EWMA Chart with estimated In-Control State

The following generates a data set of past observations (replace this with your observed past data).

X <-  rnorm(250)

plot of chunk unnamed-chunk-3

Next, we initialise and compute the resulting estimate for running the chart - in this case \(\hat \mu\) and \(\hat \sigma\).

library(spcadjust)
chart <- new("SPCEWMA",model=SPCModelNormal(Delta=0),lambda=0.1);
xihat <- xiofdata(chart,X)
str(xihat)
## List of 3
##  $ mu: num 0.0251
##  $ sd: num 1.05
##  $ m : int 250

Calibrating the Chart to a Given Average Run Length (ARL)

We now compute a threshold that with roughly 90\% probability results in an average run length of at least 100 in control. This is based on parametric resampling assuming normality of the observations.

cal <- SPCproperty(data=X,nrep=50,
            property="calARL",chart=chart,params=list(target=100),quiet=TRUE)
cal
## 90 % CI: A threshold of +/- 0.5342 gives an in-control ARL of at
##   least 100. 
## Unadjusted result:  0.4928 
## Based on  50 bootstrap repetitions.

You should increase the number of bootstrap replications (the argument nrep) for real applications.

Run the chart

Next, we run the chart with new observations (that happen to be in-control).

newX <- rnorm(100)
S <- runchart(chart, newdata=newX,xi=xihat)
par(mfrow=c(1,2),mar=c(4,5,0.1,0.1))
plot(newX,xlab="t")
plot(S,ylab=expression(S[t]),xlab="t",type="b",ylim=range(-cal@res,S,cal@res+0.3,cal@raw))
lines(c(0,100),rep(cal@res,2),col="red")
lines(c(0,100),rep(cal@raw,2),col="blue")
abline(0,0,lty=3)
lines(c(0,100),rep(-cal@res,2),col="red")
lines(c(0,100),rep(-cal@raw,2),col="blue")
legend("topleft",c("Adjusted Threshold","Unadjusted Threshold"),col=c("red","blue"),lty=1)

plot of chunk unnamed-chunk-7

In the next example, the chart is run with data that is out-of-control from time 51 onwards.

newX <- rnorm(100,mean=c(rep(0,50),rep(-1,50)))
S <- runchart(chart, newdata=newX,xi=xihat)

plot of chunk unnamed-chunk-10