
Learning graphs from data via spectral constraints
Ze Vinicius, Daniel P. Palomar, Jiaxi Ying, and Sandeep Kumar

Hong Kong University of Science and Technology (HKUST)
2019-04-29

Installation

Check out https://mirca.github.io/spectralGraphTopology for installation instructions.

Problem Statement

Graphs are arguably one of the most popular mathematical structures that find applications in a myriad of
scientific and engineering fields.

In the era of big data, graphs can be used to model a vast diversity of phenomena, including customer
preferences, brain activity, genetic structures, just to name a few. Therefore, it is of utmost importance to be
able to reliably estimate such structures from noisy, often sparse, low-rank datasets.

The Laplacian matrix of a graph contains the information about its topology, i.e., how nodes are connected
among themselves. By definition a (combinatorial) Laplacian matrix is positive semi-definite, symmetric, and
with sum of rows equal to zero.

One common approach to estimate the Laplacian matrix of a graph (without satisfying the zero row-sum
property) would be via the generalized inverse of the sample covariance matrix, which is an assymptotically
unbiased and efficient estimator. In this document, we call this approach the naive one. In R, this estimator
can be computed simply as MASS::ginv(cov(Y)), whereY is the data matrix. However, this estimator
performs very poorly when the sample size is small when compared with the number of nodes, which makes
its use questionable for practical purposes.

Another classical approach, the well-known graphical lasso algorithm, was proposed in [1] where a ℓ1-norm
penalty term was incorporated in order to induce sparsity on the solution. The R package glasso provides
an implementation of this estimator.

We, however, begin by defining a Laplacian linear operator L that maps a vector of edge weights w into
a valid Laplacian matrix. Additionally, we impose constraints on the eigenvalues and eigenvectors of the
Laplacian matrix in such a way that the underlying optimization problem may be expressed as follows:

minimize
w,λ,U

− log det (Diag(λ)) + tr (SLw) + αh(Lw) + β

2

∥

∥Lw − UDiag(λ)UT
∥

∥

2

F

subject to w ≥ 0,λ ∈ SΛ, and U
T

U = I

where h() is a regularization function (e.g. to induce sparsity), S is the sample covariance matrix, SΛ further
constrains the eigenvalues of the Laplacian matrix. For example, for a k-component graph with p nodes,
SΛ = {{λi}

p
i=1

|λ1 = λ2 = · · · = λk = 0, 0 < λk+1 ≤ λk+2 ≤ · · · ≤ λp}.
To solve this optimization problem, we employ a block majorization-minimization framework that updates

each of the variables (w,λ, U) at once while fixing the remaning ones. For the mathematical details of the
solution, including a convergence proof, please refer to our paper at: https://arxiv.org/pdf/1904.09792.pdf.

In order to learn bipartite graphs, we take advantage of the fact that the eigenvalues of the adjacency
matrix of graph are symmetric around 0, and we formulate the following optimization problem:

minimize
w,ψ,V

− log det(Lw + 1

p
11

T) + tr(SLw) + αh(Lw) + ν
2
‖Aw − VDiag(ψ)VT ‖2

F ,

subject to w ≥ 0, ψ ∈ Sψ, and V
T

V = I,

In a similar fashion, we construct the optimization problem to estimate a k-component bipartite graph by
combining the constraints related to the Laplacian and adjacency matrices.

1

https://mirca.github.io/spectralGraphTopology
https://arxiv.org/pdf/1904.09792.pdf

Package usage

The spectralGraphTopology package provides three main functions to estimate k-component, bipartite,
and k-component bipartite graphs, respectively: learn_k_component_graph, learn_bipartite_graph, and
learn_bipartite_k_component. In the next subsections, we will check out how to apply those functions in
synthetic datasets.

Learning a grid graph

library(spectralGraphTopology)

library(igraph)

library(viridis)

set.seed(0)

generate the graph and the data from the graph

p <- 64

grid <- make_lattice(length = sqrt(p), dim = 2)

n <- as.integer(100 * p)

E(grid)$weight <- runif(gsize(grid), min = 1e-1, max = 3)

L_true <- as.matrix(laplacian_matrix(grid)) # true Laplacian matrix

Y <- MASS::mvrnorm(n, mu = rep(0, p), Sigma = MASS::ginv(L_true))

estimate the graph

S <- cov(Y)

graph <- learn_k_component_graph(S, w0 = "qp", beta = 20, alpha = 5e-3,

abstol = 1e-5, verbose = FALSE)

graph$Adjacency[graph$Adjacency < 5e-2] <- 0

estimated_grid <- graph_from_adjacency_matrix(graph$Adjacency,

mode = "undirected", weighted = TRUE)

plots

colors <- viridis(20, begin = 0, end = 1, direction = -1)

c_scale <- colorRamp(colors)

E(estimated_grid)$color = apply(

c_scale(E(estimated_grid)$weight / max(E(estimated_grid)$weight)), 1,

function(x) rgb(x[1]/255, x[2]/255, x[3]/255))

E(grid)$color = apply(c_scale(E(grid)$weight / max(E(grid)$weight)), 1,

function(x) rgb(x[1]/255, x[2]/255, x[3]/255))

V(estimated_grid)$color = "grey"

V(grid)$color = "grey"

la <- layout_on_grid(grid)

par(mfrow = c(1, 2))

plot(grid, layout = la, vertex.label = NA, vertex.size = 3)

title("True grid graph")

plot(estimated_grid, layout = la, vertex.label = NA, vertex.size = 3)

title("Estimated grid graph")

2

True grid graph Estimated grid graph

Learning a 3-component graph

The next snippet of code shows how to learn the clusters of a set of points distributed on the plane.

library(spectralGraphTopology)

library(clusterSim)

library(igraph)

set.seed(42)

generate the graph and the data from the graph

n <- 100 # number of nodes per cluster

circles3 <- shapes.circles3(n) # generate datapoints

k <- 3 # number of components

S <- crossprod(t(circles3$data)) # compute sample correlation matrix

estimate the graph

graph <- learn_k_component_graph(S, k = k, beta = 1, verbose = FALSE,

fix_beta = FALSE, abstol = 1e-3)

plots

build network

net <- graph_from_adjacency_matrix(graph$Adjacency, mode = "undirected", weighted = TRUE)

colorify nodes and edges

colors <- c("#706FD3", "#FF5252", "#33D9B2")

V(net)$cluster <- circles3$clusters

E(net)$color <- apply(as.data.frame(get.edgelist(net)), 1,

function(x) ifelse(V(net)$cluster[x[1]] == V(net)$cluster[x[2]],

colors[V(net)$cluster[x[1]]], '#000000'))

V(net)$color <- colors[circles3$clusters]

plot(net, layout = circles3$data, vertex.label = NA, vertex.size = 3)

title("Estimated graph on the three circles dataset")

3

Estimated graph on the three circles dataset

Similar structures may be inferred as well. The plots below depict the results of applying
learn_k_component_graph() on a variaety of spatially distributed points.

Learning a bipartite graph

library(spectralGraphTopology)

library(igraph)

library(viridis)

library(corrplot)

set.seed(42)

generate the graph and the data from the graph

n1 <- 10

n2 <- 6

n <- n1 + n2

pc <- .9

bipartite <- sample_bipartite(n1, n2, type="Gnp", p = pc, directed=FALSE)

randomly assign edge weights to connected nodes

E(bipartite)$weight <- runif(gsize(bipartite), min = 0, max = 1)

get true Laplacian and Adjacency

Ltrue <- as.matrix(laplacian_matrix(bipartite))

Atrue <- diag(diag(Ltrue)) - Ltrue

get samples

Y <- MASS::mvrnorm(100 * n, rep(0, n), Sigma = MASS::ginv(Ltrue))

4

estimate graph

S <- cov(Y) # compute sample covariance matrix

graph <- learn_bipartite_graph(S, z = 4, verbose = FALSE)

graph$Adjacency[graph$Adjacency < 1e-3] <- 0

plots

par(mfrow = c(1, 2))

corrplot(Atrue / max(Atrue), is.corr = FALSE, method = "square", addgrid.col = NA,

tl.pos = "n", cl.cex = 1, mar=c(0, 0, 3, 2))

title("True Adjacency")

corrplot(graph$Adjacency / max(graph$Adjacency), is.corr = FALSE, method = "square",

addgrid.col = NA, tl.pos = "n", cl.cex = 1, mar=c(0, 0, 3, 2))

title("Estimated Adjacency")

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

True Adjacency

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Estimated Adjacency

build networks

estimated_bipartite <- graph_from_adjacency_matrix(graph$Adjacency, mode = "undirected",

weighted = TRUE)

V(estimated_bipartite)$type <- c(rep(0, 10), rep(1, 6))

la = layout_as_bipartite(estimated_bipartite)

#> Warning in layout_as_bipartite(estimated_bipartite): vertex types converted

#> to logical

colors <- viridis(20, begin = 0, end = 1, direction = -1)

c_scale <- colorRamp(colors)

E(estimated_bipartite)$color = apply(

c_scale(E(estimated_bipartite)$weight / max(E(estimated_bipartite)$weight)), 1,

function(x) rgb(x[1]/255, x[2]/255, x[3]/255))

E(bipartite)$color = apply(c_scale(E(bipartite)$weight / max(E(bipartite)$weight)), 1,

function(x) rgb(x[1]/255, x[2]/255, x[3]/255))

la = la[, c(2, 1)]

Plot networks: true and estimated

par(mfrow = c(1, 2))

plot(bipartite, layout = la, vertex.color=c("red","black")[V(bipartite)$type + 1],

vertex.shape = c("square", "circle")[V(bipartite)$type + 1],

vertex.label = NA, vertex.size = 5)

title("True bipartite graph")

5

plot(estimated_bipartite, layout = la,

vertex.color=c("red","black")[V(estimated_bipartite)$type + 1],

vertex.shape = c("square", "circle")[V(estimated_bipartite)$type + 1],

vertex.label = NA, vertex.size = 5)

title("Estimated Bipartite Graph")

True bipartite graph Estimated Bipartite Graph

Learning a 2-component bipartite graph

library(spectralGraphTopology)

library(igraph)

library(viridis)

library(corrplot)

set.seed(42)

generate the graph and the data from the graph

w <- c(1, 0, 0, 1, 0, 1) * runif(6)

Laplacian <- block_diag(L(w), L(w))

Atrue <- diag(diag(Laplacian)) - Laplacian

bipartite <- graph_from_adjacency_matrix(Atrue, mode = "undirected", weighted = TRUE)

n <- ncol(Laplacian)

estimate graph

Y <- MASS::mvrnorm(40 * n, rep(0, n), MASS::ginv(Laplacian))

graph <- learn_bipartite_k_component_graph(cov(Y), k = 2, beta = 1e2, nu = 1e2,

verbose = FALSE)

graph$Adjacency[graph$Adjacency < 1e-2] <- 0

plots

Plot Adjacency matrices: true and estimated

par(mfrow = c(1, 2))

corrplot(Atrue / max(Atrue), is.corr = FALSE, method = "square", addgrid.col = NA,

tl.pos = "n", cl.cex = 1, mar=c(0, 0, 3, 2))

title("True Adjacency")

corrplot(graph$Adjacency / max(graph$Adjacency), is.corr = FALSE, method = "square",

addgrid.col = NA, tl.pos = "n", cl.cex = 1, mar=c(0, 0, 3, 2))

title("Estimated Adjacency")

6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

True Adjacency

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Estimated Adjacency

Plot networks

estimated_bipartite <- graph_from_adjacency_matrix(graph$Adjacency, mode = "undirected",

weighted = TRUE)

V(bipartite)$type <- rep(c(TRUE, FALSE), 4)

V(estimated_bipartite)$type <- rep(c(TRUE, FALSE), 4)

la = layout_as_bipartite(estimated_bipartite)

colors <- viridis(20, begin = 0, end = 1, direction = -1)

c_scale <- colorRamp(colors)

E(estimated_bipartite)$color = apply(

c_scale(E(estimated_bipartite)$weight / max(E(estimated_bipartite)$weight)), 1,

function(x) rgb(x[1]/255, x[2]/255, x[3]/255))

E(bipartite)$color = apply(c_scale(E(bipartite)$weight / max(E(bipartite)$weight)), 1,

function(x) rgb(x[1]/255, x[2]/255, x[3]/255))

la = la[, c(2, 1)]

Plot networks: true and estimated

par(mfrow = c(1, 2))

plot(bipartite, layout = la,

vertex.color = c("red","black")[V(bipartite)$type + 1],

vertex.shape = c("square", "circle")[V(bipartite)$type + 1],

vertex.label = NA, vertex.size = 5)

title("True block bipartite graph")

plot(estimated_bipartite, layout = la,

vertex.color = c("red","black")[V(estimated_bipartite)$type + 1],

vertex.shape = c("square", "circle")[V(estimated_bipartite)$type + 1],

vertex.label = NA, vertex.size = 5)

title("Estimated block bipartite graph")

7

True block bipartite graph Estimated block bipartite graph

Performance comparison

We use the following baseline algorithms for performance comparison:

1. the generalized inverse of the sample covariance matrix, denoted as Naive;
2. a quadratic program estimator given by minw ‖S

† − Lw‖F , where S
† is the generalized inverse of the

sample covariance matrix, denoted as QP;
3. the Combinatorial Graph Laplacian proposed by [2] denoted as CGL.

The plots below show the performance in terms of F-score and relative error among the proposed algorithm,
denoted as SGL, and the baseline ones when learning a grid graph with 64 nodes and edges uniformly drawn
from the interval [.1, 3]. For each algorithm, the shaded area and the solid curve represent the standard
deviation and the mean of several Monte Carlo realizations. It can be noticed that SGL outperforms all the
baseline algorithms in all sample size regimes. Such superior performance maybe be attributed to the highly
structured nature of grid graphs.

8

In a similar fashion, the plots below shows algorithmic performance for modular graphs with 64 nodes and
4 modules, such that the probability of connection within module was set to 50%, whereas the probability of
connection accross modules was set to 1%. In this scenario, SGL outperforms the baselines algorithms QP
and Naive, while having a similar performance to that of CGL. This may be explained by the fact that the
edges connecting nodes do not quite have a deterministic structure like those of the grid graphs.

9

Clustering

One of the most direct applications of learning k-component graphs is on the classical unsupervised machine
learning problem: data clustering. For this task, we make use of two datasets: the animals dataset [3] the
Cancer RNA-Seq dataset [4].

The animals dataset consists of binary answers to questions such as “is warm-blooded?,” “has lungs?”,
etc. There are a total of 102 such questions, which make up the features for 33 animal categories.

The cancer-RNA Seq dataset consists of genetic features which map 5 types of cancer: breast carcinoma
(BRCA), kidney renal clear-cell carcinoma (KIRC), lung adenocarcinoma (LUAD), colon adenocarcinoma
(COAD), and prostate adenocarcinoma (PRAD). This dataset consists of 801 labeled samples, in which every
sample has 20531 genetic features.

The clustering results for these datasets are shown below. The code used for the cancer-rna dataset can be
found at our GitHub repo: https://github.com/dppalomar/spectralGraphTopology/tree/master/benchmarks/
cancer-rna

library(pals)

load data

df <- read.csv("animals-dataset/features.txt", header = FALSE)

names <- matrix(unlist(read.csv("animals-dataset/names.txt", header = FALSE)))

Y <- t(matrix(as.numeric(unlist(df)), nrow = nrow(df)))

p <- ncol(Y)

estimate graph

graph <- learn_k_component_graph(cov(Y) + diag(1/3, p, p), w0 = "qp", beta = 1, k = 10,

verbose = FALSE)

plots

net <- graph_from_adjacency_matrix(graph$Adjacency, mode = "undirected", weighted = TRUE)

colors <- brewer.reds(100)

c_scale <- colorRamp(colors)

E(net)$color = apply(c_scale(abs(E(net)$weight) / max(abs(E(net)$weight))), 1,

function(x) rgb(x[1]/255, x[2]/255, x[3]/255))

V(net)$color = "pink"

plot(net, vertex.label = names,

10

https://github.com/dppalomar/spectralGraphTopology/tree/master/benchmarks/cancer-rna
https://github.com/dppalomar/spectralGraphTopology/tree/master/benchmarks/cancer-rna

vertex.size = 3,

vertex.label.dist = 1,

vertex.label.family = "Helvetica",

vertex.label.cex = .8,

vertex.label.color = "black")

Elephant

Rhino

Horse
CowCamel

Giraffe

Chimp

Gorilla

Mouse

Squirrel

Tiger

Lion

Cat
Dog

Wolf

Seal

Dolphin

Robin

Eagle

Chicken

Salmon
Trout

Bee

Iguana

Alligator

ButterflyAnt

Finch

Penguin

Cockroach

Whale
Ostrich

Deer

References

[1] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse covariance estimation with the graphical lasso,”
Biostatistics, vol. 9, no. 3, pp. 432–441, 2008.

[2] H. E. Egilmez, E. Pavez, and A. Ortega, “Graph learning from data under laplacian and structural
constrints,” IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 6, pp. 825–841, 2017.

[3] D. N. Osherson, J. Stern, O. Wilkie, M. Stob, and E. E. Smith, “Default probability,” Cognitive Science,
vol. 15, no. 2, pp. 251–269, 1991.

[4] D. Dheeru and E. Karra Taniskidou, “UCI machine learning repository.” University of California, Irvine,
School of Information; Computer Sciences, 2017.

11

	Installation
	Problem Statement
	Package usage
	Learning a grid graph
	Learning a 3-component graph
	Learning a bipartite graph
	Learning a 2-component bipartite graph

	Performance comparison
	Clustering
	References

