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stplanr: A Package for Transport Planning
by Robin Lovelace, Richard Ellison

Abstract Tools for transport planning should be flexible, robust and scalable. stplanr meets each
of these criteria by providing functionality commonly needed for transport planning in R, with an
emphasis on spatial transport data. This includes tools to import and clean transport datasets; the
creation of geographic ‘desire lines’ from origin-destination data; methods to assign these desire lines
to the transport network, e.g. via interfaces to routing services such as CycleStreets.net, Graphhopper
and the OpenStreetMap Routing Machine (OSRM); functions to calculate the geographic attributes of
such routes, such as their bearing and equidistant surroundings; and ‘travel watershed’ analysis. With
reproducible examples and using real transport datasets, this article demonstrates how R can form the
basis of a reproducible and flexible transport planning workflow. We conclude with a brief discussion
of desirable directions of future development.

Introduction

The practice of transport planning can been defined as “preparing, assessing and implementing
policies, plans and projects to improve and manage our transport systems” (?). Clearly this will
involve some judgements based on intuition, experience and political considerations. However, with
the push for measurable improvements in terms of ‘sustainability’ (e.g. reduced energy use), the
pressure on transport planners to adopt scientific methods, including computating, has grown (?).
Transport planning is a diverse field requiring a wide range of computational tasks (?). Software for
transport planning should therefore be: flexible, able to handle a wide range of data formats; robust,
able to generate reproducible results for transparent decision-making; and scalable, able to work at
multiple geographic levels from single streets to large cities and regions.

R can provide a solid basis for a transport planning workflow that meets each of these criteria.
Packages such as sp (?) and rgeos (?) greatly extend R’s spatial data handling and modelling
capabilities (?). Packages building on the sp class system have been developed for specific domains,
including SpatialEpi (?), diseasemapping (?) and the adehabitat family of packages (?).

Inspired by such efforts and driven by our own research needs, our primary aim for stplanr is to
provide an R toolbox for transport planning. Although the focus is on spatial transport datasets (and
most transport problems contain a spatial component), stplanr also provides functions for handling
non-spatial datasets.

Motivations

There has been little in the way of R development for transport applications. This is surprising given the
ubiquity of transport problems,1 R’s aptitude for handling transport data (including spatial and travel
survey data), and the increasing use of R in applied domains. Increasingly, R is the go-to statistical
software in many organisations: academic, public sector and privately owned. Such organisations
undertake the majority of transport planning research. This paper was therefore motivated by the
desire to demonstrate that R provides an excellent framework for transport research. If readers
decide not to use the package, perhaps needing bespoke solutions to specific transport problems not
covered by stplanr, it is hoped that the ideas, functions and datasets described in this paper inspire
parallel developments in the space of ‘R for transport applications’. Moreover, by making the package
deliberately broad in its scope, we hope that stplanr can help build a nascent community of R-using
transport researchers. We welcome feature requests and feedback at the package’s online home.

R is already used in transport applications, as illustrated by recent research that applies packages
from other domains to transport problems. For instance, ? (?) use R to analyse the data collected from
an online survey focused on car-sharing, bicycle-sharing and electric vehicles. ? (?) also used R to
collect and analyse transport-related data from Twitter using packages including XML, twitteR and
ggplot2. These packages were used to download, parse and plot the Twitter data using a method
that can be repeated and the results reproduced or updated. More general statistical analyses have
also been conducted on transport-related datasets using packages including muStat and mgcv (??).
Despite the rising use of R for transport research, there has yet been to be a package for transport
planning.

1Most people can identify interventions that they think would make the transport systems they interact with
more sustainable. Think about the paths and roads you travel on, for example: what interventions would you
prioritise to improve non-motorised access, for walking, cycling and wheel-chairs? What quantitative evidence
would you need to communicate this to the relevant authorities?
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The design of the R language, with its emphasis on flexibility, data processing and statistical
modelling, suggests it can provide a powerful environment for transport planning research. There are
many quantitative methods in transport planning (?) and we have attempted to focus on those that
are most generalisable and frequently used. stplanr facilitates the following common computational
tasks for transport planning:

• Accessing and processing of data on transport infrastructure and behaviour
• Analysis and visualisation of the transport network
• Analysis of origin-destination (OD) data and the visualisation of resulting ‘desire lines’
• The allocation of desire lines to roads and other guideways via routing algorithms to show

commonly used routes through geographical space
• The aggregation of routes to estimate total levels of flow on segments throughout the transport

network
• Development of models to estimate transport behaviour currently and under various scenarios

of change
• The calculation of ‘catchment areas’ affected by transport infrastructure

The automation of such tasks can assist researchers and practitioners to create evidence for decision
making. If the data processing and analysis stages are fast and painless, more time can be dedicated to
visualisation and decision making. This should allow researchers to focus on problems, rather than on
wrestling with unwieldy datasets, clunky graphical user interfaces (GUIs), and ad-hoc scripts that
could be generalised. Furthermore, if the process can be made reproducible and accessible (e.g. via
online visualisation packages such as shiny and leaflet), this will help transport planning move away
from reliance on ‘black boxes’ and become a more transparent and democratic activity (??).

The technical advantages of using modern, interpreted, and open source languages such as R
are manifold: they enable automation and sharing of methods between researchers, for example
the application of methods developed for one city to another; they ease the integration with other
software systems and the web; and they have very strong user communities. The advantages of
using R specifically to develop the functionality described in this paper are that it has unparalleled
geo-statistical capabilities (?), visualisation packages (e.g. tmap, ggplot2) and the ability to rapidly
read-in data stored in many formats (e.g. via the haven and rio packages).

Package structure and functionality

The package can be installed and loaded in the usual way (see the package’s README for dependen-
cies and access to development versions):

install.packages("stplanr")

library(stplanr)

#> Loading required package: sp

As illustrated by the message emitted when stplanr is loaded, it depends on sp. This means that
the spatial data classes commonly used in the package will work with generic R functions such as
summary, aggregate and, as illustrated in the figures below, plot (?).

Core functions and classes

The package’s core functions are structured around 3 common types of spatial transport data:

• Origin-destination (OD) data, which report the number of people travelling between origin-
destination pairs. This type of data is not explicitly spatial (OD datasets are usually represented
as data frames) but represents movement over space between points in geographical space. An
example is provided in the flow dataset.

• Line data, one dimensional linear features on the surface of the Earth. These are typically stored
as a SpatialLinesDataFrame.

• Route data are special types of lines which have been allocated to the transport network. Routes
typically result from the allocation of a straight ‘desire line’ allocated to the route network with
a route_ function. Route network represent many overlapping routes. All are typically stored
as SpatialLinesDataFrame.

For ease of use, functions focussed on each data type have been developed with names prefixed
with od_, line_ and route_ respectively. A selection of these is presented in Table 1. Additional
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‘core functions’ could be developed, such as those prefixed with rn_ (for working with route network
data) and g_ functions for geographic operations such as buffer creation on lat/lon projected data
(this function is currently named buff_geo). We plan to elicit feedback on such changes before
implementing them.

Table 1: Selection of functions for working with or generating OD, line and route data types.

Function Input data type(s) Output data type

od_dist Data frame Numeric vector
od_id_order Data frame Data frame
line_bearing Spatial line Numeric vector
line_midpoint Spatial line Spatial points
route_cyclestreet Coordinates, spatial point or text Spatial lines
route_graphhopper Coordinates, spatial point or text Spatial lines

With a tip of the hat to the concept of type stability (e.g. as implemented in dplyr), we also plan to
make the core functions of stplanr more type-stable in future releases. Core functions, which begin
with the prefixes listed above, could follow dplyr’s lead and return only objects with the same class as
that of the input. However there are limitations to this approach: it will break existing functionality
and mean that output objects have a larger size than necessary (line_bearing, for example, does
not need to duplicate the spatial data contained in its input). Instead, we plan to continue to name
functions around the type of input data they take, but are open minded about function input-output
data class conventions, especially in the context of the new class system implemented in sf.

A class system has not been developed for each data type (this option is discussed in the final
section). The most common data types used in stplanr are assumed to be data frames and spatial
datasets.

Transport datasets are very diverse. There are therefore many other functions which have more
ad-hock names. Rather attempt a systematic description of each of stplanr’s functions (which can be
gleaned from the online manual) it is more illuminating to see how they work together, as part of a
transport planning workflow. As with most workflows, this begins with data access and ends with
visualisation.

Accessing and processing transport data

Gaining access to data is often the first stage in transport research. This is often a long and protracted
process which is thankfully becoming easier thanks to the ‘open data’ movement and packages such
as tigris for making data access from within R easier (?).

stplanr provides a variety of different functions that facilitate importing common data formats
used for transport analysis into R. Although transport analysis generally requires some transport-
specific datasets, it also typically relies heavily on common sources of data including census data. This
being the case, stplanr also includes functions that may be useful to those not involved in transport
research. This includes the read_table_builder function for importing data from the Australian
Bureau of Statistics (ABS) and the UK’s Stats19 road traffic casualty dataset. A brief example of the
latter is demonstrated below, which begins with downloading the data (warning this downloads ~100
MB of data):

dl_stats19() # download and extract stats19 road traffic casualty data

#> [1] "Data saved at: /tmp/RtmpppF3E2/Accidents0514.csv"
#> [2] "Data saved at: /tmp/RtmpppF3E2/Casualties0514.csv"
#> [3] "Data saved at: /tmp/RtmpppF3E2/Vehicles0514.csv"

Once the data has been saved in the default directory, determined by tempdir(), it can be read-in
and cleaned with the read_stats19_ functions (note these call format_stats19_ functions internally
to clean the datasets and add correct labels to the variables):

ac <- read_stats19_ac()
ca <- read_stats19_ca()
ve <- read_stats19_ve()

The resulting datasets (representing accident, casualty and vehicle level data, respectively) can be
merged and made geographic, as illustrated below:
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library(dplyr)
ca_ac <- inner_join(ca, ac)
ca_cycle <- ca_ac %>%
filter(Casualty_Severity == "Fatal" & !is.na(Latitude)) %>%
select(Age = Age_of_Casualty, Mode = Casualty_Type, Longitude, Latitude)

ca_sp <- SpatialPointsDataFrame(coords = ca_cycle[3:4], data = ca_cycle[1:2])

Now that this casualty data has been cleaned, subsetted (to only include serious cycle crashes) and
converted into a spatial class system, we can analyse them using geographical datasets of the type
commonly used by stplanr. The following code, for example, geographically subsets the dataset to
include only crashes that occured within the bounding box of a route network dataset provided by
stplanr (from version 0.1.7 and beyond) using the function bb2poly, which converts a spatial dataset
into a box, represented as a rectangular SpatialPolygonsDataFrame:

data("route_network") # devtools::install_github("ropensci/splanr")version 0.1.7
proj4string(ca_sp) <- proj4string(route_network)
bb <- bb2poly(route_network)
proj4string(bb) <- proj4string(route_network)
ca_local <- ca_sp[bb,]

The above code chunk shows the importance of understanding geographical data when working
with transport data. It is only by converting the casualty data into a spatial data class, and adding a
coordinate reference system (CRS), that transport planners and researchers can link this important
dataset back to the route network. We can now perform GIS operations on the results. The next code
chunk, for example, finds all the fatalities that took place within 100 m of the route network, using the
function buff_geo:

rnet_buff_100 <- buff_geo(route_network, width = 100)
ca_buff <- ca_local[rnet_buff_100,]

These can be visualised using base R graphics, extended by sp, as illustrated in Figure 1. This
provides a good start for analysis but for publication-quality plots and interactive plots, designed for
public engagement, we recommend using dedicated visualisation packages that work with spatial
data such as tmap.

plot(bb, lty = 4)
plot(rnet_buff_100, col = "grey", add = TRUE)
points(ca_local, pch = 4)
points(ca_buff, cex = 3)

Creating geographic desire lines

Perhaps the most common type of aggregate-level transport information is origin-destination (‘OD’)
data. This can be presented either as a matrix or (more commonly) a long table of OD pairs. An
example of this type of raw data is provided below (see ?flow to see how this dataset was created).

data("flow", package = "stplanr")
head(flow[c(1:3, 12)])

#> Area.of.residence Area.of.workplace All Bicycle
#> 920573 E02002361 E02002361 109 2
#> 920575 E02002361 E02002363 38 0
#> 920578 E02002361 E02002367 10 0
#> 920582 E02002361 E02002371 44 3
#> 920587 E02002361 E02002377 34 0
#> 920591 E02002361 E02002382 7 0

Although the flow data displayed above describes movement over geographical space, it contains
no explicitly geographical information. Instead, the coordinates of the origins and destinations are
linked to a separate geographical dataset which also must be loaded to analyse the flows. This is a
common problem solved by the function od2line. The geographical data is a set of points representing
centroids of the origin and destinations, saved as a SpatialPointsDataFrame. Geographical data in R
is best represented as such Spatial* objects, which use the S4 object engine. This explains the close
integration of stplanr with R’s spatial packages, especially sp, which defines the S4 spatial object
system.
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Figure 1: Road traffic fatalities in the study area downloaded with with stplanr (crosses). Deaths that
happened within 100 m of the route network are represented by circles.

data("cents", package = "stplanr")
as.data.frame(cents[1:3, -c(3,4)])

#> geo_code MSOA11NM coords.x1 coords.x2
#> 1708 E02002384 Leeds 055 -1.546463 53.80952
#> 1712 E02002382 Leeds 053 -1.511861 53.81161
#> 1805 E02002393 Leeds 064 -1.524205 53.80410

We use od2line to combine flow and cents, to join the former to the latter. We will visualise the l
object created below in the next section.

l <- od2line(flow = flow, zones = cents)

The data is now in a form that is much easier to analyse. We can plot the data with the command
plot(l), which was not possible before. Because the SpatialLinesDataFrame object also contains data
per line, it also helps with visualisation of the flows, as illustrated in Figure 2.

Allocating flows to the transport network

A common problem faced by transport researchers is network allocation: converting the ‘as the crow
flies’ lines illustrated in the figure above into routes. These are the complex, winding paths that people
and animals make to avoid obstacles such as buildings and to make the journey faster and more
efficient (e.g. by following the route network).

This is difficult (and was until recently near impossible using free software) because of the size
and complexity of transport networks, the complexity of realistic routing algorithms and need for
context-specificity in the routing engine. Inexperienced cyclists, for example, would take a very
different route than a heavy goods vehicle. stplanr tackles this issue by using 3rd party APIs to
provide route-allocation.

Route allocation is undertaken by route_ functions such as route_cyclestreets and
route_graphhopper. These allocate a single OD pair, represented as a text string to be ‘geo-coded’, a
pair of of coordinates, or two SpatialPoints objects, representing origins and destinations. This is
illustrated below with route_cyclestreet, which uses the CycleStreets.net API, a routing service “by
cyclists for cyclists” that offers a range route strategies (primarily ‘fastest’, ‘quietest’ and ‘balanced’)
that are based on a detailed analysis of cyclist wayfinding:2

2An API key is needed for this function to work. This can be requested (or purchased for large scale routing)
from cyclestreets.net/api/apply. See ?route_cyclestreet for details. Thanks to Martin Lucas-Smith and Simon
Nuttall for making this possible.
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Figure 2: Visualisation of travel desire lines, with width proportional to number of trips between
origin and destination (black) and routes allocated to network (red) in the left-hand panel. The right
hand panel shows the route network dataset generated by overline().

route_bl <- route_cyclestreet(from = "Bradford", to = "Leeds")
route_c1_c2 <- route_cyclestreet(cents[1,], cents[2,])

The raw output from routing APIs is usually provided as a JSON or GeoJSON text string. By
default, route_cyclestreet saves a number of key variables (including length, time, hilliness and
busyness variables generated by CycleStreets.net) from the attribute data provided by the API. If the
user wants to save the raw output, the save_raw argument can be used:

route_bl_raw <- route_cyclestreet(from = "Bradford", to = "Leeds", save_raw = TRUE)

Additional arguments taken by the route_ functions depend on the routing function in question.
By changing the plan argument of route_cyclestreet to fastest, quietest or balanced, for example,
routes favouring speed, quietness or a balance between speed and quietness will be saved, respectively.

To automate the creation of route-allocated lines over many desire lines, the line2route function
loops over each line, wrapping any route_ function as an input. The output is a SpatialLinesDataFrame
with the same number of dimensions as the input dataset (see the right panel in Figure 2).

routes_fast <- line2route(l = l, route_fun = route_cyclestreet)

The result of this ‘batch routing’ exercise is illustrated in Figure 2. The red lines in the left hand
panel are very different from the hypothetical straight ‘desire lines’ often used in transport research,
highlighting the importance of this route-allocation functionality.

plot(route_network, lwd=0)
plot(l, lwd = l$All / 10, add = TRUE)
lines(routes_fast, col = "red")
routes_fast$All <- l$All
rnet <- overline(routes_fast, "All", fun = sum)
rnet$flow <- rnet$All / mean(rnet$All) * 3
plot(rnet, lwd = rnet$flow / mean(rnet$flow))

To estimate the amount of capacity needed at each segment on the transport network, the overline
function demonstrated above, is used to divide line geometries into unique segments and aggregate
the overlapping values. The results, illustrated in the right-hand panel of Figure 2, can be used to
estimate where there is most need to improve the transport network, for example informing the
decision of where to build new bicycle paths.

Limitations with the route_cyclestreet routing API include its specificity, to one mode (cycling)
and a single region (the UK and part of Europe). To overcome these limitations, additional routing
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APIs were added with the functions route_graphhopper, route_transportapi_public and viaroute.
These interface to Graphhopper, TransportAPI and the Open Source Routing Machine (OSRM) routing
services, respectively. The great advantage of OSRM is that it allows you to run your own routing
services on a local server, greatly increasing the rate of route generation.

A short example of finding the route by car and bike between New York and Oaxaca demonstrates
how route_graphhopper can collect geographical and other data on routes by various modes, any-
where in the world. The output, shown in Table ??, shows that the function also saves time, distance
and (for bike trips) vertical distance climbed for the trips.

ny2oaxaca1 <- route_graphhopper("New York", "Oaxaca", vehicle = "bike")
ny2oaxaca2 <- route_graphhopper("New York", "Oaxaca", vehicle = "car")
rbind(ny2oaxaca1@data, ny2oaxaca2@data)

time dist change_elev

17522.73 4885663 87388.13
2759.89 4754772 NA

Modelling travel catchment areas

Accessibility to transport services is a particularly important topic when considering public transport
or active travel because of the frequent steep reduction in use as distances to access services (or
infrastructure) increase. As a result, the planning for transport services and infrastructure frequently
focuses on several measures of accessibility including distance, but also travel times and frequencies
and weighted by population. The functions in stplanr are intended to provide a method of estimating
these accessibility measures as well as calculating the population that can access specific services (i.e.,
estimating the catchment area).

Catchment areas in particular are a widely used measure of accessibility that attempts to both
quantify the likely target group for a particular service, and visualise the geographic area that is
covered by the service. For instance, passengers are often said to be willing to walk up to 400 metres
to a bus stop, or 800 metres to a railway station (?). Although these distances may appear relatively
arbitrary and have been found to underestimate the true catchment area of bus stops and railway
stations (??) they nonetheless represent a good, albeit somewhat conservative, starting point from
which catchment areas can be determined.

In many cases, catchment areas are calculated on the basis of straight-line (or “as the crow
flies”) distances. This is a simplistic, but relatively appealing approach because it requires little
additional data and is straight-forward to understand. stplanr provides functionality that calculates
catchment areas using straight-line distances with the calc_catchment function. This function takes a
SpatialPolygonsDataFrame that contains the population (or other) data, typically from a census, and
a Spatial* layer that contains the geometry of the transport facility. These two layers are overlayed
to calculate statistics for the desired catchments including proportioning polygons to account for the
proportion located within the catchment area.

To illustrate how catchment areas can be calculated, stplanr contains some sample datasets stored
in ESRI Shapefile format (a commonly used format for distributing GIS layers) that can together be
used to calculate sample catchment areas. One of these datasets (smallsa1) contains population data
for Statistical Area 1 (SA1) zones in Sydney, Australia. The second contains hypothetical cycleways
aligned to streets in Sydney. The code below unzips the datasets and reads in the shapefiles using the
readOGR function of rgdal.

\begin{Schunk} \begin{Sinput} data_dir <- system.file(“extdata”, package = “stplanr”) unzip(file.path(data_dir,
‘smallsa1.zip’)) unzip(file.path(data_dir, ‘testcycleway.zip’)) sa1income <- rgdal::readOGR(“.”, “smallsa1”)
testcycleway <- rgdal::readOGR(“.”, “testcycleway”) # Remove unzipped files file.remove(list.files(pattern
= “ˆ(smallsa1|testcycleway).*“)) \end{Sinput} \end{Schunk}

Calculating the catchment area is straightforward and in addition to specifying the required
datasets, only a vector containing column names to calculate statistics and a distance is required. Since
proportioning the areas assumes projected data, unprojected data are automatically projected to either
a common projection (if one is already projected) or a specified projection. It should be emphasised
that the choice of projection is important and has an effect on the results meaning setting a local
projection is recommended to achieve the most accurate results.

catch800m <- calc_catchment(
polygonlayer = sa1income,
targetlayer = testcycleway,
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Figure 3: An 800 metre catchment area (red) associated with a cycle path (green) using straight-line
distance in Sydney.

calccols = c('Total'),
distance = 800,
projection = 'austalbers',
dissolve = TRUE

)

By looking at the data.frame associated with the SpatialPolygonsDataFrame that is returned from
the calc_catchment function, the total population within the catchment area can be seen to be 39418
people. The catchment area can also be plotted as with any other Spatial* object using the plot
function using the code below with the result shown in Figure 3.

plot(sa1income, col = "light grey")
plot(catch800m, col = rgb(1, 0, 0, 0.5), add = TRUE)
plot(testcycleway, col = "green", add = TRUE)

This simplistic catchment area is useful when the straight-line distance is a reasonable approxima-
tion of the route taken to walk (or cycle) to a transport facility. However, this is often not the case. The
catchment area in Figure 3 initially appears reasonable but the red-shaded catchment area includes
an area that requires travelling around a bay to access from the (green-coloured) cycleway. To allow
for more realistic catchment areas for most situations, stplanr provides the calc_network_catchment
function that uses the same principle as calc_catchment but also takes into account the transport
network.

To use calc_network_catchment, a transport network needs to be prepared that can be used in con-
junction with the previous datasets. Preparation of the dataset involves using the SpatialLinesNetwork
function to create a network from a SpatialLinesDataFrame. This function combines a SpatialLinesDataFrame
with a graph network (using the igraph package) to provide basic routing functionality. The network
is used to calculate the shortest actual paths within the specific catchment distance. This process
involves the following code:

\begin{Schunk} \begin{Sinput} unzip(file.path(data_dir, ‘sydroads.zip’)) sydroads <- rgdal::readOGR(“.”,
“roads”) file.remove(list.files(pattern = “ˆ(roads).*“)) sydnetwork <- SpatialLinesNetwork(sydroads)
\end{Sinput} \end{Schunk}

The network catchment is then calculated using a similar method as with calc_catchment but
with a few minor changes. Specifically these are including the SpatialLinesNetwork, and using the
maximpedance parameter to define the distance, with distance being the additional distance from
the network. In contrast to the distance parameter that is based on the straight-line distance in
both the calc_catchment and calc_network_catchment functions, the maximpedance parameter is the
maximum value in the units of the network’s weight attribute. In practice this is generally distance in
metres but can also be travel times, risk or other measures.

netcatch800m <- calc_network_catchment(
sln = sydnetwork,
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Figure 4: A 800 metre network catchment are (blue) compared with a catchment area based on
Euclidean distance (red) associated with a cycle path (green).

polygonlayer = sa1income,
targetlayer = testcycleway,
calccols = c('Total'),
maximpedance = 800,
distance = 100,
projection = 'austalbers'

)

Once calculated, the network catchment area can be used just as the straight-line network catch-
ment. This includes extracting the catchment population of 23457 and plotting the original catchment
area together with the original area with the results shown in Figure 4:

plot(sa1income, col = "light grey")
plot(catch800m, col = rgb(1, 0, 0, 0.5), add = TRUE)
plot(netcatch800m, col = rgb(0, 0, 1, 0.5), add = TRUE)
plot(testcycleway, col = "green", add = TRUE)

Modelling and visualisation

Modelling mode choice

Route-allocated lines allow estimation of route distance and cirquity (route distance divided by Euclidean
distance). These variables can help model the rate of flow between origins and destination, as
illustrated in the left-hand panel of Figure 5. The code below demonstrates how objects generated
by stplanr can be used to undertake such analysis, with the line_length function used to find the
distance, in meters, of lat/lon data.

l$d_euclidean <- line_length(l)
l$d_rf <- routes_fast@data$length
plot(l$d_euclidean, l$d_rf,
xlab = "Euclidean distance", ylab = "Route distance")

abline(a = 0, b = 1)
abline(a = 0, b = 1.2, col = "green")
abline(a = 0, b = 1.5, col = "red")

The left hand panel of Figure 5 shows the expected strong correlation between Euclidean (dE) and
fastest route (dR f ) distance. However, some OD pairs have a proportionally higher route distance than
others, as illustrated by distance from the black line in the above plot: this represents Circuity (Q): the
ratio of network distance to Euclidean distance (?):
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Q =
dR f

dE

An extension to the concept of cirquity is the ‘quietness diversion factor’ (QDF) of a desire line (?),
the ratio of the route distance of a quiet route option (dRq) to that of the fastest:

QDF =
dRq

dR f

Thanks to the ‘quietest’ route option provided by route_cyclestreet, we can estimate average
values for both metrics as follows:

routes_slow <- line2route(l, route_cyclestreet, plan = "quietest")

l$d_rq <- routes_slow$length # quietest route distance
Q <- mean(l$d_rf / l$d_euclidean, na.rm = TRUE)
QDF <- mean(l$d_rq / l$d_rf, na.rm = TRUE)
Q

#> [1] 1.298767

QDF

#> [1] 1.034721

The results show that cycle paths are not particularly direct in the study region by international
standards (?). This is hardly surprisingly given the small size of the sample and the short distances
covered: Q tends to decrease at a decaying rate with distance. What is surprising is that QDF is close
to unity, which could imply that the quiet routes are constructed along direct, and therefore sensible
routes. We should caution against such assumptions, however: It is a small sample of desire lines
and, when time is explored, we find that the ‘quietness diversion factor with respect to time’ (QDFt) is
slightly larger:

(QDFt <- mean(routes_slow$time / routes_fast$time, na.rm = TRUE))

#> [1] 1.052855

Models of travel behaviour

There are many ways of estimating flows between origins and destinations, including spatial inter-
action models, the four-stage transport model and gravity models (‘distance decay’). stplanr aims
eventually to facilitate creation of many types of flow model.

At present there are no functions for modelling distance decay, but this is something we would like
to add in future versions of stplanr. Distance decay is an especially important concept for sustainable
transport planning due to physical limitations on the ability of people to walk and cycle large distances
(?).

We can explore the relationship between distance and the proportion of trips made by walking,
using the same object l generated by stplanr.

l$pwalk <- l$On.foot / l$All
plot(l$d_euclidean, l$pwalk, cex = l$All / 50,
xlab = "Euclidean distance (m)", ylab = "Proportion of trips by foot")

Based on the right-hand panel in Figure 5, there is a clear negative relationship between distance
of trips and the proportion of those trips made by walking. This is unsurprising: beyond a certain
distance (around 1.5km according the the data presented in the figure above) walking is usually seen
as too slow and other modes are considered. According to the academic literature, this ‘distance decay’
is non-linear and there have been a number of functions proposed to fit to distance decay curves (?).
From the range of options we test below just two forms. We will compare the ability of linear and
log-square-root functions to fit the data contained in l for walking.

\begin{Schunk} \begin{Sinput} lm1 <- lm(pwalk ~ d_euclidean, data = l@data, weights = All) lm2
<- lm(pwalk ~ d_rf, data = l@data, weights = All) lm3 <- glm(pwalk ~ d_rf + I(d_rfˆ0.5), data = l@data,
weights = All, family = quasipoisson(link = “log”)) \end{Sinput} \end{Schunk}

The results of these regression models can be seen using summary(). Surprisingly, Euclidean
distance was a better predictor of walking than route distance, but no strong conclusions can be drawn
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Figure 5: Euclidean and fastest route distance of trips in the study area (left) and Euclidean distance
vs the proportion of trips made by walking (right).
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Figure 6: Relationship between euclidean distance and walking

from this finding, with such a small sample of desire lines (n = 42). The results are purely illustrative,
of the kind of the possibilities created by using stplanr in conjuction with R’s modelling capabilities
(see Figure fig:euclidwalking2).

plot(l$d_euclidean, l$pwalk, cex = l$All / 50,
xlab = "Euclidean distance (m)", ylab = "Proportion of trips by foot")

l2 <- data.frame(d_euclidean = 1:5000, d_rf = 1:5000)
lm1p <- predict(lm1, l2)
lm2p <- predict(lm2, l2)
lm3p <- predict(lm3, l2)
lines(l2$d_euclidean, lm1p)
lines(l2$d_euclidean, exp(lm2p), col = "green")
lines(l2$d_euclidean, exp(lm3p), col = "red")

Visualisation

Visualisation is an important aspect of any transport study, as it enables researchers to communicate
their findings to other researchers, policy-makers and, ultimately, the public. It may therefore come as
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a surprise that stplanr contains no functions for visualisation. Instead, users are encouraged to make
use of existing spatial visualisation tools in R, such as tmap, leaflet and ggmap (??).

Furthermore, with the development of online application frameworks such as shiny, it is now
easier than ever to make the results of transport analysis and modelling projects available to the public.
An example is the online interface of the Propensity to Cycle Tool (PCT). The results of the project,
generated using stplanr, are presented at zone, desire line and Route Network levels (?). There is great
potential to expand on the principle of publicly accessible transport planning tools via ‘web apps’,
perhaps through new R packages dedicated to visualising transport data.

Future directions of travel

This paper has demonstrated the great potential for R to be used for transport planning. R’s flexibility,
powerful GIS capabilities (?) and free accessibility makes it well-suited to the needs of transport
planners and researchers, especially those wanting to avoid the high costs of market-leading products.
Rather than ‘reinvent the wheel’ (e.g. with a new class system), stplanr builds on existing packages
and sp classes to work with common transport data formats.

It is useful to see stplanr, and R for transport planning in general, as an addition tool in the
transport planner’s cabinet. It can be understood as one part of a wider movement that is making
transport planning a more open and democratic process. Other developments in this movement
include the increasing availability of open data (?) and the rise of open source products for transport
modelling, such as SUMO, MATSim and MITSIMLAB (?). stplanr, with its focus on GIS operations
rather than microscopic vehicle-level behaviour, can complement such software and help make better
use of new open data sources.

Because transport planning is an inherently spatial activity, stplanr occupies an important niche
in the transport planning software landscape, with its focus on spatial transport data. There is
great potential for development of stplanr in many directions. Desirable developments include the
additional of functions for modelling modal split, for examample with functions to create commonly
distance decay curves which are commonly found in active travel research (?) and improving the
computational efficiency of existing functions to make the methods more scalable for large databases.
Our priority for stplanr however, is to keep the focus on geographic functions for transport planning.
There are many opportunities in this direction, including:

• Functions to assess the environment surrounding routes, e.g. via integration with the in-
development osmdata package.

• Functions to match different GIS routes, perhaps building on the Hausdorf distance algorithm
implemented in the rgeos function gDistance.

• Additional functions for route-allocation of travel, e.g. via an interface to the OpenTripPlanner
API.

• Functions for aggregating very large GPS trace datasets (e.g. into raster cells) for anonymisation
and analysis/visualisation purposes.

• The creation of a class system for spatial transport datasets, such as to represent spatial route
and a route networks (perhaps with classes named "sr" and "srn"). This is not a short-term
priority and it would be beneficial to coincide such developments to a migration to sf for spatial
classes.

Such spatial data processing capabilities would increase the range of transport planning tasks
that stplanr can facilitate. For all this planned development activity to be useful, it is vital that new
functionality is intuitive. R has a famously steep learning curve. Implementing simple concepts such
as consistent naming systems (?) and ensuring ‘type stability’ can greatly improve the usability of the
package. For this reason, much future work in stplanr will go into improving documentation and
user-friendliness.

Like much open source software stplanr is an open-ended project, a work-in-progress. We have set
out clear motivations for developing transport planning capabilities in R and believe that the current
version of stplanr (0.1.6) provides a major step in that direction compared with what was available a
couple of years ago. But there is much more to do. We therefore welcome input on where the package’s
priorities should lie, how it should evolve in the future and how to ensure it is well-developed and
sustained.
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