
Accessing Data from Sensor Observation Services:

the sos4R Package

Daniel Nüst∗

daniel.nuest@uni-muenster.de

http://www.nordholmen.net/sos4r

March 3, 2011

Abstract

The sos4R package provides simple yet powerful access to OGC Sensor
Observation Service instances. The package supports both encapsulation
and abstraction from the service interface for novice users as well as pow-
erful request building for specialists.

sos4R is motivated by the idea to close the gap between the Sensor
Web and tools for (geo-)statistical analyses. It implements the core profile
of the SOS specification and supports temporal, spatial, and thematical
filtering of observations. This document briefly introduces the SOS speci-
fication. The package’s features are explained extensively: exploration of
service metadata, request building with filters, function exchangeability,
result data transformation.

The package is published under GPL 2 license within the geostatistics
community of 52 ◦North Initiative for Geospatial Open Source Software.

Contents

1 Introduction 2
1.1 Related Specifications . 3
1.2 Terms and Definitions . 4

2 Supported Features 5
2.1 Supported Implementations . 6

3 Default Options 6

4 Creating a SOS connection 8

5 SOS Operations 10
5.1 GetCapabilities . 10

5.1.1 Exploring the Capabilities Document 10
5.1.2 Plotting SOS and Offerings 12

5.2 DescribeSensor . 12

∗Institute for Geoinformatics, University of Muenster, Germany.

1

http://www.nordholmen.net/sos4r

5.3 GetObservation . 15
5.3.1 Metadata Extraction for Request Building 15
5.3.2 Basic Request . 20
5.3.3 Response Subsetting . 22
5.3.4 Result Extraction . 24
5.3.5 Temporal Filtering . 27
5.3.6 Spatial Filtering . 28
5.3.7 Feature Filtering . 29
5.3.8 Value Filtering . 29
5.3.9 Result Exporting . 31

5.4 GetObservationById . 32

6 Changing Handling Functions 32
6.1 Include and Exclude Functions 33
6.2 Encoders . 34
6.3 Parsers/Decoders . 34
6.4 Data Converters . 36

7 Exception Handling 40
7.1 OWS Service Exceptions . 40
7.2 Inspect Requests and Verbose Printing 41

8 Getting Started 42
8.1 Demos . 42
8.2 Services . 43

9 Getting Support 44

10 Developing sos4R 44

11 Acknowledgements 45

12 References 45

1 Introduction

The sos4R package provides classes and methods for retrieving data from an
OGC Sensor Observation Service (Na, 2007). The goal of this package is to pro-
vide easy access with a low entry threshold for everyone to information available
via SOSs. The complexity of the service interface shall be shielded from the user
as much as possible, while still leaving enough possiblities for advanced users.
This package uses S4 classes and methods style (Chambers, 1998).

At the current state, the output is fixed to a standard data.frame with at-
tributed columns for metadata. In future releases a tighter integration is planned
with upcoming space-time packages regarding data structures and classes.

The motivation to write this package was born out of perceiving a missing
link between the Sensor Web community (known as Sensor Web Enablement
(SWE) Initiative1 in the OGC realm) and the community of (geo-)statisticians.
While the relatively young SWE standards get adopted more by data owners

1http://www.opengeospatial.org/projects/groups/sensorweb

2

http://www.opengeospatial.org/projects/groups/sensorweb

(like governmental organizations), we see a high but unused potential for more
open data and spatio-temporal analyses based on it. sos4R can help enabling
this.

The project is part of the geostatistics community2 of the 52 ◦North Initiative
for Geospatial Open Source Software3. sos4R is available, or will be available
soon, on CRAN4 (the Comprehensive R Archive Network).

On the package home page, http://www.nordholmen.net/sos4r/, you can
stay updated with the development blog, find example code and services, and
download source packages.

This software is released under a GPL 2 license5 and contributions are very
welcome—please see section 10.

The package sos4R is loaded by

> library("sos4R")

This document was build for package version 0.1-13.

1.1 Related Specifications

The Open Geospatial Consortium6 (OGC) is an organisation which provides
standards for handling geospatial data on the internet, thereby ensuring in-
teroperability. The Sensor Observation Service (SOS) is such a standard and
provides a well-defined interface for data warehousing of measurements and ob-
servations made by all kinds of sensors. This vignette describes the classes,
methods and functions provided by sos4R to request these observations from a
SOS.

Providing data via web services is more powerful than local file copies (with
issues like being outdated, redundancy, . . .). Flexible filtering of data on the
service side reduces download size. That is why SOS operations can comprise
flexible subsetting in temporal, spatial and thematical domain. For example
“Get measurements from sensor urn:mySensor:001 for the time period from
01/12/2010 to 31/12/2010 where the air temperature below zero degrees”.

In general, the SOS supports two methods of requesting data: (i) HTTP
GET as defined in the OOSTethys best practice document7 with key-value-pair
(KVP) encoding of request, and (ii) POST as defined in the standard document
with requests encoded in eXtensible Markup Language (XML). Both request
types always returns XML documents as response.

Standards that are referenced, respectively used, by SOS are as follows.

Observations and Measurements (O&M) O&M (Cox, 2007) defines the
markup of sensor measurements results. An observation consists of infor-
mation about the observerd geographic feature, the time of observation,
the sensor, the observed phenomenon, and the observation’s actual result.

2http://52north.org/communities/geostatistics/
3http://52north.org/
4http://cran.r-project.org/
5http://www.gnu.org/licenses/gpl-2.0.html
6http://www.opengeospatial.org/
7This best-practice paper takes the place of a section in the specification that was left out

by mistake. It is well established and (loosely) followed by several SOS implementations. See
http://www.oostethys.org/best-practices/best-practices-get.

3

http://www.nordholmen.net/sos4r/
http://52north.org/communities/geostatistics/
http://52north.org/
http://cran.r-project.org/
http://www.gnu.org/licenses/gpl-2.0.html
http://www.opengeospatial.org/
http://www.oostethys.org/best-practices/best-practices-get

Sensor Model Language (SensorML) SensorML (Botts, 2007) is used for
sensor metadata descriptions (calibration information, inputs and outputs,
maintainer).

Geography Markup Language (GML) (Portele, 2003) defines markup for
geographical features (points, lines, polygons, . . .).

SweCommon SWE Common defines data markup. It is contained in the Sen-
sorML specification (see above).

Filter Encoding Filter Encoding (Vretanos, 2005) defines operators and operands
for filtering values.

OWS Common OGC Web Services Common (Whiteside, 2007) models ser-
vice related elements that are reusable across several service specifications,
like exception handling.

1.2 Terms and Definitions

The OGC has a particular set of well-defined terms that might differ from usage
of words in specific domains. The most important are as follows8.

Feature of Interest (FOI) The FOI represents the geo-object, for which mea-
surements are made by sensors. It is ordinarily used for the spatial refer-
encing of measuring points, i.e. the geoobject has coordinates like latitude,
longitude and height. The feature is project specific and can be anything
from a point (e.g. the position of a measuring station) or a real-world
object (e.g. the region that is observed).

Observation The observation delivers a measurement (result) for a property
(phenomenon) of an observed object (FOI). The actual value is created
by a sensor or procedure. The phenomenon was measured at a specific
time (sampling time) and the value was generated at a specific point in
time (result time). These often coincide so in practice the sampling time
is often used as the point in time of an obsrevation.

Offering The offering is a logical collection of related observations (similar to
a layer in mapping applications) which a service offers together.

Phenomenon A phenomenon is a property (physical value) of a geographical
object, e.g. air temperature, wind speed, concentration of a pollutant in
the atmosphere, reflected radiation in a specific frequency band (colours).

Procedure A procedure creates the measurement value of an observation. The
source can be a reading from a sensor, simulation or a numerical process.

A more extensive discussion is available in the the O&M specification (Cox,
2007). The Annex B of that document contains the examples of applicating
some terms to specific domains, aerosol analysis and earth observations, which
are repeated here for elaboration in table 1.

8Based on http://de.wikipedia.org/wiki/Sensor_Observation_Service

4

http://de.wikipedia.org/wiki/Sensor_Observation_Service

O&M Particulate Matter
2.5 Concentrations

Earth Observations

Observation::result 35 ug/m3 observation value,
measurement value

Observation::procedure U.S. EPA Federal
Reference Method for PM
2.5

method, sensor

Observation::observedProperty Particulate Matter 2.5 parameter, variable

Observation::featureOfInterest troposphere media (air, water, . . .),
Global Change
Master Directory “Topic”

Table 1: Domain specific variants of O&M terms.

2 Supported Features

The package provides accessor functions for the supported parameters. It is
recommended to access options from the lists returned by these functions instead
of hard-coding them into scripts.

This section only lists the possibilities. Explanations follow in this document
or can be found in the SOS specification.

> SosSupportedOperations()

[1] "GetCapabilities" "DescribeSensor" "GetObservation"

[4] "GetObservationById"

> SosSupportedServiceVersions()

[1] "1.0.0"

> SosSupportedConnectionMethods()

GET POST

"GET" "POST"

> SosSupportedResponseFormats()

[1] "text/xml;subtype="om/1.0.0""

[2] "text/xml;subtype="sensorML/1.0.1""

[3] "text/csv"

The response format“text/csv” is not standard conform, but used by services
as a well established alternative to XML encodings.

> SosSupportedResponseModes()

[1] "inline"

> SosSupportedResultModels()

5

[1] "om:Measurement" "om:Observation"

The output of the following calls are named lists (the name being the same
as the value) which are simplified here for brevity using toString().

> SosSupportedSpatialOperators()

[1] "BBOX, Contains, Intersects, Overlaps"

> SosSupportedTemporalOperators()

[1] "TM_After, TM_Before, TM_During, TM_Equals"

2.1 Supported Implementations

sos4R supports the core profile of the SOS specification. But the possible
markups for observations is extremely manifold due to the flexibility of the
O&M specification. Sadly, there is no common application profile for certain
types of observations, like simple measurements.

Therefore, the undocumented profile of the 52 ◦North SOS implementa-
tion9 was used as a guideline. It is not documented outside of the source code.
Observations returned by instances of this implementation are most likely to be
processed out of the box.

In the author’s experience, OOSThetys SOS implementations10 utilise
the same or at least very similar profile, so responses of these service instances
are probably parsed without further work as well.

An incomplete list of tested services can be found in section 8. Please
share your experiences with other SOS implementations with the developers
and users of sos4R (see section 9).

3 Default Options

Two kinds of default values can be found in (function calls in) sos4R: (i) default
depending on other function parameters, and (ii) global defaults. Global defaults
can be inspected (not changed!) using the following functions. If you want to
use a different value please change the respective argument in function calls.

> SosDefaultConnectionMethod()

[1] "POST"

> SosDefaults()

$sosDefaultCharacterEncoding

[1] "UTF-8"

$sosDefaultDescribeSensorOutputFormat

[1] "text/xml;subtype="sensorML/1.0.1""

9http://52north.org/communities/sensorweb/sos/
10http://www.oostethys.org/

6

http://52north.org/communities/sensorweb/sos/
http://www.oostethys.org/

$sosDefaultGetCapSections

[1] "All"

$sosDefaultGetCapAcceptFormats

[1] "text/xml"

$sosDefaultGetCapOwsVersion

[1] "1.1.0"

$sosDefaultGetObsResponseFormat

[1] "text/xml;subtype="om/1.0.0""

$sosDefaultTimeFormat

[1] "%Y-%m-%dT%H:%M:%OS"

$sosDefaultFilenameTimeFormat

[1] "%Y-%m-%d_%H:%M:%OS"

$sosDefaultTempOpPropertyName

[1] "om:samplingTime"

$sosDefaultTemporalOperator

[1] "TM_During"

$sosDefaultSpatialOpPropertyName

[1] "urn:ogc:data:location"

$sosDefaultColumnNameFeatureIdentifier

[1] "feature"

$sosDefaultColumnNameLat

[1] "lat"

$sosDefaultColumnNameLon

[1] "lon"

$sosDefaultColumnNameSRS

[1] "SRS"

The process of data download also comprises (i) building requests, (ii) de-
coding responses, and (iii) applying the correct R data type to the respective
data values. This mechanism is explained in detail in see section 6. The package
comes with a set of predefined encoders, decoders and converters (output not
shown here as it is very extensive).

> SosEncodingFunctions()

> SosParsingFunctions()

> SosDataFieldConvertingFunctions()

7

4 Creating a SOS connection

The method SOS(...) is a construction method for classes encapsulating a
connection to a SOS. It prints out a short statement when the connection was
successfully established (i.e. the capabilities document was received) and returns
an object of class SOS.

> mySOS <- SOS(url = "http://v-swe.uni-muenster.de:8080/WeatherSOS/sos")

Created SOS for URL http://v-swe.uni-muenster.de:8080/WeatherSOS/sos

To create a SOS connection you only need the URL of the service (i.e. the
URL which can be used for HTTP GET or POST requests). The service con-
nection created above is used for all examples throughout this document.

All parameters except the service endpoint are optional and use default set-
tings (see also section 3):

• method: The transport protocol. Currently available are GET, POST,
the default is POST. GET is less powerful, especially regarding filtering
operations. Section 6.4 contains an example of such a connection, whereas
the majority of examples is based on a POST connection.

• version: The service version. Currently available version(s) is/are 1.0.0.

• parsers: The list of parsing functions. See section 6.3.

• encoders: The list of encoding functions. See section 6.2.

• dataFieldConverters: The list of conversion functions. See section 6.4.

• curlHandle, curlOptions: Settings of the package RCurl, which is used
for HTTP connections. Please consult the packags specification before
using this.

• timeFormat: The time format to be used or decoding and encoding time
character strings to and from POSIXt classes, the default is

• verboseOutput: Trigger parameter for extensive debugging information
on the console, see section 7.2.

• switchCoordinates: Switches all coordinates that are encountered during
the parsing phase, such as in an element like <gml:lowerCorner>117.3

-41.5</gml:lowerCorner>.

There are accessor methods for the slots of the class. The encoders, parsers
and converters are described extensively in section 6.

> sosUrl(mySOS)

> sosTitle(mySOS)

> sosAbstract(mySOS)

> sosVersion(mySOS)

> sosTimeFormat(mySOS)

> sosMethod(mySOS)

8

> sosEncoders(mySOS)

> sosParsers(mySOS)

> sosDataFieldConverters(mySOS)

Print and summary methods are available for important classes.

> mySOS

Object of class SOS_1.0.0 -- version: 1.0.0 , method: POST , url: http://v-swe.uni-muenster.de:8080/WeatherSOS/sos

Title: IFGI WeatherSOS -- Abstract: SOS for weather observations at IFGI, Muenster, Germany (SVN: 9075 @ 2010-10-06 11:44:30)

> summary(mySOS)

Object of class SOS_1.0.0

[[version:]] [1] "1.0.0"

[[url:]] [1] "http://v-swe.uni-muenster.de:8080/WeatherSOS/sos"

[[title:]] [1] "IFGI WeatherSOS"

[[method:]] [1] "POST"

[[abstract:]] [1] "SOS for weather observations at IFGI, Muenster, Germany (SVN: 9075 @ 2010-10-06 11:44:30)"

[[time:]] [1] "2008-02-14T11:03:02.000+01:00 --> 2011-03-03T02:30:00.000+01:00"

[[offerings:]] [1] 7

[[procedures:]] [1] 14

[[observed properties:]] [1] 7

9

5 SOS Operations

sos4R implements the SOS core profile of version 1.0.0 comprising the oper-
ations GetCapabilities, DescribeSensor and GetObservation. This document
focusses on the practical usage of the operations, so the reader is refered to the
specification document for details.

The methods mirroring the SOS operations all contain debugging parameters
inspect and verbose as described in section 7.2.

5.1 GetCapabilities

The GetCapabilities operations is automatically conducted during the connect-
ing to a SOS instance. The response is the capabilities document, which
contains a detailed description of the services capabilities. It’s sections describe:
service identification, service provider, operations metadata (parameter names,
. . .), filter capabilities, and contents (a list of offering descriptions). Please see
section 8.2.3 of the SOS specification for details. If you want to inspect the
original capabilities document it can be re-requested using

> sosCapabilitiesDocumentOriginal(sos = mySOS)

The actual operation can be started with the following function. It returns
an object of class SosCapabilities which can be accessed later on by the
function sosCaps() from an object of class SOS.

> getCapabilities(sos = mySOS)

The parameters of the operation are:

• sos: The SOS connection to request the capabilities document from.

• inspect and verbose: See section 7.2.

5.1.1 Exploring the Capabilities Document

The respective parts of the capabilities document are modelled as R classes
and can be accessed with these functions:

> sosServiceIdentification(mySOS)

> sosServiceProvider(mySOS)

> sosFilter_Capabilities(mySOS)

> sosContents(mySOS)

The first four functions extract clearly structured, self-explanatory parts of
the document, so no further discussion is made here. The contents part however
is described in detail in section 5.3.1, as it can (and should) be used to extract
query parameters.

The function sosTime(...) returns the time period for which observations
are available within the service. To be precise, it accesses the ows:Range element
of the parameter eventTime in the description of the GetObservation operation.

> sosTime(mySOS)

10

Object of class OwsRange; spacing: NA, rangeClosure: NA

FROM 2008-02-14T11:03:02.000+01:00 TO 2011-03-03T02:30:00.000+01:00

The operations supported by the SOS are listed in the ows:OperationsMetadata
element, which is modelled as an R class, OwsOperationsMetadata, which con-
tains a list of objects of class OwsOperation which in turn describe the allowed
parameter values for calls to the operation. The operations metadata and indi-
vidual operations can be inspected with the following functions.

> sosOperationsMetadata(mySOS)

> sosOperation(mySOS, "GetCapabilities")

> sosOperation(mySOS, sosGetCapabilitiesName)

The allowed response formats (the file format/encoding of the response),
the response modes (for example inline or as attachment) and the result models
(a qualified XML name of the root element of the response) differ for every
operation of the service. The following accessor methods return either (i) a list
(named by the operation names) of vectors (with the actual allowed parameter
values), or (ii) with the unique parameter set to TRUE, a unique list of all allowed
values. Please be aware that these are not allowed for all operations, not are all
options supported by sos4R.

> sosResponseFormats(mySOS)

> sosResponseMode(mySOS)

> sosResultModels(mySOS)

Some exemplary outputs of the operations are as follows (unnamed lists
are simplified with toString()). Note the missing values for some operations
(where options are not required they might not be available).

> sosResponseMode(mySOS, unique = TRUE)

[1] "inline, resultTemplate"

> sosResultModels(mySOS)[1:3]

$GetCapabilities

NULL

$GetObservation

$GetObservation[[1]]

[1] "om:Observation"

$GetObservation[[2]]

[1] "om:Measurement"

$GetObservation[[3]]

[1] "om:CategoryObservation"

$GetObservation[[4]]

[1] "om:SpatialObservation"

11

$DescribeSensor

NULL

> sosResponseMode(mySOS)[[sosGetObservationByIdName]]

[1] "inline, resultTemplate"

> sosResultModels(mySOS)[[sosGetObservationName]][3:4]

[1] "om:Observation, om:Measurement, om:CategoryObservation, om:SpatialObservation"

> sosResponseFormats(mySOS)[[sosGetObservationByIdName]]

[1] "text/xml;subtype=\"om/1.0.0\", application/zip"

5.1.2 Plotting SOS and Offerings

The content of the capabilities document allows the plotting of a service’s offer-
ings. The following example uses the packages maps, mapdata and maptools to
create a background map. Plotting functions exist for objects of class SOS (see
Figure 5.1.2) and SosObservationOffering, so offerings can also be plotted
separately.

> # background map:

> library(maps); library(mapdata); library(maptools)

Note: polygon geometry computations in maptools

depend on the package gpclib, which has a

restricted licence. It is disabled by default;

to enable gpclib, type gpclibPermit()

Checking rgeos availability as gpclib substitute:

FALSE

> data(worldHiresMapEnv)

> crs <- sosGetCRS(mySOS)[[1]]

> worldHigh <- pruneMap(map(database = "worldHires",

+ region = c("Germany", "Austria"), plot = FALSE))

> worldHigh.lines <- map2SpatialLines(worldHigh, proj4string = crs)

> # the plot:

> plot(worldHigh.lines, col = "grey50")

> plot(mySOS, add = TRUE, lwd = 3)

> title(main = paste("Offerings by '", sosTitle(mySOS), "'", sep = ""),

+ sub = toString(names(sosOfferings(mySOS))))

See the demos (section 8.1) for more detailed examples of plotting.

5.2 DescribeSensor

The DescribeSensor operation is specified in clause 8.3 of the SOS specifica-
tion and its response is modeled in Sensor Model Language11 (SensorML) and
Transducer Markup Language12 (TML) specifications.

11http://www.opengeospatial.org/standards/sensorml
12http://www.opengeospatial.org/standards/tml

12

Offerings by 'IFGI WeatherSOS'

RAIN_GAUGE, LUMINANCE, HUMIDITY, ATMOSPHERIC_PRESSURE, ATMOSPHERIC_TEMPERATURE, WIND_SPEED, WIND_DIRECTION

Figure 1: Plot of a SOS object.

The DescribeSensor operation is useful for obtaining detailed in-
formation of sensor characteristics encoded in either SensorML or
TML. The sensor characteristics can include lists and definitions of
observables supported by the sensor. [...]

The parameters of the operation are as follows. Please see section 2 and
5.1.1 of this document for supported values respectively allowed values of request
parameters.

• sos: The SOS connection to request a sensor description from.

• procedure: The identifier of the sensor, so one of the character strings
returned by sosProcedures(...).

• outputFormat: The format in which the sensor description is to be re-
turned. The default is text/xml;subtype=’sensorML/1.0.1’.

• inspect and verbose: See section 7.2.

A simple example is as follows.

> sensor.1.1 <- describeSensor(sos = mySOS,

+ procedure = sosProcedures(obj = mySOS)[[1]][[1]])

Object of class SensorML (wraps unparsed XML, see @xml for details).

ID: urn:ogc:object:feature:OSIRIS-HWS:3d3b239f-7696-4864-9d07-15447eae2b93

coordinates: 51.9412, 7.6103, 200

description: Weather station located on the roof of the

Insititute for Geoinformatics of the University Münster, Germany.

> str(sensor.1.1)

13

Formal class 'SensorML' [package "sos4R"] with 2 slots

..@ xml :Class 'XMLInternalDocument' <externalptr>

..@ coords:'data.frame': 1 obs. of 3 variables:

.. ..$ y: num 51.9

.. ..$ x: num 7.61

.. ..$ z: num 200

.. ..- attr(*, "referenceFrame")= chr "urn:ogc:def:crs:EPSG:4326"

NULL

The coordinates data frame of a sensor description can be accessed with the
common method sosCoordinates().

> sosCoordinates(sensor.1.1)

Other useful parts of the sensor description can be accessed at runtime:

> sosId(sensor.1.1)

[1] "urn:ogc:object:feature:OSIRIS-HWS:3d3b239f-7696-4864-9d07-15447eae2b93"

> sosName(sensor.1.1)

[1] "IFGI HWS 1"

> sosAbstract(sensor.1.1)

[1] "Weather station located on the roof of the\n\t\t\t\tInsititute for Geoinformatics of the University Münster, Germany."

The coordinates also allow the plotting of the sensor positions (see Figure
5.2).

> # background map data

> library(maps); library(mapdata); library(maptools)

> data(worldHiresMapEnv)

> crs <- sosGetCRS(mySOS)[[1]]

> worldHigh <- pruneMap(map(database = "worldHires",

+ region = c("Germany", "Austria"), plot = FALSE))

> worldHigh.lines <- map2SpatialLines(worldHigh, proj4string = crs)

> # get sensor descriptions

> procs <- unique(unlist(sosProcedures(mySOS)))

> procs.descr <- lapply(X = procs, FUN = describeSensor, sos = mySOS)

> plot(worldHigh.lines, col = "grey50")

> for (x in procs.descr) {

+ plot(x, add = TRUE, pch = 19)

+ }

> text(sosCoordinates(procs.descr)[c("x", "y")], labels = sosId(procs.descr),

+ pos = 4)

> title(main = paste("Sensors of", sosTitle(mySOS)))

14

●

●

urn:ogc:object:feature:OSIRIS−HWS:3d3b239f−7696−4864−9d07−15447eae2b93

urn:ogc:object:feature:OSIRIS−HWS:efeb807b−bd24−4128−a920−f6729bcdd111

Sensors of IFGI WeatherSOS

Figure 2: Plot of procedure positions and identifiers

5.3 GetObservation

The GetObservation operation is specified in clause 8.4 of the SOS specifica-
tion. In this section, all matters around requesting data are explained — from
extracting query parameters from metadata, and sending the request, till finally
extracting data values and coordinates from the response.

A few utility functions exist to minize a user’s amount of work to create
usual requests. They accept normal R types as input and return the respective
class from sos4R with useful default settings. These function’s names follow
the pattern with sosCreate [name of object] () and exist for spatial and
temporal filters.

5.3.1 Metadata Extraction for Request Building

It is recommended to extract the identifiers of procedures et cetera that are to
be used for queries from the metadata description provided by the service, the
capabilities document (see section 5.1. This often ensures forward compatiblity
and minimizes typing errors. The offerings are the “index” of the service and
therefore we concentrate on the contents section of the capabilities here.

The class SosContents simply contains a list of objects of the class SosOb-

servationOffering which one can get directly from the connection object:

> sosOfferings(mySOS)

> sosOfferings(mySOS, name = "Rain")

The output when printing this list is quite extensive, so we concentrate on
just on element of it in the following examples. Printing and summary methods
are available of objects of the class SosObservationOffering.

> summary(sosOfferings(mySOS)[[1]])

15

Object of class SosObservationOffering

[[id:]] [1] "RAIN_GAUGE"

[[name:]] [1] "Rain"

[[time:]] [1] "2008-11-20 15:35:22 --> 2011-03-03 02:30:00"

[[bbox:]] [1] "urn:ogc:def:crs:EPSG:4326, 46.611644 7.6103, 51.9412 13.883498"

[[fois:]] [1] 2

[[procs:]] [1] 2

[[obsProps:]] [1] 1

The offerings list is named with the offering identifier, so the following state-
ments return the same list.

> sosOfferingIds(mySOS)

> names(sosOfferings(mySOS))

> sosName(sosOfferings(mySOS))

The offering identifier is is used in the example below to extract the offering
description of temperature measurements. The offerings list is a standard R list,
so all subsetting operations are possible.

Note: The order of the offering list (as all other lists, e.g. procedures or
observed properties) is not guaranteed to be the same upon every connection to
a service. So indexing by name (though counteracting the mentioned forward
compatibility, as names might change) is recommended at at least one point in
the analysis so that changes in the contents of a service result in an error.

> off.temp <- sosOfferings(mySOS)[["ATMOSPHERIC_TEMPERATURE"]]

Object of class SosObservationOffering; id: ATMOSPHERIC_TEMPERATURE , name: Temperature of the atmosphere

time: GmlTimePeriod: [GmlTimePosition [time: 2008-11-20 15:20:22]

--> GmlTimePosition [time: 2011-03-03 02:30:00]]

procedure(s): urn:ogc:object:feature:OSIRIS-HWS:3d3b239f-7696-4864-9d07-15447eae2b93, urn:ogc:object:feature:OSIRIS-HWS:efeb807b-bd24-4128-a920-f6729bcdd111

observedProperty(s): urn:ogc:def:property:OGC::Temperature

feature(s)OfInterest: urn:ogc:object:feature:OSIRIS-HWS:3d3b239f-7696-4864-9d07-15447eae2b93, urn:ogc:object:feature:OSIRIS-HWS:efeb807b-bd24-4128-a920-f6729bcdd111

responseFormat(s): text/xml;subtype="om/1.0.0", application/zip , responseMode(s): inline, resultTemplate

intendedApplication: NA

resultModel(s): ns:Measurement, ns:Observation

boundedBy: urn:ogc:def:crs:EPSG:4326, 46.611644 7.6103, 51.9412 13.883498

Metadata about the whole offering are identifier, name, and spatial and
temporal extends.

> off.temp.id <- sosId(off.temp)

[1] "ATMOSPHERIC_TEMPERATURE"

> off.temp.name <- sosName(off.temp)

[1] "Temperature of the atmosphere"

The offerings also contains metadata about the format and model that are
supported.

> sosResultModels(off.temp)

16

resultModel resultModel

"ns:Measurement" "ns:Observation"

> sosResponseMode(off.temp)

responseMode responseMode

"inline" "resultTemplate"

> sosResponseFormats(off.temp)

responseFormat responseFormat

"text/xml;subtype=\"om/1.0.0\"" "application/zip"

The spatial extend is given as a rectangular bounding box with two coor-
dinates. The structure of the bounding box is kept flexible, as it simply returns
a named list of lower and upper corner.

> off.temp.boundedBy <- sosBoundedBy(off.temp)

$srsName

[1] "urn:ogc:def:crs:EPSG:4326"

$lowerCorner

[1] "46.611644 7.6103"

$upperCorner

[1] "51.9412 13.883498"

The optional attribute bbox can be used to obtain a bounding box matrix
as used by package sp.

> off.temp.boundedBy.bbox <- sosBoundedBy(off.temp, bbox = TRUE)

min max

coords.lon 7.61030 13.88350

coords.lat 46.61164 51.94120

The temporal extend is modeled as an object of the respective class of the
element in the offering description, which normally is a gml:TimePeriod, but
does not have to be. The last two statements in the following snipped show how
one can access the actual data and what their class is.

> off.temp.time <- sosTime(off.temp)

GmlTimePeriod: [GmlTimePosition [time: 2008-11-20 15:20:22]

--> GmlTimePosition [time: 2011-03-03 02:30:00]]

> str(off.temp.time)

Formal class 'GmlTimePeriod' [package "sos4R"] with 9 slots

..@ begin : NULL

..@ beginPosition:Formal class 'GmlTimePosition' [package "sos4R"] with 4 slots

..@ time : POSIXlt[1:1], format: "2008-11-20 15:20:22"

17

..@ frame : chr NA

..@ calendarEraName : chr NA

..@ indeterminatePosition: chr NA

..@ end : NULL

..@ endPosition :Formal class 'GmlTimePosition' [package "sos4R"] with 4 slots

..@ time : POSIXlt[1:1], format: "2011-03-03 02:30:00"

..@ frame : chr NA

..@ calendarEraName : chr NA

..@ indeterminatePosition: chr NA

..@ duration : chr NA

..@ timeInterval : NULL

..@ frame : chr NA

..@ relatedTimes : list()

..@ id : chr NA

NULL

> off.temp.time@beginPosition@time

[1] "2008-11-20 15:20:22"

> off.temp.time@endPosition@time

[1] "2011-03-03 02:30:00"

> class(off.temp.time@endPosition@time)

[1] "POSIXlt" "POSIXt"

The structure of these elements is very flexible (with some of optional ele-
ments) and not self-explanatory. Therefore the parameter convert can be used
to try to create R objects and return these instead. Please be aware that this
might not work for temporal elements returned by all service.

> off.temp.time.converted <- sosTime(off.temp, convert = TRUE)

$begin

[1] "2008-11-20 15:20:22"

$end

[1] "2011-03-03 02:30:00"

> str(off.temp.time.converted)

List of 2

$ begin: POSIXlt[1:1], format: "2008-11-20 15:20:22"

$ end : POSIXlt[1:1], format: "2011-03-03 02:30:00"

NULL

Furthermore the offering comprises lists of procedures, observed prop-
erties, and features of interest. In our example the feature and procedure
identifiers are the same — this does not have to be the case.

Important Note: The order of these lists is not guaranteed to be the same
upon every connection to a service.

18

> sosProcedures(off.temp)

[1] "urn:ogc:object:feature:OSIRIS-HWS:3d3b239f-7696-4864-9d07-15447eae2b93"

[2] "urn:ogc:object:feature:OSIRIS-HWS:efeb807b-bd24-4128-a920-f6729bcdd111"

> sosObservedProperties(off.temp)

$observedProperty

[1] "urn:ogc:def:property:OGC::Temperature"

> sosFeaturesOfInterest(off.temp)

$featureOfInterest

[1] "urn:ogc:object:feature:OSIRIS-HWS:3d3b239f-7696-4864-9d07-15447eae2b93"

$featureOfInterest

[1] "urn:ogc:object:feature:OSIRIS-HWS:efeb807b-bd24-4128-a920-f6729bcdd111"

All of the above can not only be requested for single offerings but also for
complete SOS connections or for lists of offerings. The following examples only
print out a part of the returned lists.

> sosProcedures(mySOS)[1:2]

$RAIN_GAUGE

[1] "urn:ogc:object:feature:OSIRIS-HWS:3d3b239f-7696-4864-9d07-15447eae2b93"

[2] "urn:ogc:object:feature:OSIRIS-HWS:efeb807b-bd24-4128-a920-f6729bcdd111"

$LUMINANCE

[1] "urn:ogc:object:feature:OSIRIS-HWS:3d3b239f-7696-4864-9d07-15447eae2b93"

[2] "urn:ogc:object:feature:OSIRIS-HWS:efeb807b-bd24-4128-a920-f6729bcdd111"

> sosObservedProperties(mySOS)[1:2]

$RAIN_GAUGE

$RAIN_GAUGE$observedProperty

[1] "urn:ogc:def:property:OGC::Precipitation1Hour"

$LUMINANCE

$LUMINANCE$observedProperty

[1] "urn:ogc:def:property:OGC::Luminance"

> sosFeaturesOfInterest(mySOS)[1:2]

$RAIN_GAUGE

$RAIN_GAUGE$featureOfInterest

[1] "urn:ogc:object:feature:OSIRIS-HWS:3d3b239f-7696-4864-9d07-15447eae2b93"

$RAIN_GAUGE$featureOfInterest

[1] "urn:ogc:object:feature:OSIRIS-HWS:efeb807b-bd24-4128-a920-f6729bcdd111"

19

$LUMINANCE

$LUMINANCE$featureOfInterest

[1] "urn:ogc:object:feature:OSIRIS-HWS:3d3b239f-7696-4864-9d07-15447eae2b93"

$LUMINANCE$featureOfInterest

[1] "urn:ogc:object:feature:OSIRIS-HWS:efeb807b-bd24-4128-a920-f6729bcdd111"

Also (parts of a) list of offerings are possible with these functions:

> sosProcedures(sosOfferings(mySOS)[4:5])

ATMOSPHERIC_PRESSURE

[1,] "urn:ogc:object:feature:OSIRIS-HWS:3d3b239f-7696-4864-9d07-15447eae2b93"

[2,] "urn:ogc:object:feature:OSIRIS-HWS:efeb807b-bd24-4128-a920-f6729bcdd111"

ATMOSPHERIC_TEMPERATURE

[1,] "urn:ogc:object:feature:OSIRIS-HWS:3d3b239f-7696-4864-9d07-15447eae2b93"

[2,] "urn:ogc:object:feature:OSIRIS-HWS:efeb807b-bd24-4128-a920-f6729bcdd111"

> sosObservedProperties(sosOfferings(mySOS)[4:5])

$ATMOSPHERIC_PRESSURE

$ATMOSPHERIC_PRESSURE$observedProperty

[1] "urn:ogc:def:property:OGC::BarometricPressure"

$ATMOSPHERIC_TEMPERATURE

$ATMOSPHERIC_TEMPERATURE$observedProperty

[1] "urn:ogc:def:property:OGC::Temperature"

> sosFeaturesOfInterest(sosOfferings(mySOS)[3:4])

HUMIDITY

featureOfInterest "urn:ogc:object:feature:OSIRIS-HWS:3d3b239f-7696-4864-9d07-15447eae2b93"

featureOfInterest "urn:ogc:object:feature:OSIRIS-HWS:efeb807b-bd24-4128-a920-f6729bcdd111"

ATMOSPHERIC_PRESSURE

featureOfInterest "urn:ogc:object:feature:OSIRIS-HWS:3d3b239f-7696-4864-9d07-15447eae2b93"

featureOfInterest "urn:ogc:object:feature:OSIRIS-HWS:efeb807b-bd24-4128-a920-f6729bcdd111"

Please carefully inspect the structure in each case, as these functions will
return named lists of lists and not combine procedures from different offerings.
Consequently, some procedures could appear several times, but the association
to the offering is still intact which is preferred at this stage.

5.3.2 Basic Request

> getObservation(sos = mySOS, ...)

The mandatory attributes are sos, offering, observedProperty and re-

sponseFormat. The other parameters are set to NA and not used when building
the request.

20

Please see section 8.4.2 of the SOS specification for details, and section 2 and
5.1.1 of this document for supported values respectively allowed values of request
parameters. Note that different implementations might respond differently to
missing parameters.

• sos: The service connection to be used, an object of class SOS.

• offering: The offering to be used, either the identifier as a character
string or an object of class SosObservationOffering.

• observedProperty: The observed property of the desired observations.
The default is all observed property of the offering, sosObservedProper-
ties(obj = offering).

• responseFormat: The format of the response document. The default is
text/xml;subtype=’om/1.0.0’.

• srsName: The name of the spatial reference system that should be used
for the geometries in the response.

• eventTime: A list of objects of class SosEventTime which specify the time
period(s) for which observations are requested. See section 5.3.5 for more
information.

• procedure: A list of procedure identifiers for which observations are re-
quested. See section 5.3.6 for more information.

• featureOfInterest: An object of class SosFeatureOfInterest which
specifies the feature for which observations are requested. See sections
5.3.6 and 5.3.7 for more information.

• result: An object of class OgcComparisonOps for result filtering with
filter expressions from Filter Encoding. See section 5.3.8 for more infor-
mation.

• resultModel: The qualified XML name of the root element of the re-
sponse, e.g. om:Measurement. The available models of a service can be
found in the service metadata using sosResultModel(...).

• responseMode: The response mode defines the form of the response, e.g.
inline, out-of-band, or attached. The available models of a service can be
found in the service metadata using sosResponseMode(...).

• BBOX: A bounding box to be used only in HTTP GET connections (param-
eter is discarded for POST connections). The format must one character
string with minlon,minlat,maxlon,maxlat,srsURI?, the spatial refer-
ence system is optional.

• latest: A boolean parameter to request the latest observation only (see
example below) — this is not standard conform but only supported by
52 ◦North SOS.

• saveOriginal: Saves a copy of the response document in the current
working directory. See section 5.4 for an example.

21

The returned data of all GetObservation operations is an XML document
of type om:Observation, om:Measurement, or om:ObservationCollection which
holds a list of the former two. All three of these have corresponding S4 classes,
namely OmObservation, OmMeasurement, or OmObservationCollection.

A request to retrieve the latest measured value is also possible, although
not (!) standard conform. 52 ◦North SOS realizes this specific request by
requesting a sampling time with the fixed value “latest”.

> obs.temp.latest <- getObservation(sos = mySOS,

+ offering = off.temp,

+ latest = TRUE)

Finished getObservation to http://v-swe.uni-muenster.de:8080/WeatherSOS/sos

--> received 2 observation(s) having 2 result values [1, 1].

The most straightforward (and most simple to use) methods to query cer-
tain observations are to request one (or several) specific observed property
(phenomenon) or procedure (sensor). Note that the procedures and observed
properties have to match the given offering.

> obs.temp.procedure.1 <- getObservation(sos = mySOS,

+ offering = off.temp,

+ procedure = sosProcedures(off.temp)[[2]],

+ latest = TRUE)

> obs.temp.offering.345 <- getObservation(sos = mySOS,

+ offering = off.temp,

+ procedure = sosProcedures(off.temp)[2:4],

+ observedProperty =

+ sosObservedProperties(mySOS)[1:5],

+ latest = TRUE)

5.3.3 Response Subsetting

Subsetting of elements in an OmObservationCollection can be done just like
in a normal list (in fact, it just wraps at list of observations at this point), i.e.
with the operators [and [[.

> length(obs.temp.latest)

[1] 2

> obs.temp.latest[[1]]

Object of class OmObservation;

procedure: urn:ogc:object:feature:OSIRIS-HWS:efeb807b-bd24-4128-a920-f6729bcdd111

observedProperty: NA

foi: urn:ogc:object:feature:OSIRIS-HWS:efeb807b-bd24-4128-a920-f6729bcdd111

samplingTime: GmlTimePeriod: [GmlTimePosition [time: 2009-09-28 13:45:00]

--> GmlTimePosition [time: 2009-09-28 13:45:00]]

result dimensions: 1, 3

> obs.temp.latest[2:3]

22

$OmObservation

Object of class OmObservation;

procedure: urn:ogc:object:feature:OSIRIS-HWS:3d3b239f-7696-4864-9d07-15447eae2b93

observedProperty: NA

foi: urn:ogc:object:feature:OSIRIS-HWS:3d3b239f-7696-4864-9d07-15447eae2b93

samplingTime: GmlTimePeriod: [GmlTimePosition [time: 2011-03-03 02:30:00]

--> GmlTimePosition [time: 2011-03-03 02:30:00]]

result dimensions: 1, 3

$<NA>

NULL

Addionally, collection indexing is also possible with identifiers of proce-
dure(s), observed property(ies), and feature(s) of interest.

> index.foiId <- sosFeatureIds(obs.temp.latest)[[1]]

> index.foiId

[1] "urn:ogc:object:feature:OSIRIS-HWS:efeb807b-bd24-4128-a920-f6729bcdd111"

> obs.temp.latest[index.foiId]

$OmObservation

Object of class OmObservation;

procedure: urn:ogc:object:feature:OSIRIS-HWS:efeb807b-bd24-4128-a920-f6729bcdd111

observedProperty: NA

foi: urn:ogc:object:feature:OSIRIS-HWS:efeb807b-bd24-4128-a920-f6729bcdd111

samplingTime: GmlTimePeriod: [GmlTimePosition [time: 2009-09-28 13:45:00]

--> GmlTimePosition [time: 2009-09-28 13:45:00]]

result dimensions: 1, 3

> index.obsProp <- sosObservedProperties(off.temp)

> obs.temp.latest[index.obsProp]

list()

> index.proc <- sosProcedures(obs.temp.latest)[1:4]

> index.proc.alternative1 <- sosProcedures(off.temp)[1:4]

> index.proc.alternative2 <- sosProcedures(mySOS)

> obs.temp.latest[index.proc]

$OmObservation

Object of class OmObservation;

procedure: urn:ogc:object:feature:OSIRIS-HWS:efeb807b-bd24-4128-a920-f6729bcdd111

observedProperty: NA

foi: urn:ogc:object:feature:OSIRIS-HWS:efeb807b-bd24-4128-a920-f6729bcdd111

samplingTime: GmlTimePeriod: [GmlTimePosition [time: 2009-09-28 13:45:00]

--> GmlTimePosition [time: 2009-09-28 13:45:00]]

result dimensions: 1, 3

$OmObservation

Object of class OmObservation;

23

procedure: urn:ogc:object:feature:OSIRIS-HWS:3d3b239f-7696-4864-9d07-15447eae2b93

observedProperty: NA

foi: urn:ogc:object:feature:OSIRIS-HWS:3d3b239f-7696-4864-9d07-15447eae2b93

samplingTime: GmlTimePeriod: [GmlTimePosition [time: 2011-03-03 02:30:00]

--> GmlTimePosition [time: 2011-03-03 02:30:00]]

result dimensions: 1, 3

5.3.4 Result Extraction

Data Values can be extracted from observations, measurements and observa-
tion collections with the function sosResult(...). The function returns an
object of class data.frame. In the case of collections, it automatically binds
the data frames (you can turn this off by adding bind = FALSE as a parameter).
Additional metadata, like units or definitions, is accessible via attributes(...)

for every column of the data frame.

> obs.temp.latest.result.2 <- sosResult(obs.temp.latest[[2]])

Time

1 2011-03-03 02:30:00

feature

1 urn:ogc:object:feature:OSIRIS-HWS:3d3b239f-7696-4864-9d07-15447eae2b93

urn:ogc:def:property:OGC::Temperature

1 -1.9

> obs.temp.latest.result.2

Time

1 2011-03-03 02:30:00

feature

1 urn:ogc:object:feature:OSIRIS-HWS:3d3b239f-7696-4864-9d07-15447eae2b93

urn:ogc:def:property:OGC::Temperature

1 -1.9

> obs.temp.latest.result <- sosResult(obs.temp.latest[1:2])

Time

OmObservation 2009-09-28 13:45:00

OmObservation1 2011-03-03 02:30:00

feature

OmObservation urn:ogc:object:feature:OSIRIS-HWS:efeb807b-bd24-4128-a920-f6729bcdd111

OmObservation1 urn:ogc:object:feature:OSIRIS-HWS:3d3b239f-7696-4864-9d07-15447eae2b93

urn:ogc:def:property:OGC::Temperature

OmObservation 20.3

OmObservation1 -1.9

> obs.temp.latest.result

Time

OmObservation 2009-09-28 13:45:00

OmObservation1 2011-03-03 02:30:00

feature

24

OmObservation urn:ogc:object:feature:OSIRIS-HWS:efeb807b-bd24-4128-a920-f6729bcdd111

OmObservation1 urn:ogc:object:feature:OSIRIS-HWS:3d3b239f-7696-4864-9d07-15447eae2b93

urn:ogc:def:property:OGC::Temperature

OmObservation 20.3

OmObservation1 -1.9

> temperature.attrs <- attributes(

+ obs.temp.latest.result[["urn:ogc:def:property:OGC::Temperature"]])

$name

[1] "urn:ogc:def:property:OGC::Temperature"

$definition

[1] "urn:ogc:def:property:OGC::Temperature"

$`unit of measurement`
[1] "Cel"

Spatial Information can be stored in an observation in several ways: (i)
as a usual data attribute which is directly contained in the result data.frame,
(ii) within a feature collection in the observation. In the latter case the util-
ity functions sosCoordinates(...) and sosFeatureIds(...) can be used
to extract the coordinates respectively the identifiers from OmObservationCol-

lection or OmObservation classes. A variety of feature types gml:Point or
sa:SamplingPoint are supported by sosCoordinates(...).

> obs.temp.latest.foiIDs <- sosFeatureIds(obs.temp.latest)

> obs.temp.latest.coordinates.all <-

+ sosCoordinates(obs.temp.latest)

> obs.temp.latest.coordinates.1 <-

+ sosCoordinates(obs.temp.latest[[1]])

An observation collection also contains a bounding box of the contained
observations, which can be extracted with the function sosBoundedBy(...).
The optional attribute bbox can be used to obtain a bounding box matrix as
used by package sp.

> sosBoundedBy(obs.temp.latest)

$srsName

[1] "urn:ogc:def:crs:EPSG:4326"

$lowerCorner

[1] "46.611644 7.6103"

$upperCorner

[1] "51.9412 13.883498"

> sosBoundedBy(obs.temp.latest, bbox = TRUE)

min max

coords.lon 7.61030 13.88350

coords.lat 46.61164 51.94120

25

The combination of data values and coordinates strongly depends on the use
case and existing spatial information. In the case of coordinates encoded in the
features, a matching of the two data frames can easily be accomplished with the
function merge().

> obs.temp.latest.coords <- sosCoordinates(obs.temp.latest)

> result.names <- names(obs.temp.latest.result)

> coords.names <- names(obs.temp.latest.coords)

> print(toString(result.names))

[1] "Time, feature, urn:ogc:def:property:OGC::Temperature"

> print(toString(coords.names))

[1] "lat, lon, SRS, feature"

> # Manually merging though not neccessary:

> obs.temp.latest.coords <- sosCoordinates(obs.temp.latest)

> obs.temp.latest.data <- merge(

+ x = obs.temp.latest.result,

+ y = obs.temp.latest.coords,

+ by.x = result.names[[2]],

+ by.y = coords.names[[4]])

The default column name for the feature identifiers is feature. If the name
of the feature identifier attribute in the data table matches (which is the case
for 52 ◦North SOS), merge does not need additional information. In that case,
the merging reduces to the following code:

> obs.temp.latest.data <- merge(x = obs.temp.latest.result,

+ y = obs.temp.latest.coords)

> print(obs.temp.latest.data)

feature

1 urn:ogc:object:feature:OSIRIS-HWS:3d3b239f-7696-4864-9d07-15447eae2b93

2 urn:ogc:object:feature:OSIRIS-HWS:efeb807b-bd24-4128-a920-f6729bcdd111

Time urn:ogc:def:property:OGC::Temperature lat lon

1 2011-03-03 02:30:00 -1.9 51.94120 7.61030

2 2009-09-28 13:45:00 20.3 46.61164 13.88350

SRS

1 urn:ogc:def:crs:EPSG:4326

2 urn:ogc:def:crs:EPSG:4326

And in that case, you can even save that step by specifying the attribute
coordinates of the function sosResult which includes the merge of data values
and coordinates as shown above.

> sosResult(obs.temp.latest, coordinates = TRUE)

26

5.3.5 Temporal Filtering

The possibly most typical temporal filter is a period of time for which measure-
ments are of interest.

> # temporal interval creation based on POSIXt classes

> last.period <- sosCreateTimePeriod(sos = mySOS,

+ begin = (Sys.time() - 3600 * 24 * 7), end = Sys.time())

> oneWeek.period <- sosCreateTimePeriod(sos = mySOS,

+ begin = as.POSIXct("2010/01/01"), end = as.POSIXct("2010/01/07"))

> oneWeek.eventTime <- sosCreateEventTimeList(oneWeek.period)

Please note that the create function sosCreateEventTimeList() also wraps
the created objects in a list as expected by the method getObservation(...).

What was the average temperature during the last week?

> obs.oneWeek <- getObservation(sos = mySOS,

+ offering = off.temp,

+ procedure = sosProcedures(off.temp),

+ eventTime = oneWeek.eventTime)

Finished getObservation to http://v-swe.uni-muenster.de:8080/WeatherSOS/sos

--> received 1 observation(s) having 575 result values [575].

> obs.temp.result <- sosResult(obs.oneWeek)

> summary(obs.temp.result)

Time

Min. :2010-01-01 00:15:00

1st Qu.:2010-01-02 12:08:00

Median :2010-01-04 00:01:00

Mean :2010-01-04 00:00:12

3rd Qu.:2010-01-05 11:52:30

Max. :2010-01-06 23:45:00

feature

urn:ogc:object:feature:OSIRIS-HWS:3d3b239f-7696-4864-9d07-15447eae2b93:575

urn:ogc:def:property:OGC::Temperature

Min. :-8.70

1st Qu.:-4.70

Median :-3.40

Mean :-3.45

3rd Qu.:-1.90

Max. :-0.20

The default temporal operator is “during”, but others are supported as well
(see section 2). The next example shows how to create a temporal filter for all
observations taken after a certain point in time. Here the creation function

27

creates just one object of class SosEventTime which must be added to a list
manually before passing it to getObservation(...).

> lastDay.instant <- sosCreateTimeInstant(

+ time = as.POSIXct(Sys.time() - 3600 * 24), sos = mySOS)

> lastDay.eventTime <- sosCreateEventTime(time = lastDay.instant,

+ operator = SosSupportedTemporalOperators()[["TM_After"]])

> print(lastDay.eventTime)

Object of class SosEventTime:

TM_After: GmlTimePosition [time: 2011-03-02 02:49:49]

> #print(encodeXML(obj = lastDay.eventTime[[1]], sos = mySOS))

5.3.6 Spatial Filtering

The possibly most typical spatial filter is a bounding box13 within which mea-
surements of interest must have been made. Here the creation function returns
an object of class OgcBBOX, which can be wrapped in an object of class SosFea-
tureOfInterest, which is passed into the get-observation call.

> sept09.period <- sosCreateTimePeriod(sos = mySOS,

+ begin = as.POSIXct("2009-09-01 00:00"),

+ end = as.POSIXct("2009-09-30 00:00"))

> sept09.eventTimeList <- sosCreateEventTimeList(

+ sept09.period)

> obs.sept09 <- getObservation(sos = mySOS,

+ offering = off.temp,

+ eventTime = sept09.eventTimeList)

Finished getObservation to http://v-swe.uni-muenster.de:8080/WeatherSOS/sos

--> received 2 observation(s) having 5291 result values [2647, 2644].

> request.bbox <- sosCreateBBOX(lowLat = 50.0, lowLon = 5.0,

+ uppLat = 55.0, uppLon = 10.0,

+ srsName = "urn:ogc:def:crs:EPSG:4326")

> request.bbox.foi <- sosCreateFeatureOfInterest(

+ spatialOps = request.bbox)

> obs.sept09.bbox <- getObservation(sos = mySOS,

+ offering = off.temp,

+ featureOfInterest = request.bbox.foi,

+ eventTime = sept09.eventTimeList)

Finished getObservation to http://v-swe.uni-muenster.de:8080/WeatherSOS/sos

--> received 1 observation(s) having 2644 result values [2644].

Unfiltered versus spatially filtered coordinates of the responses:

> print(sosCoordinates(obs.sept09)[,1:2])

13http://en.wikipedia.org/wiki/Bounding_box

28

http://en.wikipedia.org/wiki/Bounding_box

lat lon

OmObservation 46.61164 13.88350

OmObservation1 51.94120 7.61030

> print(sosCoordinates(obs.sept09.bbox)[,1:2])

lat lon

OmObservation 51.9412 7.6103

More advanced spatial filtering, for example based on arbitrary shapes et
cetera, is currently not implemented. This could be implemented by implement-
ing subclasses for GmlGeometry (including encoders) which must be wrapped in
OgcBinarySpatialOp which extends OgcSpatialOps and can therefore be added
to an object of class SosFeatureOfInterest as the spatial parameter.

5.3.7 Feature Filtering

The feature can not only be used for spatial filtering, but also to query specific
FOIs. The following example extracts the identifiers from an offering and then
creates an object of class SosFeatureOfInterest, which is passed into the get-
observation call. Here the encoding function is called to show how the content
of the result element will look like.

> off.temp.fois <- sosFeaturesOfInterest(off.temp)

> request.fois <- sosCreateFeatureOfInterest(

+ objectIDs = list(off.temp.fois[[1]]))

> encodeXML(obj = request.fois, sos = mySOS)

<sos:featureOfInterest>

<sos:ObjectID>urn:ogc:object:feature:OSIRIS-HWS:3d3b239f-7696-4864-9d07-15447eae2b93</sos:ObjectID>

</sos:featureOfInterest>

An exemplary GetObservation operation is as follows.

> obs.oneWeek.fois <- getObservation(sos = mySOS,

+ offering = off.temp, featureOfInterest = request.fois,

+ eventTime = oneWeek.eventTime)

Finished getObservation to http://v-swe.uni-muenster.de:8080/WeatherSOS/sos

--> received 1 observation(s) having 575 result values [575].

> print(sosFeaturesOfInterest(obs.oneWeek.fois))

$OmObservation

Object of class GmlFeatureCollection; id: NA;

1 featureMember(s): <S4 object of class "GmlFeatureProperty">

5.3.8 Value Filtering

Value Filtering is realized via the slot result in a GetObservation request. The
filtering in the request is based on comparison operators and operands specified
by OGC Filter Encoding (Vretanos, 2005).

29

The classes and methods of this specification are not yet implemented, but
manual definition of the XML elements is possible with the methods of the
package XML.

The following code example uses a literal comparison of a property. The el-
ements names are taken from constants within sos4R (with the naming scheme
“<namespace><ElementName>Name”), but can equally as well be put in di-
rectly.

> # result filtering

> filter.value <- -2.3

> filter.propertyname <- xmlNode(name = ogcPropertyNameName,

+ namespace = ogcNamespacePrefix)

> xmlValue(filter.propertyname) <-

+ "urn:ogc:def:property:OGC::Temperature"

> filter.literal <- xmlNode(name = ogcLiteralName,

+ namespace = ogcNamespacePrefix)

> xmlValue(filter.literal) <- as.character(filter.value)

> filter.comparisonop <- xmlNode(

+ name = ogcComparisonOpGreaterThanName,

+ namespace = ogcNamespacePrefix,

+ .children = list(filter.propertyname,

+ filter.literal))

> filter.result <- xmlNode(name = sosResultName,

+ namespace = sosNamespacePrefix,

+ .children = list(filter.comparisonop))

Please consult to the extensive documentation of the XML package for de-
tails. The commands above result in the following output which is inserted into
the request without further processing.

> filter.result

<sos:result>

<ogc:PropertyIsGreaterThan>

<ogc:PropertyName>urn:ogc:def:property:OGC::Temperature</ogc:PropertyName>

<ogc:Literal>-2.3</ogc:Literal>

</ogc:PropertyIsGreaterThan>

</sos:result>

Any object of class OgcComparisonOpsOrXMLOrNULL, which includes the class
of the object returned by xmlNode(...), i.e. XMLNode. These object can be used
in the GetObservation request as the result parameter.

First, we request the unfiltered values for comparison, then again with the
filter applied. The length of the returned results is compared in the end.

> # request values:

> obs.oneWeek <- getObservation(sos = mySOS,

+ eventTime = oneWeek.eventTime,

+ offering = sosOfferings(mySOS)[["ATMOSPHERIC_TEMPERATURE"]])

Finished getObservation to http://v-swe.uni-muenster.de:8080/WeatherSOS/sos

--> received 1 observation(s) having 575 result values [575].

30

> # request values for the week with a value higher than 0 degrees.

> obs.oneWeek.filter <- getObservation(sos = mySOS,

+ eventTime = oneWeek.eventTime,

+ offering = sosOfferings(mySOS)[["ATMOSPHERIC_TEMPERATURE"]],

+ result = filter.result)

Finished getObservation to http://v-swe.uni-muenster.de:8080/WeatherSOS/sos

--> received 1 observation(s) having 177 result values [177].

> print(paste("Filtered:", dim(sosResult(obs.oneWeek.filter))[[1]],

+ "-vs.- Unfiltered:", dim(sosResult(obs.oneWeek))[[1]]))

[1] "Filtered: 177 -vs.- Unfiltered: 575"

5.3.9 Result Exporting

A tighter integration with data structures of packages sp or spacetime (both
available on CRAN) is planned for the future. Please consult the developers for
the current status.

As an example the following code creates a SpatialPointsDataFrame (can
only contain one data value per position!) based on the features of a result.

> library("sp")

> obs.oneWeek <- getObservation(sos = mySOS,

+ offering = off.temp,

+ procedure = sosProcedures(off.temp),

+ eventTime = oneWeek.eventTime)

Finished getObservation to http://v-swe.uni-muenster.de:8080/WeatherSOS/sos

--> received 1 observation(s) having 575 result values [575].

> # Create SpatialPointsDataFrame from result features

> coords <- sosCoordinates(obs.oneWeek[[1]])

> crs <- sosGetCRS(obs.oneWeek[[1]])

> spdf <- SpatialPointsDataFrame(coords = coords[,1:2],

+ data = data.frame(coords[,4]), proj4string = crs)

> str(spdf)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots

..@ data :'data.frame': 1 obs. of 1 variable:

.. ..$ coords...4.: Factor w/ 1 level "urn:ogc:object:feature:OSIRIS-HWS:3d3b239f-7696-4864-9d07-15447eae2b93": 1

..@ coords.nrs : num(0)

..@ coords : num [1, 1:2] 51.94 7.61

.. ..- attr(*, "dimnames")=List of 2

..$: NULL

..$: chr [1:2] "lat" "lon"

..@ bbox : num [1:2, 1:2] 51.94 7.61 51.94 7.61

.. ..- attr(*, "dimnames")=List of 2

..$: chr [1:2] "lat" "lon"

..$: chr [1:2] "min" "max"

..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots

..@ projargs: chr "+init=epsg:4326"

31

5.4 GetObservationById

The operation GetObservationById is defined in clause 10.1 of the SOS spec-
ification and not part of the core profile. But it is implemented as it is quite
simple. The response is the same as described in the previous section. Optional
parameters, and their defaults and supported values (see sections 2 and 5.1.1),
are normally the same as in GetObservation requests.

In this case the returned observation collection contains an om:Measurement
element, which contains just one measured value and is parsed to an object of
class OmMeasurement.

The result extraction works the same as with om:Observation objects.

> obsId <- getObservationById(sos = mySOS,

+ observationId = "o_3508493")

Object of class OmMeasurement, procedure urn:ogc:object:feature:OSIRIS-HWS:3d3b239f-7696-4864-9d07-15447eae2b93, observedProperty: Object of class SwePhenomenonProperty; href: urn:ogc:def:property:OGC::BarometricPressure; phenomenon: ;

featureOfInterest: Object of class GmlFeatureProperty, href: NA, feature: Object of class SaSamplingPoint; id: urn:ogc:object:feature:OSIRIS-HWS:3d3b239f-7696-4864-9d07-15447eae2b93; position: Object of class GmlPointProperty; href: NA; point: Object of class GmlPoint; pos: Object of class GmlDirectPosition; pos: 51.9412 7.6103; srsName: urn:ogc:def:crs:EPSG:4326, srsDimension: NA, srsAxisLabels: NA, uomLabels: NA;

srsName: NA, srsDimension: NA, srsDimension: NA, uomLabels: NA, relatedObservation: NA, relatedSamplingFeature: , surveyDetails: NA;

sampledFeatures: list(sampledFeature = <pointer: 0xa588900>);

samplingTime: GmlTimePosition [time: 2010-12-26 12:45:00];

result: Object of class GmlMeasure; value: 1014; uom: hPa

> # str(obsId)

> # obs[[1]]

> sosResult(obsId, coordinates = TRUE)

urn:ogc:def:property:OGC::BarometricPressure lat lon

OmMeasurement 1014 51.9412 7.6103

SRS

OmMeasurement urn:ogc:def:crs:EPSG:4326

feature

OmMeasurement urn:ogc:object:feature:OSIRIS-HWS:3d3b239f-7696-4864-9d07-15447eae2b93

Just as for getObservation() you can save the orginal response document.
It is saved into the current working directory and the name starts with the
observation identifier. You can also read it back using the function sosParse().

> obsId <- getObservationById(sos = mySOS,

+ observationId = "o_3508493",

+ saveOriginal = TRUE)

> .files <- list.files(getwd())

> .observationFiles <- c()

> for(.f in .files) { # %in% not working with Sweave

+ if(length(grep("^o_", .f, value=TRUE)) > 0)

+ .observationFiles <- c(.observationFiles, .f)

+ }

> obsId <- parseFile(sos = mySOS, file = .observationFiles[[1]])

6 Changing Handling Functions

The flexibility of the specifications that model the markup requests and re-
sponses, especially the observation encoding, is too high to handle all possible

32

cases within sos4R. Thus an equally flexible mechanism for users to adopt the
steps of encoding and decoding documents to their needs is needed.

The process of data download comprises (i) building request, (ii) encoding
requests, (iii) sending and receiving data, (iv) decoding responses, and (v) ap-
plying the correct R data type to the respective data values. This can be seen
as a fixed, ordered workflow a user has to follow where each step build upon
the input of the previous. To ensure flexibility within these steps of the work-
flow but also to maximize reusability of existing functionality, a mechanism to
exchange the functions that are used in these steps is provided.

Step (i), the building of requests, i.e. the assembly of the request parameters
into an R object, is documented in section 5.3. Step (iii), the sending of the
sending and receiving of documents to respectively from a service, does not need
to be influenced directly but the user (apart from the connection method).

In the remainder of this section it is explained how this applies to the steps
(ii), (iv) and (v) of the fixed workflow.

6.1 Include and Exclude Functions

The functions used in the exchangeable steps are organized in lists. To base
your own list of functions on the existing ones, thereby not having to start from
scratch, you can combine the default list of functions with your own. Use the
following functions:

To add your own function, simply add it as a named argument. You can
add as many as you like in the ... parameter. If a function with that identi-
fier already exists in the default list it will be replaced by your function. For
further adjustments you can explicitly include and exclude functions by iden-
tifier. Please be aware that inclusion is applied first, then exclusion. It is also
important that you also have to include that functions you just added manually!

Examples of function list generation with parsing functions:

> parsers <- SosParsingFunctions(

+ "ExceptionReport" = function() {

+ return("Got Exception!")

+ },

+ include = c("GetObservation", "ExceptionReport"))

> print(names(parsers))

[1] "GetObservation" "ExceptionReport"

> parsers <- SosParsingFunctions(

+ "ExceptionReport" = function() {

+ return("Got Exception!")

+ },

+ include = c("GetCapabilities"))

> print(names(parsers))

[1] "GetCapabilities"

> parsers <- SosParsingFunctions(

+ exclude = names(SosParsingFunctions())[1:15])

> print(names(parsers))

33

[1] "location"

[2] "Vector"

[3] "coordinate"

[4] "GeometryObservation"

[5] "CategoryObservation"

[6] "CountObservation"

[7] "TruthObservation"

[8] "TemporalObservation"

[9] "ComplexObservation"

[10] "text/csv"

[11] "text/xml;subtype="om/1.0.0""

6.2 Encoders

The current list of a connection’s encoders can be accessed with

> sosEncoders(mySOS)

A complete list of the existing encoders names:

> names(sosEncoders(mySOS))

[1] "GET" "POST" "SOAP"

Here the idea of organizing the encoding functions becomes clear: One base
encoding function is given, which is a generic method that must exist for alle
elements that need to be encoded.

> myPostEncoding <- function(object, sos, verbose) {

+ return(str(object))

+ }

> # Will fail:

> mySOS2 = SOS(sosUrl(mySOS),

+ encoders = SosEncodingFunctions("POST" = myPostEncoding))

6.3 Parsers/Decoders

The terms parsing and decoding are used as synonyms for the process of pro-
cessing an XML document to create an R object. XML documents are made
out of hierarchical elements. That is why the parsing functions are organized in
a listed, whose names are the elements’ names that can be parsed.

The current list of a connection’s parsers can be accessed with the following
function.

> sosParsers(mySOS)

A complete list of the elements with existing encoders is shown below. These
are not only names of XML elements, but also MIME types14. Here the idea
of organizing the encoding functions becomes clear: For every XML element or
document type that must be parsed there is a function given in the list.

14http://en.wikipedia.org/wiki/Internet_media_type

34

http://en.wikipedia.org/wiki/Internet_media_type

> names(sosParsers(mySOS))

[1] "GetCapabilities"

[2] "DescribeSensor"

[3] "GetObservation"

[4] "GetObservationById"

[5] "ExceptionReport"

[6] "Measurement"

[7] "member"

[8] "Observation"

[9] "ObservationCollection"

[10] "result"

[11] "DataArray"

[12] "elementType"

[13] "encoding"

[14] "values"

[15] "Position"

[16] "location"

[17] "Vector"

[18] "coordinate"

[19] "GeometryObservation"

[20] "CategoryObservation"

[21] "CountObservation"

[22] "TruthObservation"

[23] "TemporalObservation"

[24] "ComplexObservation"

[25] "text/csv"

[26] "text/xml;subtype="om/1.0.0""

If you want to replace only selected parsers use the include parameter as
described above. You can also base your own parsing functions on a variety of
existing parsing functions. For example you can replace the base function for
om:ObservationCollectionm, named ObservationCollection, but still use the
parsing function for om:Observation within your own function if you include it
in the parser list. The existing parsing functions are all named in the pattern
parse[ElementName](...). Please be aware that some parsers contain require
a parameter of class SOS upon which they rely for encoding information.

> # Create own parsing function:

> myER <- function(xml) {

+ return("EXCEPTION!!!11")

+ }

> myParsers <- SosParsingFunctions("ExceptionReport" = myER)

> mySOS2 <- SOS(sosUrl(mySOS), parsers = myParsers)

Created SOS for URL http://v-swe.uni-muenster.de:8080/WeatherSOS/sos

> # Triggers exception:

> response <- getObservation(mySOS2,

+ offering = sosOfferings(mySOS2)[[1]],

+ observedProperty = list("Bazinga"))

> print(response)

35

[1] "EXCEPTION!!!11"

To disable all parsing, you can use the function SosDisabledParsers().
This effectively just “passes through” all received data because the list returned
by the function only contains the top-most parsing functions for SOS operations
and exception reports.

> SosDisabledParsers()

> names(SosDisabledParsers())

[1] "GetCapabilities" "DescribeSensor" "GetObservation"

[4] "GetObservationById" "ExceptionReport"

This is also the recommended way to start if you want to set-up your own
parsers (given you have responses in XML) and an alternative to debugging if
you want to inspect responses directly.

The next example shows how the response (in this case the request is inten-
tionally incorrent and triggers an exception) is passed through as an object of
class XMLInternalDocument:

> mySOS2 <- SOS(sosUrl(mySOS), parsers = SosDisabledParsers())

Created SOS for URL http://v-swe.uni-muenster.de:8080/WeatherSOS/sos

> response <- getObservation(mySOS2,

+ offering = sosOfferings(mySOS2)[[1]],

+ observedProperty = list("Bazinga"))

> class(response)

[1] "XMLInternalDocument"

> print(xmlName(xmlRoot(response))) # XML functions

[1] "ExceptionReport"

6.4 Data Converters

A list of named functions to be used by the parsing methods to convert data val-
ues to the correct R type, which are mostly based on the unit of measurement15

code.
The conversion functions always take two parameters: x is the object to be

converted, sos is the service where the request was received from.
The available functions are basically wrappers for coercion functions, for

example as.double(). The only method exploiting the second argument is the
one for conversion of time stamps which uses the time format saved with the
object of class SOS in a call to strptime.

> value <- 2.0

> value.string <- sosConvertString(x = value, sos = mySOS)

> print(class(value.string))

15http://en.wikipedia.org/wiki/Units_of_measurement

36

http://en.wikipedia.org/wiki/Units_of_measurement

[1] "character"

> value <- "2.0"

> value.double <- sosConvertDouble(x = value, sos = mySOS)

> print(class(value.double))

[1] "numeric"

> value <- "1"

> value.logical <- sosConvertLogical(x = value, sos = mySOS)

> print(class(value.logical))

[1] "logical"

> value <- "2010-01-01T12:00:00.000"

> value.time <- sosConvertTime(x = value, sos = mySOS)

> print(class(value.time))

[1] "POSIXct" "POSIXt"

The full list of currently supported units can be seen below. It mostly con-
tains common numerical units which are converted to type double.

> names(SosDataFieldConvertingFunctions())

[1] "urn:ogc:data:time:iso8601" "urn:ogc:property:time:iso8601"

[3] "urn:ogc:phenomenon:time:iso8601" "time"

[5] "m" "s"

[7] "g" "rad"

[9] "K" "C"

[11] "cd" "%"

[13] "ppth" "ppm"

[15] "ppb" "pptr"

[17] "mol" "sr"

[19] "Hz" "N"

[21] "Pa" "J"

[23] "W" "A"

[25] "V" "F"

[27] "Ohm" "S"

[29] "Wb" "Cel"

[31] "T" "H"

[33] "lm" "lx"

[35] "Bq" "Gy"

[37] "Sv" "gon"

[39] "deg" "'"
[41] "''" "l"

[43] "L" "ar"

[45] "t" "bar"

[47] "u" "eV"

[49] "AU" "pc"

[51] "degF" "hPa"

[53] "mm" "nm"

37

[55] "cm" "km"

[57] "m/s" "kg"

[59] "mg" "uom"

[61] "urn:ogc:data:feature"

The current list of a SOS connection’s converters can be accessed with

> sosDataFieldConverters(mySOS)

The following connection shows a typical workflow of connecting to a new
SOS for the first time, what the errors for missing converters look like, and how
to add them to the SOS connection.

In Addition, this service shows errorenous behaviour regarding the reponse
format (even if it is correctly set), so that the parameter responseFormat is
set to NA_character to be excluded in the request encoding. This results in
additional warnings.

> # GET connection

> MBARI <- SOS("http://mmisw.org/oostethys/sos",

+ method = SosSupportedConnectionMethods()[["GET"]])

Created SOS for URL http://mmisw.org/oostethys/sos

> myOff <- sosOfferings(MBARI)[[1]]

> myProc <- sosProcedures(MBARI)[[1]]

> mbariObs1 <- try(

+ getObservation(sos = MBARI, offering = myOff,

+ procedure = myProc, responseFormat = NA_character_)

+)

Finished getObservation to http://mmisw.org/oostethys/sos

--> received 1 observation(s) having 100 result values [100].

> warnings()

NULL

This shows warnings about unknown units of measurement and a swe:Quantity
element (which describes a numeric field) without a given unit of measurement
(which it should have as a numeric field). The next example creates conversion
functions for these fields and repeats the operation.

> myConverters <- SosDataFieldConvertingFunctions(

+ "S/m" = sosConvertDouble,

+ "http://mmisw.org/ont/cf/parameter/sea_water_salinity"

+ = sosConvertDouble)

> MBARI2 <- SOS("http://mmisw.org/oostethys/sos",

+ method = SosSupportedConnectionMethods()[["GET"]],

+ dataFieldConverters = myConverters)

Created SOS for URL http://mmisw.org/oostethys/sos

38

> mbariObs2 <- getObservation(sos = MBARI2, offering = myOff,

+ procedure = myProc, responseFormat = NA_character_)

Finished getObservation to http://mmisw.org/oostethys/sos

--> received 1 observation(s) having 100 result values [100].

Subsequently, the second request results in more fields in the result.

> toString(names(sosResult(mbariObs1)))

[1] "esecs, Latitude, Longitude, NominalDepth, Temperature"

> toString(names(sosResult(mbariObs2)))

[1] "esecs, Latitude, Longitude, NominalDepth, Temperature, Conductivity, Salinity"

39

7 Exception Handling

When working with sos4R, two kinds of errors must be handled: service excep-
tions and errors within the package. The former can occur when a request is
invalid or a service encounters internal exceptions. The latter can mean a bug
or illegal settings within the package.

To understand both types of errorenous states, this sections explains the
contents of the exception reports returned by the service and the functionalities
to investigate the inner workings of the package.

7.1 OWS Service Exceptions

The service exceptions returned by a SOS are described in OGC Web Services
Common (Whiteside, 2007) clause 8. The classes to handle the returned ex-
ceptions in sos4R are OwsExceptionReport, which contains a list of exception
reports, and OwsException, which contains slots for the parameters exception
text(s), exception code, and locator. These are defined as follows and can be
implementation specific.

ExceptionText Text describing specific exception represented by the excep-
tionCode.

exceptionCode Code representing type of this exception.

locator Indicator of location in the client’s operation request where this excep-
tion was encountered.

The standard exception codes and meanings are accessible by calling

> OwsExceptionsData()

directly in sos4R and are shown in table 2. The original table also contains
the respective HTTP error codes and messages.

> response <- try(getObservationById(sos = mySOS,

+ observationId = "o_not_there", inspect = TRUE))

*** POST! REQUEST:

<sos:GetObservationById xsi:schemaLocation="http://www.opengis.net/sos/1.0 http://schemas.opengis.net/sos/1.0.0/sosAll.xsd" service="SOS" version="1.0.0" xmlns:sos="http://www.opengis.net/sos/1.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:om="http://www.opengis.net/om/1.0" xmlns:ogc="http://www.opengis.net/ogc" xmlns:gml="http://www.opengis.net/gml">

<sos:ObservationId>o_not_there</sos:ObservationId>

<sos:responseFormat>text/xml;subtype="om/1.0.0"</sos:responseFormat>

</sos:GetObservationById>

*** RESPONSE:

<?xml version="1.0" encoding="UTF-8"?>

<ows:ExceptionReport version="1.0.0" xsi:schemaLocation="http://schemas.opengis.net/ows/1.1.0/owsAll.xsd" xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<ows:Exception exceptionCode="NoApplicableCode">

<ows:ExceptionText>Error while creating observations from database query result set: ERROR: invalid input syntax for integer: "not_there"</ows:ExceptionText>

</ows:Exception>

</ows:ExceptionReport>

** RESPONSE DOC:

<?xml version="1.0" encoding="UTF-8"?>

<ows:ExceptionReport xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="1.0.0" xsi:schemaLocation="http://schemas.opengis.net/ows/1.1.0/owsAll.xsd">

40

exceptionCode meaningOfCode locator
OperationNotSupported Request is for an operation that

is not supported by this server
Name of operation
not supported

MissingParameterValue Operation request does not in-
clude a parameter value, and this
server did not declare a default
parameter value for that param-
eter

Name of missing
parameter

InvalidParameterValue Operation request contains an
invalid parameter value

Name of parameter
with invalid value

VersionNegotiationFailed List of versions in ’AcceptVer-
sions’ parameter value in GetCa-
pabilities operation request did
not include any version sup-
ported by this server

None, omit ’loca-
tor’ parameter

InvalidUpdateSequence Value of (optional) updateSe-
quence parameter in GetCa-
pabilities operation request is
greater than current value of ser-
vice metadata updateSequence
number

None, omit ’loca-
tor’ parameter

OptionNotSupported Request is for an option that is
not supported by this server

Identifier of option
not supported

NoApplicableCode No other exceptionCode speci-
fied by this service and server ap-
plies to this exception

None, omit ’loca-
tor’ parameter

Table 2: Exception Data Table (without HTTP columns).

<ows:Exception exceptionCode="NoApplicableCode">

<ows:ExceptionText>Error while creating observations from database query result set: ERROR: invalid input syntax for integer: "not_there"</ows:ExceptionText>

</ows:Exception>

</ows:ExceptionReport>

Object of class OwsExceptionReport; version: 1.0.0; lang: NA;

1 exception(s) (code @ locator : text):

NoApplicableCode @ NA :

Error while creating observations from database query result set: ERROR: invalid input syntax for integer: "not_there"

If an exception is received then it is also saved as a warning message.

7.2 Inspect Requests and Verbose Printing

The package offers two levels of inspection of the ongoing operations indicated
by two boolean parameters, inspect and verbose. These are available in all
service operation calls.

inspect prints the raw requests and responses to the console.

41

verbose prints not only the requests, but also debugging and processing state-
ments (e.g. intermediate steps during parsing).

The option verboseOutput when using the method SOS(...) turns on the
verbose setting for all subsequent requests made to the created connection unless
deactivated in an operation call. By using verboseOutput you can also debug
the automatic GetCapabilities operations when creating a new SOS connections.

The output with these parameters enabled is too extensive to show within
this document.

> off.4 <- sosOfferings(mySOS)[[4]]

> getObservation(sos = mySOS, offering = off.4,

+ procedure = sosProcedures(off.4)[[1]], latest = TRUE,

+ inspect = TRUE)

> getObservation(sos = mySOS, offering = off.4,

+ procedure = sosProcedures(off.4)[[1]], latest = TRUE,

+ vebose = TRUE)

> verboseSOS <- SOS(sosUrl(mySOS), verboseOutput = TRUE)

8 Getting Started

8.1 Demos

The demos are a good way to get started with the package. Please be aware
that you need an internet connection for these demos, the used SOSs might be
temporarily unavailable, and some of the demos are under construction.

> demo(package = "sos4R")

> # run a demo:

> demo("southesk")

ades SOS with French groundwater level data - under construction.

airquality Air quality SOS by ifgi and EEA - under construction.

austria SOSs by Research Studios Austria - under construction.

ioos Example using SOS by the Integrated Ocean Observing System - under
construction.

marinemeta SOS by Marine Metadata Interoperability Initiative - under con-
struction.

oceanwatch SOS by NOAA/SWFSC/ERD - under construction.

pegel Water gauge data in Germany by Pegelonline, shows how to create an
xyplot of a set of variables.

southesk SOSs from South Esk Testbed by CSIRO, focuses on data consoli-
dation/fusion and plotting.

weathersos Time series analysis demo with weather data by ifgi, includes ex-
amples for DescribeSensor and data extraction from and plotting of
SensorML sensor descriptions.

42

8.2 Services

There also is an imcomplete list of services that have been tested or are currently
evaluated on the project homepage in the “data” area16. If you find or can
provide new SOS with data useful to others, please do not hesitate to leave a
comment on that page so that it can be inlcuded.

Additionally, a set of SOS URLs are available via the function SosExample-

Services().

> SosExampleServices()

$`52 North SOS: Weather Data, station at IFGI, Muenster, Germany`
[1] "http://v-swe.uni-muenster.de:8080/WeatherSOS/sos"

$`52 North SOS: Water gauge data for Germany`
[1] "http://v-sos.uni-muenster.de:8080/PegelOnlineSOSv2/sos"

$`52 North SOS: Air Quality Data for Europe`
[1] "http://v-sos.uni-muenster.de:8080/AirQualityEurope/sos"

$`OOTethys SOS: Marine Metadata Interoperability Initiative (MMI)`
[1] "http://mmisw.org/oostethys/sos"

$`OOTethys SOS: Gulf of Maine Ocean Observing System SOS`
[1] "http://www.gomoos.org/cgi-bin/sos/oostethys_sos.cgi"

Please note that the author of this document does not control these services
and does not guarantee for any factors like correctness of data or availability.

16http://www.nordholmen.net/sos4r/data/

43

http://www.nordholmen.net/sos4r/data/

9 Getting Support

If you want to ask questions about using the software, please go first to the
52 ◦North forum for the geostatistics community at http://geostatistics.
forum.52north.org/ and check if a solution is described there. If you are a
frequent user please consider subscribing to the geostatistics mailing list (http:
//list.52north.org/mailman/listinfo/geostatistics) which is linked to
the forum.

10 Developing sos4R

Code Repository

You can download (and also browse) the source code of sos4R directly from the
52 ◦North repository:

• SVN resource URL: https://svn.52north.org/svn/geostatistics/
main/sos4R. Please read the documentation (especially the posting guide)
of the 52 ◦North repositories17. Anonymous access for download is pos-
sible.

• Web access: https://svn.52north.org/cgi-bin/viewvc.cgi/main/

sos4R/?root=geostatistics

The latest changes for every version are documented in the file CHANGES
in the package root directory, which you can directly print to the console by
calling sosChanges().

Developer Documentation

See the developer documentation at the 52 ◦North Wiki for detailed informa-
tion on how to use the checked out source project: https://wiki.52north.

org/bin/view/Geostatistics/Sos4R. You will find a detailed description of
the folder and class structure, the file naming scheme, and an extensive list of
tasks for future development.

Please get in touch with the community lead18 of the geostatistics community
if you want to become a contributor.

17http://52north.org/resources/source-repositories/
18http://52north.org/communities/geostatistics/community-contact

44

http://geostatistics.forum.52north.org/
http://geostatistics.forum.52north.org/
http://list.52north.org/mailman/listinfo/geostatistics
http://list.52north.org/mailman/listinfo/geostatistics
https://svn.52north.org/svn/geostatistics/main/sos4R
https://svn.52north.org/svn/geostatistics/main/sos4R
https://svn.52north.org/cgi-bin/viewvc.cgi/main/sos4R/?root=geostatistics
https://svn.52north.org/cgi-bin/viewvc.cgi/main/sos4R/?root=geostatistics
https://wiki.52north.org/bin/view/Geostatistics/Sos4R
https://wiki.52north.org/bin/view/Geostatistics/Sos4R
http://52north.org/resources/source-repositories/
http://52north.org/communities/geostatistics/community-contact

11 Acknowledgements

The project was generously supported by the 52 ◦North Student Innovation
Prize for Geoinformatics 2010.

12 References

Botts, M., 2007, OGC Implementation Specification 07-000: OpenGIS Sensor
Model Language (SensorML)- Open Geospatial Consortium, Tech. Rep.

Chambers, J.M., 2008, Software for Data Analysis, Programming with R.
Springer, New York.

Cox, S., 2007, OGC Implementation Specification 07-022r1: Observations and
Measurements - Part 1 - Observation schema. Open Geospatial Consor-
tium. Tech. Rep.

Cox, S., 2007, OGC Implementation Specification 07-022r3: Observations and
Measurements - Part 2 - Sampling Features. Open Geospatial Consortium.
Tech. Rep.

Na, A., Priest, M., Niedzwiadek, H. and Davidson, J., 2007, OGC Implementa-
tion Specification 06-009r6: Sensor Observation Service, http://portal.
opengeospatial.org/files/?artifact_id=26667, Open Geospatial Con-
sortium, Tech. Rep.

Portele, C., 2003, OGC Implementation Specification 07-036: OpenGIS Geog-
raphy Markup Language (GML) Encoding Standard, version: 3.00. Open
Geospatial Consortium, Tech. Rep.

Vretanos, P.A., 2005, OGC Implementation Specification 04-095: OpenGIS
Filter Encoding Implementation Specification. Open Geospatial Consor-
tium, Tech. Rep.

Whiteside, A., Greenwood, J., 2008, OGC Implementation Specification 06-
121r9: OGC Web Services Common Specification. Open Geospatial Con-
sortium, Tech. Rep.

45

http://portal.opengeospatial.org/files/?artifact_id=26667
http://portal.opengeospatial.org/files/?artifact_id=26667

	Introduction
	Related Specifications
	Terms and Definitions

	Supported Features
	Supported Implementations

	Default Options
	Creating a SOS connection
	SOS Operations
	GetCapabilities
	Exploring the Capabilities Document
	Plotting SOS and Offerings

	DescribeSensor
	GetObservation
	Metadata Extraction for Request Building
	Basic Request
	Response Subsetting
	Result Extraction
	Temporal Filtering
	Spatial Filtering
	Feature Filtering
	Value Filtering
	Result Exporting

	GetObservationById

	Changing Handling Functions
	Include and Exclude Functions
	Encoders
	Parsers/Decoders
	Data Converters

	Exception Handling
	OWS Service Exceptions
	Inspect Requests and Verbose Printing

	Getting Started
	Demos
	Services

	Getting Support
	Developing sos4R
	Acknowledgements
	References

