Augmented Dynamic Adaptive Model

Ivan Svetunkov

2021-06-13

This vignette explains briefly how to use the function adam() and the related auto.adam() in smooth package. It does not aim at covering all aspects of the function, but focuses on the main ones.

ADAM is Augmented Dynamic Adaptive Model. It is a model that underlies ETS, ARIMA and regression, connecting them in a unified framework. The underlying model for ADAM is a Single Source of Error state space model, which is explained in detail separately in an online textbook.

The main philosophy of adam() function is to be agnostic of the provided data. This means that it will work with ts, msts, zoo, xts, data.frame, numeric and other classes of data. The specification of seasonality in the model is done using a separate parameter lags, so you are not obliged to transform the existing data to something specific, and can use it as is. If you provide a matrix, or a data.frame, or a data.table, or any other multivariate structure, then the function will use the first column for the response variable and the others for the explanatory ones. One thing that is currently assumed in the function is that the data is measured at a regular frequency. If this is not the case, you will need to introduce missing values manually.

In order to run the experiments in this vignette, we need to load the following packages:

require(Mcomp)
require(greybox)
require(smooth)

ADAM ETS

First and foremost, ADAM implements ETS model, although in a more flexible way than (Hyndman et al. 2008): it supports different distributions for the error term, which are regulated via distribution parameter. By default, the additive error model relies on Normal distribution, while the multiplicative error one assumes Inverse Gaussian. If you want to reproduce the classical ETS, you would need to specify distribution="dnorm". Here is an example of ADAM ETS(MMM) with Normal distribution on a N2568 data from M3 competition (if you provide an Mcomp object, adam() will automatically set the train and test sets, the forecast horizon and even the needed lags):

testModel <- adam(M3[[2568]], "MMM", lags=c(1,12), distribution="dnorm")
summary(testModel)
#> 
#> Model estimated using adam() function: ETS(MMM)
#> Response variable: M3..2568..
#> Distribution used in the estimation: Normal
#> Loss function type: likelihood; Loss function value: 869.9558
#> Coefficients:
#>              Estimate Std. Error Lower 2.5% Upper 97.5%  
#> alpha          0.0822     0.0225     0.0375      0.1267 *
#> beta           0.0298     0.0206     0.0000      0.0706  
#> gamma          0.0000     0.0555     0.0000      0.1097  
#> level       4553.2079    77.2964  4399.8351   4706.0971 *
#> trend          1.0039     0.0020     0.9999      1.0079 *
#> seasonal_1     1.1810     0.0208     1.1551      1.2302 *
#> seasonal_2     0.8152     0.0143     0.7893      0.8644 *
#> seasonal_3     0.8248     0.0145     0.7989      0.8740 *
#> seasonal_4     1.5787     0.0249     1.5528      1.6279 *
#> seasonal_5     0.7464     0.0131     0.7205      0.7956 *
#> seasonal_6     1.2653     0.0214     1.2394      1.3145 *
#> seasonal_7     0.8924     0.0155     0.8665      0.9416 *
#> seasonal_8     0.9106     0.0159     0.8847      0.9598 *
#> seasonal_9     1.2290     0.0227     1.2031      1.2782 *
#> seasonal_10    0.8835     0.0164     0.8575      0.9326 *
#> seasonal_11    0.8383     0.0155     0.8124      0.8875 *
#> 
#> Sample size: 116
#> Number of estimated parameters: 17
#> Number of degrees of freedom: 99
#> Information criteria:
#>      AIC     AICc      BIC     BICc 
#> 1773.912 1780.157 1820.723 1835.565
plot(forecast(testModel,h=18,interval="prediction"))

You might notice that the summary contains more than what is reported by other smooth functions. This one also produces standard errors for the estimated parameters based on Fisher Information calculation. Note that this is computationally expensive, so if you have a model with more than 30 variables, the calculation of standard errors might take plenty of time. As for the default print() method, it will produce a shorter summary from the model, without the standard errors (similar to what es() does):

testModel
#> Time elapsed: 0.23 seconds
#> Model estimated using adam() function: ETS(MMM)
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 869.9558
#> Persistence vector g:
#>  alpha   beta  gamma 
#> 0.0822 0.0298 0.0000 
#> 
#> Sample size: 116
#> Number of estimated parameters: 17
#> Number of degrees of freedom: 99
#> Information criteria:
#>      AIC     AICc      BIC     BICc 
#> 1773.912 1780.157 1820.723 1835.565 
#> 
#> Forecast errors:
#> ME: 576.674; MAE: 798.134; RMSE: 996.154
#> sCE: 142.593%; sMAE: 10.964%; sMSE: 1.873%
#> MASE: 0.325; RMSSE: 0.314; rMAE: 0.352; rRMSE: 0.328

Also, note that the prediction interval in case of multiplicative error models are approximate. It is advisable to use simulations instead (which is slower, but more accurate):

plot(forecast(testModel,h=18,interval="simulated"))

If you want to do the residuals diagnostics, then it is recommended to use plot function, something like this (you can select, which of the plots to produce):

par(mfcol=c(3,4))
plot(testModel,which=c(1:11))
par(mfcol=c(1,1))
plot(testModel,which=12)

By default ADAM will estimate models via maximising likelihood function. But there is also a parameter loss, which allows selecting from a list of already implemented loss functions (again, see documentation for adam() for the full list) or using a function written by a user. Here is how to do the latter on the example of another M3 series:

lossFunction <- function(actual, fitted, B){
  return(sum(abs(actual-fitted)^3))
}
testModel <- adam(M3[[1234]], "AAN", silent=FALSE, loss=lossFunction)
testModel
#> Time elapsed: 0.02 seconds
#> Model estimated using adam() function: ETS(AAN)
#> Distribution assumed in the model: Normal
#> Loss function type: custom; Loss function value: 23993012
#> Persistence vector g:
#>  alpha   beta 
#> 0.6316 0.2494 
#> 
#> Sample size: 45
#> Number of estimated parameters: 4
#> Number of degrees of freedom: 41
#> Information criteria are unavailable for the chosen loss & distribution.
#> 
#> Forecast errors:
#> ME: -346.9; MAE: 346.9; RMSE: 395.39
#> sCE: -34.086%; sMAE: 4.261%; sMSE: 0.236%
#> MASE: 4.8; RMSSE: 4.416; rMAE: 3.942; rRMSE: 3.567

Note that you need to have parameters actual, fitted and B in the function, which correspond to the vector of actual values, vector of fitted values on each iteration and a vector of the optimised parameters.

loss and distribution parameters are independent, so in the example above, we have assumed that the error term follows Normal distribution, but we have estimated its parameters using a non-conventional loss because we can. Some of distributions assume that there is an additional parameter, which can either be estimated or provided by user. These include Asymmetric Laplace (distribution="dalaplace") with alpha, Generalised Normal and Log Generalised normal (distribution=c("gnorm","dlgnorm")) with shape and Student’s T (distribution="dt") with nu:

testModel <- adam(M3[[1234]], "MMN", silent=FALSE, distribution="dgnorm", shape=3)

The model selection in ADAM ETS relies on information criteria and works correctly only for the loss="likelihood". There are several options, how to select the model, see them in the description of the function: ?adam(). The default one uses branch-and-bound algorithm, similar to the one used in es(), but only considers additive trend models (the multiplicative trend ones are less stable and need more attention from a forecaster):

testModel <- adam(M3[[2568]], "ZXZ", lags=c(1,12), silent=FALSE)
#> Forming the pool of models based on... ANN , ANA , MNM , MAM , Estimation progress:    71 %86 %100 %... Done!
testModel
#> Time elapsed: 0.49 seconds
#> Model estimated using adam() function: ETS(MAM)
#> Distribution assumed in the model: Gamma
#> Loss function type: likelihood; Loss function value: 866.5561
#> Persistence vector g:
#>  alpha   beta  gamma 
#> 0.1036 0.0100 0.0000 
#> 
#> Sample size: 116
#> Number of estimated parameters: 17
#> Number of degrees of freedom: 99
#> Information criteria:
#>      AIC     AICc      BIC     BICc 
#> 1767.112 1773.357 1813.923 1828.766 
#> 
#> Forecast errors:
#> ME: 673.457; MAE: 829.876; RMSE: 1064.48
#> sCE: 166.524%; sMAE: 11.4%; sMSE: 2.138%
#> MASE: 0.338; RMSSE: 0.336; rMAE: 0.366; rRMSE: 0.351

Note that the function produces point forecasts if h>0, but it won’t generate prediction interval. This is why you need to use forecast() method (as shown in the first example in this vignette).

Similarly to es(), function supports combination of models, but it saves all the tested models in the output for a potential reuse. Here how it works:

testModel <- adam(M3[[2568]], "CXC", lags=c(1,12))
testForecast <- forecast(testModel,h=18,interval="semiparametric", level=c(0.9,0.95))
testForecast
#>          Point forecast Lower bound (5%) Lower bound (2.5%) Upper bound (95%)
#> Sep 1992      10917.153         9323.220        9040.417174          12608.47
#> Oct 1992       7839.458         1553.164         474.124937          14695.43
#> Nov 1992       7454.090         1339.547         282.860624          14089.43
#> Dec 1992      10189.816         3303.161        2131.739857          17746.30
#> Jan 1993      10561.229         3651.255        2473.326107          18130.32
#> Feb 1993       7275.458         1535.470         526.340613          13422.69
#> Mar 1993       7386.608         1777.324         786.965597          13373.72
#> Apr 1993      14028.018         6961.201        5746.523605          21716.04
#> May 1993       6658.683         1842.404         975.971717          11724.79
#> Jun 1993      11401.590         5902.415        4930.808829          17262.85
#> Jul 1993       8024.271         3910.499        3166.931460          12333.62
#> Aug 1993       8227.646         4999.466        4412.558485          11593.28
#> Sep 1993      11141.207         9435.347        9134.370185          12958.76
#> Oct 1993       7999.688         1355.633         207.270405          15209.36
#> Nov 1993       7605.904         1120.112          -6.970025          14615.65
#> Dec 1993      10397.704         3134.145        1891.530272          18335.52
#> Jan 1994      10775.311         3482.336        2232.556823          18734.25
#> Feb 1994       7421.918         1309.147         230.370021          13950.02
#>          Upper bound (97.5%)
#> Sep 1992            12956.11
#> Oct 1992            16152.46
#> Nov 1992            15491.72
#> Dec 1992            19362.31
#> Jan 1993            19745.82
#> Feb 1993            14702.27
#> Mar 1993            14615.06
#> Apr 1993            23343.49
#> May 1993            12757.28
#> Jun 1993            18475.21
#> Jul 1993            13207.29
#> Aug 1993            12271.65
#> Sep 1993            13334.09
#> Oct 1993            16733.03
#> Nov 1993            16090.43
#> Dec 1993            20025.67
#> Jan 1994            20426.14
#> Feb 1994            15304.61
plot(testForecast)

Yes, now we support vectors for the levels in case you want to produce several. In fact, we also support side for prediction interval, so you can extract specific quantiles without a hustle:

forecast(testModel,h=18,interval="semiparametric", level=c(0.9,0.95,0.99), side="upper")
#>          Point forecast Upper bound (90%) Upper bound (95%) Upper bound (99%)
#> Sep 1992      10917.153          12214.99          12608.47          13367.78
#> Oct 1992       7839.458          13061.19          14695.43          17893.57
#> Nov 1992       7454.090          12514.31          14089.43          17165.07
#> Dec 1992      10189.816          15936.54          17746.30          21296.27
#> Jan 1993      10561.229          16320.18          18130.32          21678.16
#> Feb 1993       7275.458          11979.66          13422.69          16223.24
#> Mar 1993       7386.608          11972.34          13373.72          16089.04
#> Apr 1993      14028.018          19888.42          21716.04          25285.86
#> May 1993       6658.683          10553.87          11724.79          13977.79
#> Jun 1993      11401.590          15893.15          17262.85          19913.66
#> Jul 1993       8024.271          11341.39          12333.62          14238.52
#> Aug 1993       8227.646          10821.62          11593.28          13071.12
#> Sep 1993      11141.207          12534.44          12958.76          13779.08
#> Oct 1993       7999.688          13497.90          15209.36          18551.27
#> Nov 1993       7605.904          12957.18          14615.65          17848.32
#> Dec 1993      10397.704          16440.62          18335.52          22046.19
#> Jan 1994      10775.311          16836.57          18734.25          22447.86
#> Feb 1994       7421.918          12421.15          13950.02          16913.46

A brand new thing in the function is the possibility to use several frequencies (double / triple / quadruple / … seasonal models). In order to show how it works, we will generate an artificial time series, inspired by half-hourly electricity demand using sim.gum() function:

ordersGUM <- c(1,1,1)
lagsGUM <- c(1,48,336)
initialGUM1 <- -25381.7
initialGUM2 <- c(23955.09, 24248.75, 24848.54, 25012.63, 24634.14, 24548.22, 24544.63, 24572.77,
                 24498.33, 24250.94, 24545.44, 25005.92, 26164.65, 27038.55, 28262.16, 28619.83,
                 28892.19, 28575.07, 28837.87, 28695.12, 28623.02, 28679.42, 28682.16, 28683.40,
                 28647.97, 28374.42, 28261.56, 28199.69, 28341.69, 28314.12, 28252.46, 28491.20,
                 28647.98, 28761.28, 28560.11, 28059.95, 27719.22, 27530.23, 27315.47, 27028.83,
                 26933.75, 26961.91, 27372.44, 27362.18, 27271.31, 26365.97, 25570.88, 25058.01)
initialGUM3 <- c(23920.16, 23026.43, 22812.23, 23169.52, 23332.56, 23129.27, 22941.20, 22692.40,
                 22607.53, 22427.79, 22227.64, 22580.72, 23871.99, 25758.34, 28092.21, 30220.46,
                 31786.51, 32699.80, 33225.72, 33788.82, 33892.25, 34112.97, 34231.06, 34449.53,
                 34423.61, 34333.93, 34085.28, 33948.46, 33791.81, 33736.17, 33536.61, 33633.48,
                 33798.09, 33918.13, 33871.41, 33403.75, 32706.46, 31929.96, 31400.48, 30798.24,
                 29958.04, 30020.36, 29822.62, 30414.88, 30100.74, 29833.49, 28302.29, 26906.72,
                 26378.64, 25382.11, 25108.30, 25407.07, 25469.06, 25291.89, 25054.11, 24802.21,
                 24681.89, 24366.97, 24134.74, 24304.08, 25253.99, 26950.23, 29080.48, 31076.33,
                 32453.20, 33232.81, 33661.61, 33991.21, 34017.02, 34164.47, 34398.01, 34655.21,
                 34746.83, 34596.60, 34396.54, 34236.31, 34153.32, 34102.62, 33970.92, 34016.13,
                 34237.27, 34430.08, 34379.39, 33944.06, 33154.67, 32418.62, 31781.90, 31208.69,
                 30662.59, 30230.67, 30062.80, 30421.11, 30710.54, 30239.27, 28949.56, 27506.96,
                 26891.75, 25946.24, 25599.88, 25921.47, 26023.51, 25826.29, 25548.72, 25405.78,
                 25210.45, 25046.38, 24759.76, 24957.54, 25815.10, 27568.98, 29765.24, 31728.25,
                 32987.51, 33633.74, 34021.09, 34407.19, 34464.65, 34540.67, 34644.56, 34756.59,
                 34743.81, 34630.05, 34506.39, 34319.61, 34110.96, 33961.19, 33876.04, 33969.95,
                 34220.96, 34444.66, 34474.57, 34018.83, 33307.40, 32718.90, 32115.27, 31663.53,
                 30903.82, 31013.83, 31025.04, 31106.81, 30681.74, 30245.70, 29055.49, 27582.68,
                 26974.67, 25993.83, 25701.93, 25940.87, 26098.63, 25771.85, 25468.41, 25315.74,
                 25131.87, 24913.15, 24641.53, 24807.15, 25760.85, 27386.39, 29570.03, 31634.00,
                 32911.26, 33603.94, 34020.90, 34297.65, 34308.37, 34504.71, 34586.78, 34725.81,
                 34765.47, 34619.92, 34478.54, 34285.00, 34071.90, 33986.48, 33756.85, 33799.37,
                 33987.95, 34047.32, 33924.48, 33580.82, 32905.87, 32293.86, 31670.02, 31092.57,
                 30639.73, 30245.42, 30281.61, 30484.33, 30349.51, 29889.23, 28570.31, 27185.55,
                 26521.85, 25543.84, 25187.82, 25371.59, 25410.07, 25077.67, 24741.93, 24554.62,
                 24427.19, 24127.21, 23887.55, 24028.40, 24981.34, 26652.32, 28808.00, 30847.09,
                 32304.13, 33059.02, 33562.51, 33878.96, 33976.68, 34172.61, 34274.50, 34328.71,
                 34370.12, 34095.69, 33797.46, 33522.96, 33169.94, 32883.32, 32586.24, 32380.84,
                 32425.30, 32532.69, 32444.24, 32132.49, 31582.39, 30926.58, 30347.73, 29518.04,
                 29070.95, 28586.20, 28416.94, 28598.76, 28529.75, 28424.68, 27588.76, 26604.13,
                 26101.63, 25003.82, 24576.66, 24634.66, 24586.21, 24224.92, 23858.42, 23577.32,
                 23272.28, 22772.00, 22215.13, 21987.29, 21948.95, 22310.79, 22853.79, 24226.06,
                 25772.55, 27266.27, 28045.65, 28606.14, 28793.51, 28755.83, 28613.74, 28376.47,
                 27900.76, 27682.75, 27089.10, 26481.80, 26062.94, 25717.46, 25500.27, 25171.05,
                 25223.12, 25634.63, 26306.31, 26822.46, 26787.57, 26571.18, 26405.21, 26148.41,
                 25704.47, 25473.10, 25265.97, 26006.94, 26408.68, 26592.04, 26224.64, 25407.27,
                 25090.35, 23930.21, 23534.13, 23585.75, 23556.93, 23230.25, 22880.24, 22525.52,
                 22236.71, 21715.08, 21051.17, 20689.40, 20099.18, 19939.71, 19722.69, 20421.58,
                 21542.03, 22962.69, 23848.69, 24958.84, 25938.72, 26316.56, 26742.61, 26990.79,
                 27116.94, 27168.78, 26464.41, 25703.23, 25103.56, 24891.27, 24715.27, 24436.51,
                 24327.31, 24473.02, 24893.89, 25304.13, 25591.77, 25653.00, 25897.55, 25859.32,
                 25918.32, 25984.63, 26232.01, 26810.86, 27209.70, 26863.50, 25734.54, 24456.96)
y <- sim.gum(orders=ordersGUM, lags=lagsGUM, nsim=1, frequency=336, obs=3360,
             measurement=rep(1,3), transition=diag(3), persistence=c(0.045,0.162,0.375),
             initial=cbind(initialGUM1,initialGUM2,initialGUM3))$data

We can then apply ADAM to this data:

testModel <- adam(y, "MMdM", lags=c(1,48,336), initial="backcasting",
                  silent=FALSE, h=336, holdout=TRUE)
testModel
#> Time elapsed: 0.45 seconds
#> Model estimated using adam() function: ETS(MMdM)[48, 336]
#> Distribution assumed in the model: Gamma
#> Loss function type: likelihood; Loss function value: 21761.94
#> Persistence vector g:
#>  alpha   beta gamma1 gamma2 
#> 0.9094 0.2123 0.0674 0.0659 
#> Damping parameter: 0.7132
#> Sample size: 3024
#> Number of estimated parameters: 6
#> Number of degrees of freedom: 3018
#> Information criteria:
#>      AIC     AICc      BIC     BICc 
#> 43535.88 43535.91 43571.97 43572.08 
#> 
#> Forecast errors:
#> ME: 419.337; MAE: 846.283; RMSE: 1075.402
#> sCE: 464.259%; sMAE: 2.789%; sMSE: 0.126%
#> MASE: 1.13; RMSSE: 1.032; rMAE: 0.123; rRMSE: 0.127

Note that the more lags you have, the more initial seasonal components the function will need to estimate, which is a difficult task. This is why we used initial="backcasting" in the example above - this speeds up the estimation by reducing the number of parameters to estimate. Still, the optimiser might not get close to the optimal value, so we can help it. First, we can give more time for the calculation, increasing the number of iterations via maxeval (the default value is 40 iterations for each estimated parameter, e.g. \(40 \times 5 = 200\) in our case):

testModel <- adam(y, "MMdM", lags=c(1,48,336), initial="backcasting",
                  silent=FALSE, h=336, holdout=TRUE, maxeval=10000)
testModel
#> Time elapsed: 3.94 seconds
#> Model estimated using adam() function: ETS(MMdM)[48, 336]
#> Distribution assumed in the model: Gamma
#> Loss function type: likelihood; Loss function value: 19643.8
#> Persistence vector g:
#>  alpha   beta gamma1 gamma2 
#> 0.0227 0.0226 0.1866 0.2329 
#> Damping parameter: 5e-04
#> Sample size: 3024
#> Number of estimated parameters: 6
#> Number of degrees of freedom: 3018
#> Information criteria:
#>      AIC     AICc      BIC     BICc 
#> 39299.60 39299.62 39335.68 39335.79 
#> 
#> Forecast errors:
#> ME: -30.121; MAE: 136.283; RMSE: 172.536
#> sCE: -33.347%; sMAE: 0.449%; sMSE: 0.003%
#> MASE: 0.182; RMSSE: 0.166; rMAE: 0.02; rRMSE: 0.02

This will take more time, but will typically lead to more refined parameters. You can control other parameters of the optimiser as well, such as algorithm, xtol_rel, print_level and others, which are explained in the documentation for nloptr function from nloptr package (run nloptr.print.options() for details). Second, we can give a different set of initial parameters for the optimiser, have a look at what the function saves:

testModel$B

and use this as a starting point for the reestimation (e.g. with a different algorithm):

testModel <- adam(y, "MMdM", lags=c(1,48,336), initial="backcasting",
                  silent=FALSE, h=336, holdout=TRUE, B=testModel$B)
testModel
#> Time elapsed: 0.65 seconds
#> Model estimated using adam() function: ETS(MMdM)[48, 336]
#> Distribution assumed in the model: Gamma
#> Loss function type: likelihood; Loss function value: 19643.8
#> Persistence vector g:
#>  alpha   beta gamma1 gamma2 
#> 0.0226 0.0199 0.1866 0.2325 
#> Damping parameter: 0.0062
#> Sample size: 3024
#> Number of estimated parameters: 6
#> Number of degrees of freedom: 3018
#> Information criteria:
#>      AIC     AICc      BIC     BICc 
#> 39299.59 39299.62 39335.68 39335.79 
#> 
#> Forecast errors:
#> ME: -30.032; MAE: 136.283; RMSE: 172.534
#> sCE: -33.249%; sMAE: 0.449%; sMSE: 0.003%
#> MASE: 0.182; RMSSE: 0.166; rMAE: 0.02; rRMSE: 0.02

If you are ready to wait, you can change the initialisation to the initial="optimal", which in our case will take much more time because of the number of estimated parameters - 389 for the chosen model. The estimation process in this case might take 20 - 30 times more than in the example above.

In addition, you can specify some parts of the initial state vector or some parts of the persistence vector, here is an example:

testModel <- adam(y, "MMdM", lags=c(1,48,336), initial="backcasting",
                  silent=TRUE, h=336, holdout=TRUE, persistence=list(beta=0.1))
testModel
#> Time elapsed: 0.37 seconds
#> Model estimated using adam() function: ETS(MMdM)[48, 336]
#> Distribution assumed in the model: Gamma
#> Loss function type: likelihood; Loss function value: 21896.27
#> Persistence vector g:
#>  alpha   beta gamma1 gamma2 
#> 0.9332 0.1000 0.0518 0.0666 
#> Damping parameter: 0.9439
#> Sample size: 3024
#> Number of estimated parameters: 5
#> Number of degrees of freedom: 3019
#> Number of provided parameters: 1
#> Information criteria:
#>      AIC     AICc      BIC     BICc 
#> 43802.54 43802.56 43832.61 43832.69 
#> 
#> Forecast errors:
#> ME: 133.166; MAE: 793.664; RMSE: 1029.83
#> sCE: 147.432%; sMAE: 2.615%; sMSE: 0.115%
#> MASE: 1.06; RMSSE: 0.988; rMAE: 0.115; rRMSE: 0.122

The function also handles intermittent data (the data with zeroes) and the data with missing values. This is partially covered in the vignette on the oes() function. Here is a simple example:

testModel <- adam(rpois(120,0.5), "MNN", silent=FALSE, h=12, holdout=TRUE,
                  occurrence="odds-ratio")
testModel
#> Time elapsed: 0.04 seconds
#> Model estimated using adam() function: iETS(MNN)[O]
#> Occurrence model type: Odds ratio
#> Distribution assumed in the model: Mixture of Bernoulli and Gamma
#> Loss function type: likelihood; Loss function value: 59.3242
#> Persistence vector g:
#> alpha 
#> 7e-04 
#> 
#> Sample size: 108
#> Number of estimated parameters: 5
#> Number of degrees of freedom: 103
#> Information criteria:
#>      AIC     AICc      BIC     BICc 
#> 276.8254 277.0562 290.2361 281.4121 
#> 
#> Forecast errors:
#> Bias: -100%; sMSE: 21.074%; rRMSE: 0.593; sPIS: 3580.727%; sCE: -550.881%

Finally, adam() is faster than es() function, because its code is more efficient and it uses a different optimisation algorithm with more finely tuned parameters by default. Let’s compare:

adamModel <- adam(M3[[2568]], "CCC")
esModel <- es(M3[[2568]], "CCC")
"adam:"
#> [1] "adam:"
adamModel
#> Time elapsed: 1.98 seconds
#> Model estimated: ETS(CCC)
#> Loss function type: likelihood
#> 
#> Number of models combined: 30
#> Sample size: 116
#> Average number of estimated parameters: 26.7162
#> Average number of degrees of freedom: 89.2838
#> 
#> Forecast errors:
#> ME: 640.352; MAE: 813.82; RMSE: 1033.638
#> sCE: 158.338%; sMAE: 11.18%; sMSE: 2.016%
#> MASE: 0.331; RMSSE: 0.326; rMAE: 0.359; rRMSE: 0.34
"es():"
#> [1] "es():"
esModel
#> Time elapsed: 3.95 seconds
#> Model estimated: ETS(CCC)
#> Initial values were optimised.
#> 
#> Loss function type: likelihood
#> Error standard deviation: 414.1228
#> Sample size: 116
#> Information criteria:
#> (combined values)
#>      AIC     AICc      BIC     BICc 
#> 1763.821 1769.594 1807.909 1820.587 
#> 
#> Forecast errors:
#> MPE: 2.9%; sCE: 91.1%; Bias: 49.3%; MAPE: 6.7%
#> MASE: 0.285; sMAE: 9.6%; sMSE: 1.4%; rMAE: 0.31; rRMSE: 0.281

ADAM ARIMA

As mentioned above, ADAM does not only contain ETS, it also contains ARIMA model, which is regulated via orders parameter. If you want to have a pure ARIMA, you need to switch off ETS, which is done via model="NNN":

testModel <- adam(M3[[1234]], "NNN", silent=FALSE, orders=c(0,2,2))
testModel
#> Time elapsed: 0.05 seconds
#> Model estimated using adam() function: ARIMA(0,2,2)
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 255.293
#> ARMA parameters of the model:
#> MA:
#> theta1[1] theta2[1] 
#>   -1.0909    0.3210 
#> 
#> Sample size: 45
#> Number of estimated parameters: 5
#> Number of degrees of freedom: 40
#> Information criteria:
#>      AIC     AICc      BIC     BICc 
#> 520.5861 522.1245 529.6194 532.5476 
#> 
#> Forecast errors:
#> ME: -348.345; MAE: 348.345; RMSE: 396.569
#> sCE: -34.228%; sMAE: 4.278%; sMSE: 0.237%
#> MASE: 4.82; RMSSE: 4.429; rMAE: 3.958; rRMSE: 3.578

Given that both models are implemented in the same framework, they can be compared using information criteria.

The functionality of ADAM ARIMA is similar to the one of msarima function in smooth package, although there are several differences.

First, changing the distribution parameter will allow switching between additive / multiplicative models. For example, distribution="dlnorm" will create an ARIMA, equivalent to the one on logarithms of the data:

testModel <- adam(M3[[2568]], "NNN", silent=FALSE, lags=c(1,12),
                  orders=list(ar=c(1,1),i=c(1,1),ma=c(2,2)), distribution="dlnorm")
testModel
#> Time elapsed: 0.92 seconds
#> Model estimated using adam() function: SARIMA(1,1,2)[1](1,1,2)[12]
#> Distribution assumed in the model: Log Normal
#> Loss function type: likelihood; Loss function value: 868.4544
#> ARMA parameters of the model:
#> AR:
#>  phi1[1] phi1[12] 
#>  -0.5461   0.0427 
#> MA:
#>  theta1[1]  theta2[1] theta1[12] theta2[12] 
#>    -0.6396    -0.1884    -0.3547    -0.1805 
#> 
#> Sample size: 116
#> Number of estimated parameters: 33
#> Number of degrees of freedom: 83
#> Information criteria:
#>      AIC     AICc      BIC     BICc 
#> 1802.909 1830.275 1893.777 1958.820 
#> 
#> Forecast errors:
#> ME: 345.773; MAE: 592.327; RMSE: 731.203
#> sCE: 85.499%; sMAE: 8.137%; sMSE: 1.009%
#> MASE: 0.241; RMSSE: 0.231; rMAE: 0.262; rRMSE: 0.241

Second, if you want the model with intercept / drift, you can do it using constant parameter:

testModel <- adam(M3[[2568]], "NNN", silent=FALSE, lags=c(1,12), constant=TRUE,
                  orders=list(ar=c(1,1),i=c(1,1),ma=c(2,2)), distribution="dnorm")
testModel
#> Time elapsed: 0.7 seconds
#> Model estimated using adam() function: SARIMA(1,1,2)[1](1,1,2)[12] with drift
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 896.6879
#> ARMA parameters of the model:
#> AR:
#>  phi1[1] phi1[12] 
#>  -0.4783   0.0481 
#> MA:
#>  theta1[1]  theta2[1] theta1[12] theta2[12] 
#>    -0.5178    -0.2590    -0.3023     0.0744 
#> 
#> Sample size: 116
#> Number of estimated parameters: 34
#> Number of degrees of freedom: 82
#> Information criteria:
#>      AIC     AICc      BIC     BICc 
#> 1861.376 1890.758 1954.998 2024.835 
#> 
#> Forecast errors:
#> ME: 219.85; MAE: 600.343; RMSE: 697.476
#> sCE: 54.362%; sMAE: 8.247%; sMSE: 0.918%
#> MASE: 0.244; RMSSE: 0.22; rMAE: 0.265; rRMSE: 0.23

If the model contains non-zero differences, then the constant acts as a drift. Third, you can specify parameters of ARIMA via the arma parameter in the following manner:

testModel <- adam(M3[[2568]], "NNN", silent=FALSE, lags=c(1,12),
                  orders=list(ar=c(1,1),i=c(1,1),ma=c(2,2)), distribution="dnorm",
                  arma=list(ar=c(0.1,0.1), ma=c(-0.96, 0.03, -0.12, 0.03)))
testModel
#> Time elapsed: 0.25 seconds
#> Model estimated using adam() function: SARIMA(1,1,2)[1](1,1,2)[12]
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 898.5443
#> ARMA parameters of the model:
#> AR:
#>  phi1[1] phi1[12] 
#>      0.1      0.1 
#> MA:
#>  theta1[1]  theta2[1] theta1[12] theta2[12] 
#>      -0.96       0.03      -0.12       0.03 
#> 
#> Sample size: 116
#> Number of estimated parameters: 27
#> Number of degrees of freedom: 89
#> Number of provided parameters: 6
#> Information criteria:
#>      AIC     AICc      BIC     BICc 
#> 1851.089 1868.270 1925.436 1966.273 
#> 
#> Forecast errors:
#> ME: 435.493; MAE: 661.141; RMSE: 779.268
#> sCE: 107.683%; sMAE: 9.082%; sMSE: 1.146%
#> MASE: 0.269; RMSSE: 0.246; rMAE: 0.292; rRMSE: 0.257

Finally, the initials for the states can also be provided, although getting the correct ones might be a challenging task (you also need to know how many of them to provide; checking testModel$initial might help):

testModel <- adam(M3[[2568]], "NNN", silent=FALSE, lags=c(1,12),
                  orders=list(ar=c(1,1),i=c(1,1),ma=c(2,0)), distribution="dnorm",
                  initial=list(arima=M3[[2568]]$x[1:24]))
testModel
#> Time elapsed: 0.57 seconds
#> Model estimated using adam() function: SARIMA(1,1,2)[1](1,1,0)[12]
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 901.9027
#> ARMA parameters of the model:
#> AR:
#>  phi1[1] phi1[12] 
#>  -0.5457   0.0421 
#> MA:
#> theta1[1] theta2[1] 
#>   -0.7559   -0.0771 
#> 
#> Sample size: 116
#> Number of estimated parameters: 31
#> Number of degrees of freedom: 85
#> Information criteria:
#>      AIC     AICc      BIC     BICc 
#> 1865.805 1889.424 1951.167 2007.304 
#> 
#> Forecast errors:
#> ME: 402.389; MAE: 630.194; RMSE: 745.835
#> sCE: 99.498%; sMAE: 8.657%; sMSE: 1.05%
#> MASE: 0.257; RMSSE: 0.235; rMAE: 0.278; rRMSE: 0.246

If you work with ADAM ARIMA model, then there is no such thing as “usual” bounds for the parameters, so the function will use the bounds="admissible", checking the AR / MA polynomials in order to make sure that the model is stationary and invertible (aka stable).

Similarly to ETS, you can use different distributions and losses for the estimation. Note that the order selection for ARIMA is done in auto.adam() function, not in the adam()! However, if you do orders=list(..., select=TRUE) in adam(), it will call auto.adam() and do the selection.

Finally, ARIMA is typically slower than ETS, mainly because its initial states are more difficult to estimate due to an increased complexity of the model. If you want to speed things up, use initial="backcasting" and reduce the number of iterations via maxeval parameter.

ADAM ETSX / ARIMAX / ETSX+ARIMA

Another important feature of ADAM is introduction of explanatory variables. Unlike in es(), adam() expects a matrix for data and can work with a formula. If the latter is not provided, then it will use all explanatory variables. Here is a brief example:

BJData <- cbind(BJsales,BJsales.lead)
testModel <- adam(BJData, "AAN", h=18, silent=FALSE)

If you work with data.frame or similar structures, then you can use them directly, ADAM will extract the response variable either assuming that it is in the first column or from the provided formula (if you specify one via formula parameter). Here is an example, where we create a matrix with lags and leads of an explanatory variable:

BJData <- cbind(as.data.frame(BJsales),as.data.frame(xregExpander(BJsales.lead,c(-7:7))))
colnames(BJData)[1] <- "y"
testModel <- adam(BJData, "ANN", h=18, silent=FALSE, holdout=TRUE, formula=y~xLag1+xLag2+xLag3)
testModel
#> Time elapsed: 0.12 seconds
#> Model estimated using adam() function: ETSX(ANN)
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 222.9192
#> Persistence vector g (excluding xreg):
#> alpha 
#>     1 
#> 
#> Sample size: 132
#> Number of estimated parameters: 6
#> Number of degrees of freedom: 126
#> Information criteria:
#>      AIC     AICc      BIC     BICc 
#> 457.8384 458.5104 475.1352 476.7758 
#> 
#> Forecast errors:
#> ME: 0.223; MAE: 1.279; RMSE: 1.651
#> sCE: 1.773%; sMAE: 0.566%; sMSE: 0.005%
#> MASE: 1.048; RMSSE: 1.057; rMAE: 0.571; rRMSE: 0.658

Similarly to es(), there is a support for variables selection, but via the regressors parameter instead of xregDo, which will then use stepwise() function from greybox package on the residuals of the model:

testModel <- adam(BJData, "ANN", h=18, silent=FALSE, holdout=TRUE, regressors="select")

The same functionality is supported with ARIMA, so you can have, for example, ARIMAX(0,1,1), which is equivalent to ETSX(A,N,N):

testModel <- adam(BJData, "NNN", h=18, silent=FALSE, holdout=TRUE, regressors="select", orders=c(0,1,1))

The two models might differ because they have different initialisation in the optimiser and different bounds for parameters (ARIMA relies on invertibility condition, while ETS does the traditional (0,1) bounds by default). It is possible to make them identical if the number of iterations is increased and the initial parameters are the same. Here is an example of what happens, when the two models have exactly the same parameters:

BJData <- BJData[,c("y",names(testModel$initial$xreg))];
testModel <- adam(BJData, "NNN", h=18, silent=TRUE, holdout=TRUE, orders=c(0,1,1),
                  initial=testModel$initial, arma=testModel$arma)
testModel
#> Time elapsed: 0.01 seconds
#> Model estimated using adam() function: ARIMAX(0,1,1)
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 79.6631
#> ARMA parameters of the model:
#> MA:
#> theta1[1] 
#>    0.2748 
#> 
#> Sample size: 132
#> Number of estimated parameters: 1
#> Number of degrees of freedom: 131
#> Number of provided parameters: 7
#> Information criteria:
#>      AIC     AICc      BIC     BICc 
#> 161.3262 161.3570 164.2090 164.2841 
#> 
#> Forecast errors:
#> ME: 0.426; MAE: 0.567; RMSE: 0.684
#> sCE: 3.391%; sMAE: 0.251%; sMSE: 0.001%
#> MASE: 0.465; RMSSE: 0.438; rMAE: 0.253; rRMSE: 0.273
names(testModel$initial)[1] <- names(testModel$initial)[[1]] <- "level"
testModel2 <- adam(BJData, "ANN", h=18, silent=TRUE, holdout=TRUE,
                   initial=testModel$initial, persistence=testModel$arma$ma+1)
testModel2
#> Time elapsed: 0 seconds
#> Model estimated using adam() function: ETSX(ANN)
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 1e+300
#> Persistence vector g (excluding xreg):
#>  alpha 
#> 1.2748 
#> 
#> Sample size: 132
#> Number of estimated parameters: 1
#> Number of degrees of freedom: 131
#> Number of provided parameters: 7
#> Information criteria:
#>      AIC     AICc      BIC     BICc 
#> 161.3262 161.3570 164.2090 164.2841 
#> 
#> Forecast errors:
#> ME: 0.426; MAE: 0.567; RMSE: 0.684
#> sCE: 3.391%; sMAE: 0.251%; sMSE: 0.001%
#> MASE: 0.465; RMSSE: 0.438; rMAE: 0.253; rRMSE: 0.273

Another feature of ADAM is the time varying parameters in the SSOE framework, which can be switched on via regressors="adapt":

testModel <- adam(BJData, "ANN", h=18, silent=FALSE, holdout=TRUE, regressors="adapt")
testModel$persistence
#>        alpha       delta1       delta2       delta3       delta4       delta5 
#> 7.822109e-04 9.999948e-01 2.523320e-01 9.966819e-02 1.174178e-01 8.441907e-05

Note that the default number of iterations might not be sufficient in order to get close to the optimum of the function, so setting maxeval to something bigger might help. If you want to explore, why the optimisation stopped, you can provide print_level=41 parameter to the function, and it will print out the report from the optimiser. In the end, the default parameters are tuned in order to give a reasonable solution, but given the complexity of the model, they might not guarantee to give the best one all the time.

Finally, you can produce a mixture of ETS, ARIMA and regression, by using the respective parameters, like this:

testModel <- adam(BJData, "AAN", h=18, silent=FALSE, holdout=TRUE, orders=c(1,0,1))
summary(testModel)
#> 
#> Model estimated using adam() function: ETSX(AAN)+ARIMA(1,0,1)
#> Response variable: y
#> Distribution used in the estimation: Normal
#> Loss function type: likelihood; Loss function value: 76.6389
#> Coefficients:
#>             Estimate Std. Error Lower 2.5% Upper 97.5%  
#> alpha         0.8747     0.5281     0.0000      1.0000  
#> beta          0.0201     0.0560     0.0000      0.1308  
#> phi1[1]       0.7079     0.4054    -0.0947      1.0000  
#> theta1[1]    -0.3591     0.1782    -0.7119     -0.0069 *
#> level        41.6657     8.1345    25.5585     57.7433 *
#> trend        -0.0298     0.2377    -0.5004      0.4399  
#> ARIMAState1   2.5642     1.4710    -0.3485      5.4716  
#> xLag3         4.8670     0.1157     4.6379      5.0956 *
#> xLag7         1.1150     0.1264     0.8647      1.3649 *
#> xLag4         3.9471     0.0929     3.7632      4.1307 *
#> xLag6         2.5010     0.0819     2.3388      2.6630 *
#> xLag5         3.1346     0.1846     2.7691      3.4994 *
#> 
#> Sample size: 132
#> Number of estimated parameters: 13
#> Number of degrees of freedom: 119
#> Information criteria:
#>      AIC     AICc      BIC     BICc 
#> 179.2778 182.3626 216.7542 224.2853

This might be handy, when you explore a high frequency data, want to add calendar events, apply ETS and add AR/MA errors to it.

Auto ADAM

While the original adam() function allows selecting ETS components and explanatory variables, it does not allow selecting the most suitable distribution and / or ARIMA components. This is what auto.adam() function is for.

In order to do the selection of the most appropriate distribution, you need to provide a vector of those that you want to check:

testModel <- auto.adam(M3[[1234]], "XXX", silent=FALSE,
                       distribution=c("dnorm","dlaplace","ds"))
#> Evaluating models with different distributions... dnorm , dlaplace , ds , Done!
testModel
#> Time elapsed: 0.23 seconds
#> Model estimated using auto.adam() function: ETS(AAN)
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 255.2972
#> Persistence vector g:
#>  alpha   beta 
#> 0.6828 0.2275 
#> 
#> Sample size: 45
#> Number of estimated parameters: 5
#> Number of degrees of freedom: 40
#> Information criteria:
#>      AIC     AICc      BIC     BICc 
#> 520.5943 522.1328 529.6276 532.5558 
#> 
#> Forecast errors:
#> ME: -348.202; MAE: 348.202; RMSE: 396.376
#> sCE: -34.214%; sMAE: 4.277%; sMSE: 0.237%
#> MASE: 4.818; RMSSE: 4.427; rMAE: 3.957; rRMSE: 3.576

This process can also be done in parallel on either the automatically selected number of cores (e.g. parallel=TRUE) or on the specified by user (e.g. parallel=4):

testModel <- auto.adam(M3[[1234]], "ZZZ", silent=FALSE, parallel=TRUE)

If you want to add ARIMA or regression components, you can do it in the exactly the same way as for the adam() function. Here is an example of ETS+ARIMA:

testModel <- auto.adam(M3[[1234]], "AAN", orders=list(ar=2,i=2,ma=2), silent=TRUE,
                       distribution=c("dnorm","dlaplace","ds","dgnorm"))
testModel
#> Time elapsed: 0.39 seconds
#> Model estimated using auto.adam() function: ETS(AAN)+ARIMA(2,2,2)
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 253.3433
#> Persistence vector g:
#>  alpha   beta 
#> 0.1127 0.0201 
#> 
#> ARMA parameters of the model:
#> AR:
#> phi1[1] phi2[1] 
#> -0.4839 -0.4650 
#> MA:
#> theta1[1] theta2[1] 
#>   -0.6804    0.0677 
#> 
#> Sample size: 45
#> Number of estimated parameters: 13
#> Number of degrees of freedom: 32
#> Information criteria:
#>      AIC     AICc      BIC     BICc 
#> 532.6867 544.4286 556.1733 578.5221 
#> 
#> Forecast errors:
#> ME: -307.506; MAE: 307.506; RMSE: 357.019
#> sCE: -30.215%; sMAE: 3.777%; sMSE: 0.192%
#> MASE: 4.255; RMSSE: 3.987; rMAE: 3.494; rRMSE: 3.221

However, this way the function will just use ARIMA(2,2,2) and fit it together with ETS. If you want it to select the most appropriate ARIMA orders from the provided (e.g. up to AR(2), I(1) and MA(2)), you need to add parameter select=TRUE to the list in orders:

testModel <- auto.adam(M3[[1234]], "XXN", orders=list(ar=2,i=2,ma=2,select=TRUE),
                       distribution="default", silent=FALSE)
#> Evaluating models with different distributions... default ,  Selecting ARIMA orders... 
#> Selecting differences... 
#> Selecting ARMA... |-
#> The best ARIMA is selected. Done!
testModel
#> Time elapsed: 0.19 seconds
#> Model estimated using auto.adam() function: ETS(ANN) with drift
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 255.0565
#> Persistence vector g:
#>  alpha 
#> 0.9439 
#> 
#> Sample size: 45
#> Number of estimated parameters: 4
#> Number of degrees of freedom: 41
#> Information criteria:
#>      AIC     AICc      BIC     BICc 
#> 518.1131 519.1131 525.3397 527.2431 
#> 
#> Forecast errors:
#> ME: -331.735; MAE: 331.735; RMSE: 375.935
#> sCE: -32.596%; sMAE: 4.074%; sMSE: 0.213%
#> MASE: 4.59; RMSSE: 4.199; rMAE: 3.77; rRMSE: 3.392

Knowing how to work with adam(), you can use similar principles, when dealing with auto.adam(). Just keep in mind that the provided persistence, phi, initial, arma and B won’t work, because this contradicts the idea of the model selection.

Finally, there is also the mechanism of automatic outliers detection, which extracts residuals from the best model, flags observations that lie outside the prediction interval of thw width level in sample and then refits auto.adam() with the dummy variables for the outliers. Here how it works:

testModel <- auto.adam(Mcomp::M3[[2568]], "PPP", silent=FALSE, outliers="use",
                       distribution="default")
#> Evaluating models with different distributions... default , 
#> Dealing with outliers...
testModel
#> Time elapsed: 2.37 seconds
#> Model estimated using auto.adam() function: ETSX(MMdM)
#> Distribution assumed in the model: Gamma
#> Loss function type: likelihood; Loss function value: 852.7477
#> Persistence vector g (excluding xreg):
#>  alpha   beta  gamma 
#> 0.0218 0.0218 0.0000 
#> Damping parameter: 0.9588
#> Sample size: 116
#> Number of estimated parameters: 22
#> Number of degrees of freedom: 94
#> Information criteria:
#>      AIC     AICc      BIC     BICc 
#> 1749.495 1760.377 1810.074 1835.938 
#> 
#> Forecast errors:
#> ME: 748.793; MAE: 857.854; RMSE: 1102.302
#> sCE: 185.152%; sMAE: 11.784%; sMSE: 2.293%
#> MASE: 0.349; RMSSE: 0.348; rMAE: 0.379; rRMSE: 0.363

If you specify outliers="select", the function will create leads and lags 1 of the outliers and then select the most appropriate ones via the regressors parameter of adam.

If you want to know more about ADAM, you are welcome to visit the online textbook (this is a work in progress at the moment).

Hyndman, Rob J, Anne B Koehler, J Keith Ord, and Ralph D Snyder. 2008. Forecasting with Exponential Smoothing. Springer Berlin Heidelberg.