − θ̂m) E(|θm − θ̂m|) analytic bootstrap correct

p1 0.498 0.000 0.026 0.957 0.956 0.999
p2 0.502 -0.000- 0.026 0.957 0.956 -
π 0.250 0.000 0.006 0.938 0.937 0.198
γ 0.252 -0.000- 0.006 0.946 0.944 0.384
β0 -0.023- 0.007 0.194 0.956 0.959 -
β1 0.078 -0.010- 0.366 0.935 0.947 -

Notes: The Table depicts the results of M = 1000 Monte Carlo samples of data consisting of the responses of
200 individuals observed 20 times in each of two states. θm represents the true parameter in sample m and θ̂m
the corresponding estimate based on sample m. Bootstrapped standard errors based on 1000 samples.

Table 1 summarizes the results of the simulation exercise. Columns two to four depict

the averages of the estimated parameters, the difference between the estimated to the true

parameters, and the absolute difference between the estimated and the true parameters over

the 1000 samples. The averages of the parameter estimates in the first column are close to

the actual means of the distributions where the parameters are drawn from. The averages of

the differences between the estimated and the drawn parameters in the second column show

no systematic biases of the estimates. The averages of the absolute differences between the

estimated and the true parameters are small. Note that the absolute differences are larger

for the latent class regression coefficients due to the different scale of these parameters.

24

Columns five and six of Table 1 report the coverage probabilities of analytic and bootstrapped

of 95% confidence intervals for the model parameters. The coverage probabilities are close

to the expected probability of 0.95. For the coverage probabilities displayed in rows one to

four, the 95 percent confidence interval based on 1000 Monte Carlo samples can be calculated

which spans from 0.936 to 0.964.

Next, the simulated data is used to illustrate the selection of the number of strategies,

response probabilities, and trembles. Two additional strategies are added to the strategy

matrix as red herrings which are similar to the two true underlying strategies. The augmented

candidate set of four strategies offers several different possibilities to over-fit the data. To

include the two additional strategies, strategies is augmented by the following rows:
1 1 1 2

2 NA 1 2

1 NA 1 2

2 0 1 2

 (27)

In each of the M samples, a selection of the number of strategies, responses and trembles

based on the ICL criterion is executed with the command:

stratEst(data,strategies,covar,select ="all",crit = "ICL")

The last column of Table 1 depicts the results of the parameter selection. The numbers

displayed in the last column indicate the frequency of selecting the correct number of shares,

response probabilities and trembles across the M samples. The first row indicates that

the correct number of strategies selected in 999 out of 1000 samples. Rows three and four

show that the probability to select the correct number of response parameters and trembles

is substantially lower. This indicates that the selection of the number of responses and

trembles frequently produces results generally over-estimate the number of responses and

trembles.

8 Using the Package

The central estimation function of the package is the function stratEst(). The function

expects input objects in the following order:

stratEst(data,strategies,shares,covariates,response,r.responses,r.trembles,

r.select,crit,se,outer.runs,outer.tol,outer.max,inner.runs,

inner.tol,inner.max,lcr.runs,lcr.tol,lcr.max)

25

Subsections 8.1 and 8.2 explain the input and the output objects of the function.

8.1 Input objects

data: Mandatory input object which contains the data for the estimation in the long format.

Each row in data represents one observation of one individual. The object data must be an

R data frame object with variables in columns. Three columns are mandatory: A column

named id which identifies the observations of the same individual across the rows of the

data frame. A column named input which indicates the type of information observed by the

individual before giving a response. A column named output which contains the behavioral

response of the individual after observing the input. If an individual plays the same game

for more than one period with the same partner, data must contain a variable period which

identifies the period within the game. If an individual plays the same game more than once

with different partners, data must contain a variable game (or supergame) which identifies

data from different games. For data from prisoner’s dilemma experiments, two more data

formats are possible. Instead of using the variables input and output, the data frame may

also contain the variables cooperation and other cooperation, or alternatively, the variables

cooperation and group. The variable cooperation should be a dummy which indicates if the

participant cooperated in the current period. The variable other cooperation should be a

dummy which indicates if the other player cooperated in the current period. The variable

group should be an identifier variable with a unique value for each unique match of two

individuals.

strategies: Mandatory input object. Can be either a positive integer or a matrix. If an

integer is used, the estimation function will generate the respective number of memory-one

strategies with as many states as there are unique input values in data. A matrix can be used

to supply a set of customized strategies. In the matrix, each row corresponds to one state

of a strategy, starting with the start state of an automaton. The first column enumerates

the states of each strategy in ascending order. A value of one in the first column indicates

the begin of a new strategy with its start state. The columns after the first column contain

the collection of multinomial response vectors. The number of columns for the multinomial

response vectors must correspond to the number of unique non-zero outputs in data. With-

out a reference output - which is labeled with a zero in the output column of data - the

columns specify the complete multinomial response distribution for each unique value in the

output column. In this case, the response probabilities in each row must sum to one. With

a reference output, the response probability for the response labeled with zero is omitted

and the response probabilities in each row must sum to a value smaller or equal to one.

The remaining columns of the strategies matrix define the deterministic state transitions.

26

The number of columns must equal the number of unique non-zero inputs in the data. The

numbers in the first column indicate the next state of the automaton if the input is one.

The numbers in the second column indicate the next state if the input is two and so on.

shares: A column vector of strategy shares. The number of elements must correspond

to the number of strategies defined in the strategies matrix. Elements which are NA are

estimated from the data. If the object is not supplied, stratEst estimates a share for every

strategy defined in the strategies matrix.

covariates: A matrix where each row corresponds to same row in data. Hence, the co-

variate matrix must have as many rows as the data matrix. Observations which have the

same ID in data must also have the same vector of covariates. Missing value are not allowed.

If covariates are supplied, stratEst estimates the latent class regression model introduced in

Section 5.

response: String which can be set to pure or mixed. If set to pure all response probabil-

ities estimated from the data are pure responses. If set to mixed all response probabilities

estimated from the data are mixed responses. The default is mixed.

r.responses: A string which can be set to no, strategies, states or global. If set to strategies,

the estimation function estimates strategies with one strategy specific vector of responses in

every state of the strategy. If set to states, one state specific vector of responses is estimated

for each state. If set to global, a single vector of responses is estimated which applies in every

state of each strategy. Default is no.

r.trembles: String which can be set to no, strategies, states or global. If set to strategies,

the estimation unction estimates strategies with one strategy specific tremble probability.

If set to states, one state specific tremble probability is estimated for each state. If set to

global, a single tremble is estimated which applies in every state of each strategy. Default is

no.

select: String which can be set to no, strategies, responses, trembles, both, and all. If set to

strategies, responses, trembles, the number of strategies, responses, trembles respectively are

selected based on the selection criterion specified in option crit. If set to both, the number

of responses and trembles are selected. If set to all, the number of strategies, responses, and

trembles are selected. Default is no.

crit: String which can be set to BIC, AIC or ICL. If set to BIC, model selection based

on the Bayesian Information criterion is performed. If set to AIC, the Akaike Information

criterion is used. If set to ICL the Integrated Classification Likelihood criterion is used.

Default is BIC.

se: String which can be set to no, yes or bs. If set to no, standard errors are not reported.

If set to yes, analytic standard errors are reported. If set to bs, bootstrapped standard errors

27

are reported for responses and trembles. Default is yes.

outer.runs: Positive integer which stets the number of outer runs of the solver. Default is

10.

outer.tol: Positive number which stets the tolerance of the continuation condition of the

outer runs. The iterative algorithm stops after iteration j if 1 − LLj/LLj−1 < outer.tol.

Default is 0.

outer.max: Positive integer which stets the maximum number of iterations of the outer

runs of the solver. The iterative algorithm stops after iteration j if j = outer.max. Default

is 1000.

inner.runs: Positive integer which stets the number of inner runs of the solver. Default is

100.

inner.tol: Positive number which stets the tolerance of the continuation condition of the

inner EM runs. The iterative algorithm stops after iteration j if 1−LLj/LLj−1 < inner.tol.

Default is 0.

inner.max: Positive integer which stets the maximum number of iterations of the inner EM

runs. The iterative algorithm stops after iteration j if j = inner.max. Default is 100.

lcr.runs: Positive integer which stets the number of estimation runs for latent class re-

gression. Default is 100.

lcr.tol: Positive number which stets the tolerance of the continuation condition of the la-

tent class regression runs. The iterative algorithm stops after iteration j if 1−LLj/LLj−1 <
LCR.tol. Default is 0.

lcr.max: Positive integer which stets the maximum number of iterations of the latent class

regression EM runs. The iterative algorithm stops after iteration j if j = inner.max. Default

is 1000.

8.2 Output objects

shares: Column vector which contains the estimates of population shares for the strategies.

The first element corresponds to the first strategy defined in the strategy matrix, the second

element to corresponds to the second strategy and to on. Can be used as input object of the

estimation function.

strategies: Matrix which contains the strategies of the model. Can be used as input

object of the of the estimation function.

responses: Column vector which contains the response probabilities of the strategies. The

28

value -1 indicates that the corresponding response could not be estimated since data does

not contain observations the model assigns to the corresponding state.

trembles: Column vector which contains the tremble probabilities of the strategies. The

value -1 indicates that the corresponding response could not be estimated since data does

not contain observations the model assigns to the corresponding state.

coefficients: Column vector which contains the latent class regression coefficients for

strategies 2 to k.

response.mat: Matrix which contains the estimates of the response probabilities for the

columns of the strategy matrix which represent the response probabilities.

tremble.mat: Matrix which contains the estimates of the tremble probabilities for the

columns of the strategy matrix which represent the response probabilities.

coefficient.mat: Matrix which contains the latent class regression coefficients of strate-

gies 2 to K in columns.

ll.val: The log-Likelihood value corresponding to the reported estimates. Bigger values

indicate a better fit of the model to the data.

crit.val: The value of the selection criterion defined with option crit. Bigger values indi-

cate a better fit of the model.

eval: Number of iterations of the solver. The reported number is the sum of iterations

performed in the inner and the outer run which led to the reported estimates.

tol.val: The tolerance value in the last iteration.

assignments: Matrix which contains the posterior probability assignments θik of individ-

uals to strategies. The matrix has N rows which correspond to the ID sorted in ascending

order beginning with the individual with the lowest ID. The matrix has K columns which

correspond to the strategies, starting with the first strategy defined in the strategy matrix

in column one.

priors: Matrix which contains the individual prior probabilities pik of individuals as pre-

dicted by the covariate vectors of the individuals. The matrix has N rows which correspond

to the ID sorted in ascending order beginning with the individual with the lowest ID. The

matrix has K columns which correspond to the strategies, starting with the first strategy

defined in the strategy matrix.

shares.se: Column vector which contains the standard errors of the estimated shares. The

elements correspond to the vector of estimates.

responses.se: Column vector which contains the standard errors of the reported responses.

The elements correspond to the vector of estimates.

trembles.se: Column vector which contains the standard errors of the reported trembles.

29

The elements correspond to the vector of estimates.

coefficients.se: Column vector which contains the standard errors of the reported coef-

ficients. The elements correspond to the vector of estimates.

convergence: Row vector which reports the maximum value of the score vector of the shares

as the first element, responses as the second element, trembles as the third element, and LCR

coefficients as the forth element. Small values indicate convergence of the algorithm to a

(local) maximum.

References

Agresti, A. (2003): Logit Models for Multinomial Responses, Wiley-Blackwell, chap. 7, 267–313.

Akaike, H. (1973): Second International Symposium on Information Theory, Budapest, Hungary:

Akademiai Kiado, chap. Information Theory and an Extension of the Maximum Likelihood

Principle, 267–281.

Aoyagi, M., V. Bhaskar, and G. R. Fréchette (2017): “The Impact of Monitoring in In-

finitely Repeated Games: Perfect, Public, and Private,” Mimeo.

Aoyagi, M. and G. R. Fréchette (2009): “Collusion as public monitoring becomes noisy:

Experimental evidence,” Journal of Economic Theory, 144, 1135–1165.

Arechar, A. A., A. Dreber, D. Fudenberg, and D. G. Rand (2017): “I’m just a soul

whose intentions are good?: The role of communication in noisy repeated games,” Games and

Economic Behavior, 104, 726–743.

Bandeen-Roche, K., D. L. Miglioretti, S. L. Zeger, and P. J. Rathouz (1997): “La-

tent Variable Regression for Multiple Discrete Outcomes,” Journal of the American Statistical

Association, 92, 1375–1386.

Beath, K. (2011): “randomLCA: Random Effects Latent Class Analysis,” Tech. rep., R package

version 0.7, URL http://CRAN.R-project.org/package=randomLCA.

Bengtsson, H. (2018): R.rsp: Dynamic Generation of Scientific Reports, r package version 0.43.0.

Biernacki, C., G. Celeux, and G. Govaert (2000): “Assessing a mixture model for clustering

with the integrated completed likelihood,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, 22, 719–725.

——— (2003): “Choosing starting values for the {EM} algorithm for getting the highest likelihood

in multivariate Gaussian mixture models,” Computational Statistics & Data Analysis, 41, 561–

575.

30

Bolck, A., M. Croon, and J. Hagenaars (2004): “Estimating Latent Structure Models with

Categorical Variables: One-Step Versus Three-Step Estimators,” Political Analysis, 12, 3–27.

Breitmoser, Y. (2015): “Cooperation, but no reciprocity: Individual strategies in the repeated

prisoner’s dilemma,” American Economic Review, 105, 2882–2910.

Camera, G., M. Casari, and M. Bigoni (2012): “Cooperative strategies in anonymous

economies: An experiment,” Games and Economic Behavior, 75, 570–586.

Dal Bó, P. and G. R. Fréchette (2011): “The evolution of cooperation in infinitely repeated

games: Experimental evidence,” American Economic Review, 101, 411–429.

Dayton, C. M. and G. B. Macready (1988): “Concomitant-Variable Latent-Class Models,”

Journal of the American Statistical Association, 83, 173–178.

Dempster, A., N. Laird, and D. B. Rubin (1977): “Maximum likelihood from incomplete data

via the EM algorithm,” Journal of the Royal Statistical Society Series B, 39, 1–38.

Dvorak, F. and S. Fehrler (2018): “Negotiating Cooperation Under Uncertainty: Commu-

nication in Noisy, Indefinitely Repeated Interactions,” Tech. rep., IZA Discussion Paper No.

11897.

Eddelbuettel, D. and R. François (2011): “Rcpp: Seamless R and C++ Integration,” Journal

of Statistical Software, 40, 1–18.

Embrey, M., G. Fréchette, and E. Stacchetti (2013): “An Experimental Study of Imperfect

Public Monitoring: Efficiency Versus Renegotiation-Proofness,” Mimeo.

Fudenberg, D., D. G. Rand, and A. Dreber (2012): “Slow to Anger and Fast to Forgive:

Cooperation in an Uncertain World,” American Economic Review, 102, 720–749.

Kaufman, L. and P. J. Rousseeuw (1990): Finding groups in data. an introduction to clus-

ter analysis, Wiley Series in Probability and Mathematical Statistics. Applied Probability and

Statistics, New York: John Wiley & Sons, Inc.

King, G. and M. E. Roberts (2015): “How Robust Standard Errors Expose Methodological

Problems They Do Not Fix, and What to Do About It,” Political Analysis, 23, 159–179.

Lazarsfeld, P. F. (1950): Measurement and Prediction, New York: John Wiley & Sons, Inc.,

chap. The Logical and Mathematical Foundations of Latent Structure Analysis, 362–412.

Leisch, F. (2004): “FlexMix: A General Framework for Finite Mixture Models and Latent Class

Regression in R,” Journal of Statistical Software, 11.

Linzer, D. A. and J. B. Lewis (2011): “poLCA: An R Package for Polytomous Variable Latent

Class Analysis,” Journal of Statistical Software, 42.

31

McLachlan, G. and D. Peel (2005): Finite Mixture Models, New York: John Wiley & Sons,

Inc.

Meilijson, I. (1989): “A Fast Improvement to the EM Algorithm on its Own Terms,” 51, 127–138.

R Development Core Team (2008): “R: A language and environment for statistical comput-

ing,” Tech. rep., R Foundation for Statistical Computing.

Sanderson, C. and R. Curtin (2016): “Armadillo: a template-based C++ library for linear

algebra.” Journal of Open Source Software, 1, 26.

Schwarz, G. (1978): “Estimating the Dimension of a Model,” Ann. Statist., 6, 461–464.

Selten, R. (1975): “Reexamination of the perfectness concept for equilibrium points in extensive

games,” International Journal of Game Theory, 4, 25–55.

Wickham, H. (2011): “testthat: Get Started with Testing,” The R Journal, 3, 5–10.

Wickham, H., P. Danenberg, and M. Eugster (2018a): roxygen2: In-Line Documentation

for R, r package version 6.1.1.

Wickham, H., J. Hester, and W. Chang (2018b): devtools: Tools to Make Developing R

Packages Easier, r package version 2.0.1.

Xie, Y. (2018): “knitr: A General-Purpose Package for Dynamic Report Generation in R,” Tech.

rep., R package version 1.20.

32

Appendix

Tables A.1, A.2, and A.3 depict 22 strategies for the repeated prissonne’s dilemma which

can be used after the package is loaded and attached to the search path with the command

library(stratEst). Strategies 1-20 and their descriptions are taken from Fudenberg et al.

(2012). Strategy 21 is the semi-grim structure discovered by Breitmoser (2015). In the

automata representations in column three, circles represent strategy states and arrows tran-

sitions between strategy states. The start state sk0 of the strategies is always the first circle

from the left. Capital letters in the circles indicates the action the automata prescribes in

the state. Variables indicate an ex-ante unspecified probability to cooperate. Transitions

between states occur conditional on the action profile of the current period. Letters next

to transition arrows indicate that the transition occurs conditional on observing this profile.

The first letter of action profiles indicates the own action and the second letter the action

of the other player in the current period. To give an example, if the action profile next to

the arrow is cd, the transition arrow is applies if the own action i c and the action of the

other player i d in the current period. If no action profile is depicted next to an arrow,

the transition arrow applies unconditionally, for all possible action profiles which can be

observed.

The strategies depicted in Tables A.1, A.2, and A.3, can be used for data which has the

following format: The output in column five must be 1 if the action of the player was

cooperation and 0 if the action was defection. Zeros have to be used as inputs in period

one. In all other periods the values 1, 2, 3 and 4 are used to indicate the strategy profiles

cc, cd, dc and dd of the current period respectively. The matrix representation of strategies

follows Section 2. Each row represents one state of a strategy and the first column indicates

the state number. The second column the probability to play C in every state. Columns 3-6

indicate the deterministic state transitions after observing the action profiles cc, cd, dc, and

dd respectively.

33

Table A.1: Pre-programmed prisoner’s dilemma strategies (1-10)

Acronym Description Automaton Matrix

s πc cc cd dc dd

ALLD Always play D D 1 0 1 1 1 1

ALLC Always play C C 1 1 1 1 1 1

DC
Start with D, then alternate
between C and D

D C
1 0 2 2 2 2
2 1 1 1 1 1

FC
Play C in the first period,
then D forever

C D
1 1 2 2 2 2
2 0 2 2 2 2

Grim
Play C until either player
plays D, then play D forever

C

cd, dd, dd

cc D
1 1 1 2 2 2
2 0 2 2 2 2

TFT
Play C unless partner played
D in previous period

C

cd, dd

cc, dc

cc,

dc

cd,

ddD
1 1 1 2 1 2
2 0 1 2 1 2

PTFT
(WSLS)

Play C if both players chose
the same move in the previous
period, otherwise play D

C

cd, dc

cc, dd

cc,

dd

cd,

dcD
1 1 1 2 2 1
2 0 1 2 2 1

T2

Play C until either player
plays D, then play D twice
and return to C (regardless of
all actions during the punish-
ment periods)

C

cd, dd, dd

cc D D
1 1 1 2 2 2
2 0 3 3 3 3
3 0 1 1 1 1

TF2T
Play C unless partner played
D in both of the last 2 periods

C
cc,

dc

cd, dd

cd, dd

cc, dc

cc, dc

dc

cd,

ddC D
1 1 1 2 1 2
2 1 1 3 1 3
3 0 1 3 1 3

TF3T
Play C unless partner played
D in all of the last 3 periods

C
cc,

cc, dc

dc

cd, dd

cd, ddcd, dd

cc, dc

cc, dc

dc

cd,

ddC C D

1 1 1 2 1 2
2 1 1 3 1 3
3 1 1 4 1 4
4 0 1 4 1 4

34

Table A.2: Pre-programmed prisoner’s dilemma strategies (11-18)

Acronym Description Automaton Matrix

s πc cc cd dc dd

T2FT

Play C unless partner played
D in either of the last 2 peri-
ods (2 periods of punishment
if partner plays D)

D
cc,

dc

cc, dc

cd, dd cd, dd

cc, dc

cd, dd

dcC D
1 1 1 2 1 2
2 0 3 2 3 2
3 0 1 2 1 2

T2F2T

Play C unless partner played
2 consecutive Ds in the last 3
periods (2 periods of punish-
ment if partner plays D twice
in a row)

D
cc,

dc

cc,

dc

cc, dc

cd, dd cd, dd

cc, dc

cd, dd

cc, dc

cd, dd

dcCC D

1 1 1 2 1 2
2 1 1 3 1 3
3 0 4 3 4 3
4 0 1 3 1 3

Grim2

Play C until 2 consecutive pe-
riods occur in which either
player played D, then play D
forever

C

cc cd, dd, dd

cd, dd, dd

cc C D
1 1 1 2 2 2
2 1 1 3 3 3
3 0 3 3 3 3

Grim3

Play C until 3 consecutive pe-
riods occur in which either
player played D, then play D
forever

C

cc

cc

cd, dd, dd

cd, dd, dd cd, dd, dd

cc C C D

1 1 1 2 2 2
2 1 1 3 3 3
3 1 1 4 4 4
4 0 4 4 4 4

PT2FT

Play C if both players played
C in the last 2 periods, both
players played D in the last
2 periods, or both players
played D 2 periods ago and C
in the previous period. Oth-
erwise play D

D

cc, dd

cc, dd

cd, dc

cd, dc

cd, dc

cc,

dd C D
1 1 1 2 2 1
2 0 3 2 2 3
3 0 1 2 2 1

DTFT
Play D in the first period,
then play TFT

D

cc, dc

cd, dd

cd,

dd

cc,

dcC
1 0 2 1 2 1
2 1 2 1 2 1

DTF2T
Play D in the first period,
then play TF2T

C
cc,

dc

cd, dd

cd, dd

cc, dc

cc, dc

dc

cd,

dd

cc, dc

cc, dc

cd, dd

C DD

1 0 2 3 2 3
2 1 2 3 2 3
3 1 2 4 2 4
4 0 2 4 2 4

DTF3T
Play D in the first period,
then play TF3T

C
cc,

cc, dc

dc

cd, dd

cd, ddcd, dd

cc, dc

cc, dc

dc

cd,

dd

cc, dc

cc, dc

cd, dd

C C DD

1 0 2 3 2 3
2 1 2 3 2 3
3 1 2 4 2 4
4 1 2 5 2 5
5 0 2 5 2 5

35

Table A.3: Pre-programmed prisoner’s dilemma strategies (19-22)

Acronym Description Automaton Matrix

s πc cc cd dc dd

DGrim2
Play D in the first period,
then play Grim2

C

cc
cc

cc cd, dd, dd

cd, dd, dd

cd, dd, dd

ccD C D

1 0 2 3 3 3
2 1 2 3 3 3
3 1 2 4 4 4
4 0 4 4 4 4

DGrim3
Play D in the first periodpe-
riod, then play Grim3

C

cc

cc

cc

cc

cd, dd, dd

cd, dd, dd

cd, dd, dd

cd, dd, dd

ccD C C D

1 0 2 3 3 3
2 1 2 3 3 3
3 1 2 4 4 4
4 1 2 5 5 5
5 0 5 5 5 5

SGrim

Play C if both players played
C, and D if both players
played D. If one player played
D and the other C, play C
with probability α.

C dd

cc dd

cd, dc cd, dc

cc

cc

cd, dc

dd

α

D
1 1 1 2 2 3
2 NA 1 2 2 3
3 0 1 2 2 3

M1BF

Play C if both players played
C, and D if both players
played D. If the own action
was C and the other player
played D, play C with proba-
bility α. If the own action was
D and the other player played
C, play C with probability β.

C

dd

cd dd

dccc

cc cd

dddc
cc

cd dccc

cd

dc

dd

β

α

D

1 1 1 2 3 4
2 NA 1 2 3 4
3 NA 1 2 3 4
4 0 1 2 3 4

36

