
Advanced spectrolab for package developers and
contributors

Jose Eduardo Meireles and Anna K. Schweiger

Style guide and conventions

Genral

• object names are lower case
• assignment is done with equals = instead of arrow <-
• only really obvious abbreviations may be used
• names should be separated by undesrcore _, unless you’re overloading an R generic e.g. as.matrix.
• internal functions should use the i_ prefix. e.g i_find_spectra()
• all functions must be documented with roxygen2 comments
• strive for small functions.
• try to fail gracefully

Specific

• Do not reach inside the spectra object’s guts. If you’re accessing the internal data structuresdi-
rectly, you’re probably doing something wrong.

• If the only way you can implement something reasonably is gutting the spectra object, we did something
wrong. Please report an issue and submit a pull request.

• Do not use a pattern of deconstructing and reconstructing the spectra object, even if doing so though
the getters and setters.

library("spectrolab")

spectrolab version: 0.0.6
##
Please cite:
Meireles J, Schweiger A, Cavender-Bares J (2018). spectrolab: Class
and Methods for Hyperspectral Data. R package version 0.0.6, <URL:
https://github.com/meireles/spectrolab>.

##
Attaching package: 'spectrolab'

The following objects are masked from 'package:stats':
##
sd, smooth, var

The spectra class

spectrolab defines a new S3 class called spectra that holds all of the different compnents of a spectral data.

Without diving too much into its implementation, a spectra object holds the important information needed
for most spectral datasets: reflectance, wavelengths, etc. The class has a bunch of requirements in terms of
both format and values.

1

Constructing a spectra object “by hand”

In addition to read_spectra() and as.spectra(), you can create a spectra object “by hand”" using the
more flexible spectra() constructor, which takes at least arguments: (1) a reflectance matrix, (2) a vector of
wavelengths and (3) the sample names.
(1) Create a reflectance matrix.
In this case, by removing the first column that holds the species name
rf = spec_matrix_example[, -1]

(2) Create a vector with wavelength labels that match
the reflectance matrix columns.
wl = colnames(rf)

(3) Create a vector with sample labels that match
the reflectance matrix rows.
In this case, use the first colum of spec_matrix_example
sn = spec_matrix_example[, 1]

Finally, construct the spectra object using the `spectra` constructor
spec = spectra(reflectance = rf, wavelengths = wl, names = sn)

And hopefully this worked fine
is_spectra(spec)

[1] TRUE
plot(spec)

2

500 1000 1500 2000 2500

0.
1

0.
2

0.
3

0.
4

Wavelength

R
ef

le
ct

an
ce

Getting and Setting

spectrolab gives you acess to get and set functions for most spectra components. The names(),
wavelengths() functions do both getting and setting. For example:
Getters
names(spec)[1:4]
wavelengths(spec)[1:4]

Setters
names(spec) = toupper(names(spec))
wavelengths(spec) = wavelengths(spec) / 1000

Reflectances are set using the [notation. For instance:
spec[1, 400:1200] = spec[1, 400:1200] * 2
plot(spec)

3

500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

Wavelength

R
ef

le
ct

an
ce

4

	Style guide and conventions
	Genral
	Specific

	The spectra class
	Constructing a spectra object ``by hand''
	Getting and Setting

