This vignette explains briefly how to use the function adam()
and the related auto.adam()
in smooth
package. It does not aim at covering all aspects of the function, but focuses on the main ones.
ADAM is Augmented Dynamic Adaptive Model. It is a model that underlies ETS, ARIMA and regression, connecting them in a unified framework. The underlying model for ADAM is a Single Source of Error state space model, which is explained in detail separately in an online textbook.
The main philosophy of adam()
function is to be agnostic of the provided data. This means that it will work with ts
, msts
, zoo
, xts
, data.frame
, numeric
and other classes of data. The specification of seasonality in the model is done using a separate parameter lags
, so you are not obliged to transform the existing data to something specific, and can use it as is. If you provide a matrix
, or a data.frame
, or a data.table
, or any other multivariate structure, then the function will use the first column for the response variable and the others for the explanatory ones. One thing that is currently assumed in the function is that the data is measured at a regular frequency. If this is not the case, you will need to introduce missing values manually.
In order to run the experiments in this vignette, we need to load the following packages:
require(Mcomp)
require(greybox)
require(smooth)
First and foremost, ADAM implements ETS model, although in a more flexible way than (Hyndman et al. 2008): it supports different distributions for the error term, which are regulated via distribution
parameter. By default, the additive error model relies on Normal distribution, while the multiplicative error one assumes Inverse Gaussian. If you want to reproduce the classical ETS, you would need to specify distribution="dnorm"
. Here is an example of ADAM ETS(MMM) with Normal distribution on a N2568 data from M3 competition (if you provide an Mcomp
object, adam()
will automatically set the train and test sets, the forecast horizon and even the needed lags):
<- adam(M3[[2568]], "MMM", lags=c(1,12), distribution="dnorm")
testModel summary(testModel)
#>
#> Model estimated using adam() function: ETS(MMM)
#> Response variable: M3..2568..
#> Distribution used in the estimation: Normal
#> Loss function type: likelihood; Loss function value: 869.9558
#> Coefficients:
#> Estimate Std. Error Lower 2.5% Upper 97.5%
#> alpha 0.0822 0.0225 0.0375 0.1267 *
#> beta 0.0298 0.0206 0.0000 0.0706
#> gamma 0.0000 0.0555 0.0000 0.1097
#> level 4553.2079 77.2964 4399.8351 4706.0971 *
#> trend 1.0039 0.0020 0.9999 1.0079 *
#> seasonal_1 1.1810 0.0208 1.1551 1.2302 *
#> seasonal_2 0.8152 0.0143 0.7893 0.8644 *
#> seasonal_3 0.8248 0.0145 0.7989 0.8740 *
#> seasonal_4 1.5787 0.0249 1.5528 1.6279 *
#> seasonal_5 0.7464 0.0131 0.7205 0.7956 *
#> seasonal_6 1.2653 0.0214 1.2394 1.3145 *
#> seasonal_7 0.8924 0.0155 0.8665 0.9416 *
#> seasonal_8 0.9106 0.0159 0.8847 0.9598 *
#> seasonal_9 1.2290 0.0227 1.2031 1.2782 *
#> seasonal_10 0.8835 0.0164 0.8575 0.9326 *
#> seasonal_11 0.8383 0.0155 0.8124 0.8875 *
#>
#> Sample size: 116
#> Number of estimated parameters: 17
#> Number of degrees of freedom: 99
#> Information criteria:
#> AIC AICc BIC BICc
#> 1773.912 1780.157 1820.723 1835.565
plot(forecast(testModel,h=18,interval="prediction"))
You might notice that the summary contains more than what is reported by other smooth
functions. This one also produces standard errors for the estimated parameters based on Fisher Information calculation. Note that this is computationally expensive, so if you have a model with more than 30 variables, the calculation of standard errors might take plenty of time. As for the default print()
method, it will produce a shorter summary from the model, without the standard errors (similar to what es()
does):
testModel#> Time elapsed: 0.23 seconds
#> Model estimated using adam() function: ETS(MMM)
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 869.9558
#> Persistence vector g:
#> alpha beta gamma
#> 0.0822 0.0298 0.0000
#>
#> Sample size: 116
#> Number of estimated parameters: 17
#> Number of degrees of freedom: 99
#> Information criteria:
#> AIC AICc BIC BICc
#> 1773.912 1780.157 1820.723 1835.565
#>
#> Forecast errors:
#> ME: 576.674; MAE: 798.134; RMSE: 996.154
#> sCE: 142.593%; sMAE: 10.964%; sMSE: 1.873%
#> MASE: 0.325; RMSSE: 0.314; rMAE: 0.352; rRMSE: 0.328
Also, note that the prediction interval in case of multiplicative error models are approximate. It is advisable to use simulations instead (which is slower, but more accurate):
plot(forecast(testModel,h=18,interval="simulated"))
If you want to do the residuals diagnostics, then it is recommended to use plot
function, something like this (you can select, which of the plots to produce):
par(mfcol=c(3,4))
plot(testModel,which=c(1:11))
par(mfcol=c(1,1))
plot(testModel,which=12)
By default ADAM will estimate models via maximising likelihood function. But there is also a parameter loss
, which allows selecting from a list of already implemented loss functions (again, see documentation for adam()
for the full list) or using a function written by a user. Here is how to do the latter on the example of another M3 series:
<- function(actual, fitted, B){
lossFunction return(sum(abs(actual-fitted)^3))
}<- adam(M3[[1234]], "AAN", silent=FALSE, loss=lossFunction)
testModel
testModel#> Time elapsed: 0.02 seconds
#> Model estimated using adam() function: ETS(AAN)
#> Distribution assumed in the model: Normal
#> Loss function type: custom; Loss function value: 23993012
#> Persistence vector g:
#> alpha beta
#> 0.6316 0.2494
#>
#> Sample size: 45
#> Number of estimated parameters: 4
#> Number of degrees of freedom: 41
#> Information criteria are unavailable for the chosen loss & distribution.
#>
#> Forecast errors:
#> ME: -346.9; MAE: 346.9; RMSE: 395.39
#> sCE: -34.086%; sMAE: 4.261%; sMSE: 0.236%
#> MASE: 4.8; RMSSE: 4.416; rMAE: 3.942; rRMSE: 3.567
Note that you need to have parameters actual, fitted and B in the function, which correspond to the vector of actual values, vector of fitted values on each iteration and a vector of the optimised parameters.
loss
and distribution
parameters are independent, so in the example above, we have assumed that the error term follows Normal distribution, but we have estimated its parameters using a non-conventional loss because we can. Some of distributions assume that there is an additional parameter, which can either be estimated or provided by user. These include Asymmetric Laplace (distribution="dalaplace"
) with alpha
, Generalised Normal and Log Generalised normal (distribution=c("gnorm","dlgnorm")
) with shape
and Student’s T (distribution="dt"
) with nu
:
<- adam(M3[[1234]], "MMN", silent=FALSE, distribution="dgnorm", shape=3) testModel
The model selection in ADAM ETS relies on information criteria and works correctly only for the loss="likelihood"
. There are several options, how to select the model, see them in the description of the function: ?adam()
. The default one uses branch-and-bound algorithm, similar to the one used in es()
, but only considers additive trend models (the multiplicative trend ones are less stable and need more attention from a forecaster):
<- adam(M3[[2568]], "ZXZ", lags=c(1,12), silent=FALSE)
testModel #> Forming the pool of models based on... ANN , ANA , MNM , MAM , Estimation progress: 71 %86 %100 %... Done!
testModel#> Time elapsed: 0.49 seconds
#> Model estimated using adam() function: ETS(MAM)
#> Distribution assumed in the model: Gamma
#> Loss function type: likelihood; Loss function value: 866.5561
#> Persistence vector g:
#> alpha beta gamma
#> 0.1036 0.0100 0.0000
#>
#> Sample size: 116
#> Number of estimated parameters: 17
#> Number of degrees of freedom: 99
#> Information criteria:
#> AIC AICc BIC BICc
#> 1767.112 1773.357 1813.923 1828.766
#>
#> Forecast errors:
#> ME: 673.457; MAE: 829.876; RMSE: 1064.48
#> sCE: 166.524%; sMAE: 11.4%; sMSE: 2.138%
#> MASE: 0.338; RMSSE: 0.336; rMAE: 0.366; rRMSE: 0.351
Note that the function produces point forecasts if h>0
, but it won’t generate prediction interval. This is why you need to use forecast()
method (as shown in the first example in this vignette).
Similarly to es()
, function supports combination of models, but it saves all the tested models in the output for a potential reuse. Here how it works:
<- adam(M3[[2568]], "CXC", lags=c(1,12))
testModel <- forecast(testModel,h=18,interval="semiparametric", level=c(0.9,0.95))
testForecast
testForecast#> Point forecast Lower bound (5%) Lower bound (2.5%) Upper bound (95%)
#> Sep 1992 10917.153 9323.220 9040.417174 12608.47
#> Oct 1992 7839.458 1553.164 474.124937 14695.43
#> Nov 1992 7454.090 1339.547 282.860624 14089.43
#> Dec 1992 10189.816 3303.161 2131.739857 17746.30
#> Jan 1993 10561.229 3651.255 2473.326107 18130.32
#> Feb 1993 7275.458 1535.470 526.340613 13422.69
#> Mar 1993 7386.608 1777.324 786.965597 13373.72
#> Apr 1993 14028.018 6961.201 5746.523605 21716.04
#> May 1993 6658.683 1842.404 975.971717 11724.79
#> Jun 1993 11401.590 5902.415 4930.808829 17262.85
#> Jul 1993 8024.271 3910.499 3166.931460 12333.62
#> Aug 1993 8227.646 4999.466 4412.558485 11593.28
#> Sep 1993 11141.207 9435.347 9134.370185 12958.76
#> Oct 1993 7999.688 1355.633 207.270405 15209.36
#> Nov 1993 7605.904 1120.112 -6.970025 14615.65
#> Dec 1993 10397.704 3134.145 1891.530272 18335.52
#> Jan 1994 10775.311 3482.336 2232.556823 18734.25
#> Feb 1994 7421.918 1309.147 230.370021 13950.02
#> Upper bound (97.5%)
#> Sep 1992 12956.11
#> Oct 1992 16152.46
#> Nov 1992 15491.72
#> Dec 1992 19362.31
#> Jan 1993 19745.82
#> Feb 1993 14702.27
#> Mar 1993 14615.06
#> Apr 1993 23343.49
#> May 1993 12757.28
#> Jun 1993 18475.21
#> Jul 1993 13207.29
#> Aug 1993 12271.65
#> Sep 1993 13334.09
#> Oct 1993 16733.03
#> Nov 1993 16090.43
#> Dec 1993 20025.67
#> Jan 1994 20426.14
#> Feb 1994 15304.61
plot(testForecast)
Yes, now we support vectors for the levels in case you want to produce several. In fact, we also support side for prediction interval, so you can extract specific quantiles without a hustle:
forecast(testModel,h=18,interval="semiparametric", level=c(0.9,0.95,0.99), side="upper")
#> Point forecast Upper bound (90%) Upper bound (95%) Upper bound (99%)
#> Sep 1992 10917.153 12214.99 12608.47 13367.78
#> Oct 1992 7839.458 13061.19 14695.43 17893.57
#> Nov 1992 7454.090 12514.31 14089.43 17165.07
#> Dec 1992 10189.816 15936.54 17746.30 21296.27
#> Jan 1993 10561.229 16320.18 18130.32 21678.16
#> Feb 1993 7275.458 11979.66 13422.69 16223.24
#> Mar 1993 7386.608 11972.34 13373.72 16089.04
#> Apr 1993 14028.018 19888.42 21716.04 25285.86
#> May 1993 6658.683 10553.87 11724.79 13977.79
#> Jun 1993 11401.590 15893.15 17262.85 19913.66
#> Jul 1993 8024.271 11341.39 12333.62 14238.52
#> Aug 1993 8227.646 10821.62 11593.28 13071.12
#> Sep 1993 11141.207 12534.44 12958.76 13779.08
#> Oct 1993 7999.688 13497.90 15209.36 18551.27
#> Nov 1993 7605.904 12957.18 14615.65 17848.32
#> Dec 1993 10397.704 16440.62 18335.52 22046.19
#> Jan 1994 10775.311 16836.57 18734.25 22447.86
#> Feb 1994 7421.918 12421.15 13950.02 16913.46
A brand new thing in the function is the possibility to use several frequencies (double / triple / quadruple / … seasonal models). In order to show how it works, we will generate an artificial time series, inspired by half-hourly electricity demand using sim.gum()
function:
<- c(1,1,1)
ordersGUM <- c(1,48,336)
lagsGUM <- -25381.7
initialGUM1 <- c(23955.09, 24248.75, 24848.54, 25012.63, 24634.14, 24548.22, 24544.63, 24572.77,
initialGUM2 24498.33, 24250.94, 24545.44, 25005.92, 26164.65, 27038.55, 28262.16, 28619.83,
28892.19, 28575.07, 28837.87, 28695.12, 28623.02, 28679.42, 28682.16, 28683.40,
28647.97, 28374.42, 28261.56, 28199.69, 28341.69, 28314.12, 28252.46, 28491.20,
28647.98, 28761.28, 28560.11, 28059.95, 27719.22, 27530.23, 27315.47, 27028.83,
26933.75, 26961.91, 27372.44, 27362.18, 27271.31, 26365.97, 25570.88, 25058.01)
<- c(23920.16, 23026.43, 22812.23, 23169.52, 23332.56, 23129.27, 22941.20, 22692.40,
initialGUM3 22607.53, 22427.79, 22227.64, 22580.72, 23871.99, 25758.34, 28092.21, 30220.46,
31786.51, 32699.80, 33225.72, 33788.82, 33892.25, 34112.97, 34231.06, 34449.53,
34423.61, 34333.93, 34085.28, 33948.46, 33791.81, 33736.17, 33536.61, 33633.48,
33798.09, 33918.13, 33871.41, 33403.75, 32706.46, 31929.96, 31400.48, 30798.24,
29958.04, 30020.36, 29822.62, 30414.88, 30100.74, 29833.49, 28302.29, 26906.72,
26378.64, 25382.11, 25108.30, 25407.07, 25469.06, 25291.89, 25054.11, 24802.21,
24681.89, 24366.97, 24134.74, 24304.08, 25253.99, 26950.23, 29080.48, 31076.33,
32453.20, 33232.81, 33661.61, 33991.21, 34017.02, 34164.47, 34398.01, 34655.21,
34746.83, 34596.60, 34396.54, 34236.31, 34153.32, 34102.62, 33970.92, 34016.13,
34237.27, 34430.08, 34379.39, 33944.06, 33154.67, 32418.62, 31781.90, 31208.69,
30662.59, 30230.67, 30062.80, 30421.11, 30710.54, 30239.27, 28949.56, 27506.96,
26891.75, 25946.24, 25599.88, 25921.47, 26023.51, 25826.29, 25548.72, 25405.78,
25210.45, 25046.38, 24759.76, 24957.54, 25815.10, 27568.98, 29765.24, 31728.25,
32987.51, 33633.74, 34021.09, 34407.19, 34464.65, 34540.67, 34644.56, 34756.59,
34743.81, 34630.05, 34506.39, 34319.61, 34110.96, 33961.19, 33876.04, 33969.95,
34220.96, 34444.66, 34474.57, 34018.83, 33307.40, 32718.90, 32115.27, 31663.53,
30903.82, 31013.83, 31025.04, 31106.81, 30681.74, 30245.70, 29055.49, 27582.68,
26974.67, 25993.83, 25701.93, 25940.87, 26098.63, 25771.85, 25468.41, 25315.74,
25131.87, 24913.15, 24641.53, 24807.15, 25760.85, 27386.39, 29570.03, 31634.00,
32911.26, 33603.94, 34020.90, 34297.65, 34308.37, 34504.71, 34586.78, 34725.81,
34765.47, 34619.92, 34478.54, 34285.00, 34071.90, 33986.48, 33756.85, 33799.37,
33987.95, 34047.32, 33924.48, 33580.82, 32905.87, 32293.86, 31670.02, 31092.57,
30639.73, 30245.42, 30281.61, 30484.33, 30349.51, 29889.23, 28570.31, 27185.55,
26521.85, 25543.84, 25187.82, 25371.59, 25410.07, 25077.67, 24741.93, 24554.62,
24427.19, 24127.21, 23887.55, 24028.40, 24981.34, 26652.32, 28808.00, 30847.09,
32304.13, 33059.02, 33562.51, 33878.96, 33976.68, 34172.61, 34274.50, 34328.71,
34370.12, 34095.69, 33797.46, 33522.96, 33169.94, 32883.32, 32586.24, 32380.84,
32425.30, 32532.69, 32444.24, 32132.49, 31582.39, 30926.58, 30347.73, 29518.04,
29070.95, 28586.20, 28416.94, 28598.76, 28529.75, 28424.68, 27588.76, 26604.13,
26101.63, 25003.82, 24576.66, 24634.66, 24586.21, 24224.92, 23858.42, 23577.32,
23272.28, 22772.00, 22215.13, 21987.29, 21948.95, 22310.79, 22853.79, 24226.06,
25772.55, 27266.27, 28045.65, 28606.14, 28793.51, 28755.83, 28613.74, 28376.47,
27900.76, 27682.75, 27089.10, 26481.80, 26062.94, 25717.46, 25500.27, 25171.05,
25223.12, 25634.63, 26306.31, 26822.46, 26787.57, 26571.18, 26405.21, 26148.41,
25704.47, 25473.10, 25265.97, 26006.94, 26408.68, 26592.04, 26224.64, 25407.27,
25090.35, 23930.21, 23534.13, 23585.75, 23556.93, 23230.25, 22880.24, 22525.52,
22236.71, 21715.08, 21051.17, 20689.40, 20099.18, 19939.71, 19722.69, 20421.58,
21542.03, 22962.69, 23848.69, 24958.84, 25938.72, 26316.56, 26742.61, 26990.79,
27116.94, 27168.78, 26464.41, 25703.23, 25103.56, 24891.27, 24715.27, 24436.51,
24327.31, 24473.02, 24893.89, 25304.13, 25591.77, 25653.00, 25897.55, 25859.32,
25918.32, 25984.63, 26232.01, 26810.86, 27209.70, 26863.50, 25734.54, 24456.96)
<- sim.gum(orders=ordersGUM, lags=lagsGUM, nsim=1, frequency=336, obs=3360,
y measurement=rep(1,3), transition=diag(3), persistence=c(0.045,0.162,0.375),
initial=cbind(initialGUM1,initialGUM2,initialGUM3))$data
We can then apply ADAM to this data:
<- adam(y, "MMdM", lags=c(1,48,336), initial="backcasting",
testModel silent=FALSE, h=336, holdout=TRUE)
testModel#> Time elapsed: 0.45 seconds
#> Model estimated using adam() function: ETS(MMdM)[48, 336]
#> Distribution assumed in the model: Gamma
#> Loss function type: likelihood; Loss function value: 21761.94
#> Persistence vector g:
#> alpha beta gamma1 gamma2
#> 0.9094 0.2123 0.0674 0.0659
#> Damping parameter: 0.7132
#> Sample size: 3024
#> Number of estimated parameters: 6
#> Number of degrees of freedom: 3018
#> Information criteria:
#> AIC AICc BIC BICc
#> 43535.88 43535.91 43571.97 43572.08
#>
#> Forecast errors:
#> ME: 419.337; MAE: 846.283; RMSE: 1075.402
#> sCE: 464.259%; sMAE: 2.789%; sMSE: 0.126%
#> MASE: 1.13; RMSSE: 1.032; rMAE: 0.123; rRMSE: 0.127
Note that the more lags you have, the more initial seasonal components the function will need to estimate, which is a difficult task. This is why we used initial="backcasting"
in the example above - this speeds up the estimation by reducing the number of parameters to estimate. Still, the optimiser might not get close to the optimal value, so we can help it. First, we can give more time for the calculation, increasing the number of iterations via maxeval
(the default value is 40 iterations for each estimated parameter, e.g. \(40 \times 5 = 200\) in our case):
<- adam(y, "MMdM", lags=c(1,48,336), initial="backcasting",
testModel silent=FALSE, h=336, holdout=TRUE, maxeval=10000)
testModel#> Time elapsed: 3.94 seconds
#> Model estimated using adam() function: ETS(MMdM)[48, 336]
#> Distribution assumed in the model: Gamma
#> Loss function type: likelihood; Loss function value: 19643.8
#> Persistence vector g:
#> alpha beta gamma1 gamma2
#> 0.0227 0.0226 0.1866 0.2329
#> Damping parameter: 5e-04
#> Sample size: 3024
#> Number of estimated parameters: 6
#> Number of degrees of freedom: 3018
#> Information criteria:
#> AIC AICc BIC BICc
#> 39299.60 39299.62 39335.68 39335.79
#>
#> Forecast errors:
#> ME: -30.121; MAE: 136.283; RMSE: 172.536
#> sCE: -33.347%; sMAE: 0.449%; sMSE: 0.003%
#> MASE: 0.182; RMSSE: 0.166; rMAE: 0.02; rRMSE: 0.02
This will take more time, but will typically lead to more refined parameters. You can control other parameters of the optimiser as well, such as algorithm
, xtol_rel
, print_level
and others, which are explained in the documentation for nloptr
function from nloptr package (run nloptr.print.options()
for details). Second, we can give a different set of initial parameters for the optimiser, have a look at what the function saves:
$B testModel
and use this as a starting point for the reestimation (e.g. with a different algorithm):
<- adam(y, "MMdM", lags=c(1,48,336), initial="backcasting",
testModel silent=FALSE, h=336, holdout=TRUE, B=testModel$B)
testModel#> Time elapsed: 0.65 seconds
#> Model estimated using adam() function: ETS(MMdM)[48, 336]
#> Distribution assumed in the model: Gamma
#> Loss function type: likelihood; Loss function value: 19643.8
#> Persistence vector g:
#> alpha beta gamma1 gamma2
#> 0.0226 0.0199 0.1866 0.2325
#> Damping parameter: 0.0062
#> Sample size: 3024
#> Number of estimated parameters: 6
#> Number of degrees of freedom: 3018
#> Information criteria:
#> AIC AICc BIC BICc
#> 39299.59 39299.62 39335.68 39335.79
#>
#> Forecast errors:
#> ME: -30.032; MAE: 136.283; RMSE: 172.534
#> sCE: -33.249%; sMAE: 0.449%; sMSE: 0.003%
#> MASE: 0.182; RMSSE: 0.166; rMAE: 0.02; rRMSE: 0.02
If you are ready to wait, you can change the initialisation to the initial="optimal"
, which in our case will take much more time because of the number of estimated parameters - 389 for the chosen model. The estimation process in this case might take 20 - 30 times more than in the example above.
In addition, you can specify some parts of the initial state vector or some parts of the persistence vector, here is an example:
<- adam(y, "MMdM", lags=c(1,48,336), initial="backcasting",
testModel silent=TRUE, h=336, holdout=TRUE, persistence=list(beta=0.1))
testModel#> Time elapsed: 0.37 seconds
#> Model estimated using adam() function: ETS(MMdM)[48, 336]
#> Distribution assumed in the model: Gamma
#> Loss function type: likelihood; Loss function value: 21896.27
#> Persistence vector g:
#> alpha beta gamma1 gamma2
#> 0.9332 0.1000 0.0518 0.0666
#> Damping parameter: 0.9439
#> Sample size: 3024
#> Number of estimated parameters: 5
#> Number of degrees of freedom: 3019
#> Number of provided parameters: 1
#> Information criteria:
#> AIC AICc BIC BICc
#> 43802.54 43802.56 43832.61 43832.69
#>
#> Forecast errors:
#> ME: 133.166; MAE: 793.664; RMSE: 1029.83
#> sCE: 147.432%; sMAE: 2.615%; sMSE: 0.115%
#> MASE: 1.06; RMSSE: 0.988; rMAE: 0.115; rRMSE: 0.122
The function also handles intermittent data (the data with zeroes) and the data with missing values. This is partially covered in the vignette on the oes() function. Here is a simple example:
<- adam(rpois(120,0.5), "MNN", silent=FALSE, h=12, holdout=TRUE,
testModel occurrence="odds-ratio")
testModel#> Time elapsed: 0.04 seconds
#> Model estimated using adam() function: iETS(MNN)[O]
#> Occurrence model type: Odds ratio
#> Distribution assumed in the model: Mixture of Bernoulli and Gamma
#> Loss function type: likelihood; Loss function value: 59.3242
#> Persistence vector g:
#> alpha
#> 7e-04
#>
#> Sample size: 108
#> Number of estimated parameters: 5
#> Number of degrees of freedom: 103
#> Information criteria:
#> AIC AICc BIC BICc
#> 276.8254 277.0562 290.2361 281.4121
#>
#> Forecast errors:
#> Bias: -100%; sMSE: 21.074%; rRMSE: 0.593; sPIS: 3580.727%; sCE: -550.881%
Finally, adam()
is faster than es()
function, because its code is more efficient and it uses a different optimisation algorithm with more finely tuned parameters by default. Let’s compare:
<- adam(M3[[2568]], "CCC")
adamModel <- es(M3[[2568]], "CCC")
esModel "adam:"
#> [1] "adam:"
adamModel#> Time elapsed: 1.98 seconds
#> Model estimated: ETS(CCC)
#> Loss function type: likelihood
#>
#> Number of models combined: 30
#> Sample size: 116
#> Average number of estimated parameters: 26.7162
#> Average number of degrees of freedom: 89.2838
#>
#> Forecast errors:
#> ME: 640.352; MAE: 813.82; RMSE: 1033.638
#> sCE: 158.338%; sMAE: 11.18%; sMSE: 2.016%
#> MASE: 0.331; RMSSE: 0.326; rMAE: 0.359; rRMSE: 0.34
"es():"
#> [1] "es():"
esModel#> Time elapsed: 3.95 seconds
#> Model estimated: ETS(CCC)
#> Initial values were optimised.
#>
#> Loss function type: likelihood
#> Error standard deviation: 414.1228
#> Sample size: 116
#> Information criteria:
#> (combined values)
#> AIC AICc BIC BICc
#> 1763.821 1769.594 1807.909 1820.587
#>
#> Forecast errors:
#> MPE: 2.9%; sCE: 91.1%; Bias: 49.3%; MAPE: 6.7%
#> MASE: 0.285; sMAE: 9.6%; sMSE: 1.4%; rMAE: 0.31; rRMSE: 0.281
As mentioned above, ADAM does not only contain ETS, it also contains ARIMA model, which is regulated via orders
parameter. If you want to have a pure ARIMA, you need to switch off ETS, which is done via model="NNN"
:
<- adam(M3[[1234]], "NNN", silent=FALSE, orders=c(0,2,2))
testModel
testModel#> Time elapsed: 0.05 seconds
#> Model estimated using adam() function: ARIMA(0,2,2)
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 255.293
#> ARMA parameters of the model:
#> MA:
#> theta1[1] theta2[1]
#> -1.0909 0.3210
#>
#> Sample size: 45
#> Number of estimated parameters: 5
#> Number of degrees of freedom: 40
#> Information criteria:
#> AIC AICc BIC BICc
#> 520.5861 522.1245 529.6194 532.5476
#>
#> Forecast errors:
#> ME: -348.345; MAE: 348.345; RMSE: 396.569
#> sCE: -34.228%; sMAE: 4.278%; sMSE: 0.237%
#> MASE: 4.82; RMSSE: 4.429; rMAE: 3.958; rRMSE: 3.578
Given that both models are implemented in the same framework, they can be compared using information criteria.
The functionality of ADAM ARIMA is similar to the one of msarima
function in smooth
package, although there are several differences.
First, changing the distribution
parameter will allow switching between additive / multiplicative models. For example, distribution="dlnorm"
will create an ARIMA, equivalent to the one on logarithms of the data:
<- adam(M3[[2568]], "NNN", silent=FALSE, lags=c(1,12),
testModel orders=list(ar=c(1,1),i=c(1,1),ma=c(2,2)), distribution="dlnorm")
testModel#> Time elapsed: 0.92 seconds
#> Model estimated using adam() function: SARIMA(1,1,2)[1](1,1,2)[12]
#> Distribution assumed in the model: Log Normal
#> Loss function type: likelihood; Loss function value: 868.4544
#> ARMA parameters of the model:
#> AR:
#> phi1[1] phi1[12]
#> -0.5461 0.0427
#> MA:
#> theta1[1] theta2[1] theta1[12] theta2[12]
#> -0.6396 -0.1884 -0.3547 -0.1805
#>
#> Sample size: 116
#> Number of estimated parameters: 33
#> Number of degrees of freedom: 83
#> Information criteria:
#> AIC AICc BIC BICc
#> 1802.909 1830.275 1893.777 1958.820
#>
#> Forecast errors:
#> ME: 345.773; MAE: 592.327; RMSE: 731.203
#> sCE: 85.499%; sMAE: 8.137%; sMSE: 1.009%
#> MASE: 0.241; RMSSE: 0.231; rMAE: 0.262; rRMSE: 0.241
Second, if you want the model with intercept / drift, you can do it using constant
parameter:
<- adam(M3[[2568]], "NNN", silent=FALSE, lags=c(1,12), constant=TRUE,
testModel orders=list(ar=c(1,1),i=c(1,1),ma=c(2,2)), distribution="dnorm")
testModel#> Time elapsed: 0.7 seconds
#> Model estimated using adam() function: SARIMA(1,1,2)[1](1,1,2)[12] with drift
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 896.6879
#> ARMA parameters of the model:
#> AR:
#> phi1[1] phi1[12]
#> -0.4783 0.0481
#> MA:
#> theta1[1] theta2[1] theta1[12] theta2[12]
#> -0.5178 -0.2590 -0.3023 0.0744
#>
#> Sample size: 116
#> Number of estimated parameters: 34
#> Number of degrees of freedom: 82
#> Information criteria:
#> AIC AICc BIC BICc
#> 1861.376 1890.758 1954.998 2024.835
#>
#> Forecast errors:
#> ME: 219.85; MAE: 600.343; RMSE: 697.476
#> sCE: 54.362%; sMAE: 8.247%; sMSE: 0.918%
#> MASE: 0.244; RMSSE: 0.22; rMAE: 0.265; rRMSE: 0.23
If the model contains non-zero differences, then the constant acts as a drift. Third, you can specify parameters of ARIMA via the arma
parameter in the following manner:
<- adam(M3[[2568]], "NNN", silent=FALSE, lags=c(1,12),
testModel orders=list(ar=c(1,1),i=c(1,1),ma=c(2,2)), distribution="dnorm",
arma=list(ar=c(0.1,0.1), ma=c(-0.96, 0.03, -0.12, 0.03)))
testModel#> Time elapsed: 0.25 seconds
#> Model estimated using adam() function: SARIMA(1,1,2)[1](1,1,2)[12]
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 898.5443
#> ARMA parameters of the model:
#> AR:
#> phi1[1] phi1[12]
#> 0.1 0.1
#> MA:
#> theta1[1] theta2[1] theta1[12] theta2[12]
#> -0.96 0.03 -0.12 0.03
#>
#> Sample size: 116
#> Number of estimated parameters: 27
#> Number of degrees of freedom: 89
#> Number of provided parameters: 6
#> Information criteria:
#> AIC AICc BIC BICc
#> 1851.089 1868.270 1925.436 1966.273
#>
#> Forecast errors:
#> ME: 435.493; MAE: 661.141; RMSE: 779.268
#> sCE: 107.683%; sMAE: 9.082%; sMSE: 1.146%
#> MASE: 0.269; RMSSE: 0.246; rMAE: 0.292; rRMSE: 0.257
Finally, the initials for the states can also be provided, although getting the correct ones might be a challenging task (you also need to know how many of them to provide; checking testModel$initial
might help):
<- adam(M3[[2568]], "NNN", silent=FALSE, lags=c(1,12),
testModel orders=list(ar=c(1,1),i=c(1,1),ma=c(2,0)), distribution="dnorm",
initial=list(arima=M3[[2568]]$x[1:24]))
testModel#> Time elapsed: 0.57 seconds
#> Model estimated using adam() function: SARIMA(1,1,2)[1](1,1,0)[12]
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 901.9027
#> ARMA parameters of the model:
#> AR:
#> phi1[1] phi1[12]
#> -0.5457 0.0421
#> MA:
#> theta1[1] theta2[1]
#> -0.7559 -0.0771
#>
#> Sample size: 116
#> Number of estimated parameters: 31
#> Number of degrees of freedom: 85
#> Information criteria:
#> AIC AICc BIC BICc
#> 1865.805 1889.424 1951.167 2007.304
#>
#> Forecast errors:
#> ME: 402.389; MAE: 630.194; RMSE: 745.835
#> sCE: 99.498%; sMAE: 8.657%; sMSE: 1.05%
#> MASE: 0.257; RMSSE: 0.235; rMAE: 0.278; rRMSE: 0.246
If you work with ADAM ARIMA model, then there is no such thing as “usual” bounds for the parameters, so the function will use the bounds="admissible"
, checking the AR / MA polynomials in order to make sure that the model is stationary and invertible (aka stable).
Similarly to ETS, you can use different distributions and losses for the estimation. Note that the order selection for ARIMA is done in auto.adam()
function, not in the adam()
! However, if you do orders=list(..., select=TRUE)
in adam()
, it will call auto.adam()
and do the selection.
Finally, ARIMA is typically slower than ETS, mainly because its initial states are more difficult to estimate due to an increased complexity of the model. If you want to speed things up, use initial="backcasting"
and reduce the number of iterations via maxeval
parameter.
Another important feature of ADAM is introduction of explanatory variables. Unlike in es()
, adam()
expects a matrix for data
and can work with a formula. If the latter is not provided, then it will use all explanatory variables. Here is a brief example:
<- cbind(BJsales,BJsales.lead)
BJData <- adam(BJData, "AAN", h=18, silent=FALSE) testModel
If you work with data.frame or similar structures, then you can use them directly, ADAM will extract the response variable either assuming that it is in the first column or from the provided formula (if you specify one via formula
parameter). Here is an example, where we create a matrix with lags and leads of an explanatory variable:
<- cbind(as.data.frame(BJsales),as.data.frame(xregExpander(BJsales.lead,c(-7:7))))
BJData colnames(BJData)[1] <- "y"
<- adam(BJData, "ANN", h=18, silent=FALSE, holdout=TRUE, formula=y~xLag1+xLag2+xLag3)
testModel
testModel#> Time elapsed: 0.12 seconds
#> Model estimated using adam() function: ETSX(ANN)
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 222.9192
#> Persistence vector g (excluding xreg):
#> alpha
#> 1
#>
#> Sample size: 132
#> Number of estimated parameters: 6
#> Number of degrees of freedom: 126
#> Information criteria:
#> AIC AICc BIC BICc
#> 457.8384 458.5104 475.1352 476.7758
#>
#> Forecast errors:
#> ME: 0.223; MAE: 1.279; RMSE: 1.651
#> sCE: 1.773%; sMAE: 0.566%; sMSE: 0.005%
#> MASE: 1.048; RMSSE: 1.057; rMAE: 0.571; rRMSE: 0.658
Similarly to es()
, there is a support for variables selection, but via the regressors
parameter instead of xregDo
, which will then use stepwise()
function from greybox
package on the residuals of the model:
<- adam(BJData, "ANN", h=18, silent=FALSE, holdout=TRUE, regressors="select") testModel
The same functionality is supported with ARIMA, so you can have, for example, ARIMAX(0,1,1), which is equivalent to ETSX(A,N,N):
<- adam(BJData, "NNN", h=18, silent=FALSE, holdout=TRUE, regressors="select", orders=c(0,1,1)) testModel
The two models might differ because they have different initialisation in the optimiser and different bounds for parameters (ARIMA relies on invertibility condition, while ETS does the traditional (0,1) bounds by default). It is possible to make them identical if the number of iterations is increased and the initial parameters are the same. Here is an example of what happens, when the two models have exactly the same parameters:
<- BJData[,c("y",names(testModel$initial$xreg))];
BJData <- adam(BJData, "NNN", h=18, silent=TRUE, holdout=TRUE, orders=c(0,1,1),
testModel initial=testModel$initial, arma=testModel$arma)
testModel#> Time elapsed: 0.01 seconds
#> Model estimated using adam() function: ARIMAX(0,1,1)
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 79.6631
#> ARMA parameters of the model:
#> MA:
#> theta1[1]
#> 0.2748
#>
#> Sample size: 132
#> Number of estimated parameters: 1
#> Number of degrees of freedom: 131
#> Number of provided parameters: 7
#> Information criteria:
#> AIC AICc BIC BICc
#> 161.3262 161.3570 164.2090 164.2841
#>
#> Forecast errors:
#> ME: 0.426; MAE: 0.567; RMSE: 0.684
#> sCE: 3.391%; sMAE: 0.251%; sMSE: 0.001%
#> MASE: 0.465; RMSSE: 0.438; rMAE: 0.253; rRMSE: 0.273
names(testModel$initial)[1] <- names(testModel$initial)[[1]] <- "level"
<- adam(BJData, "ANN", h=18, silent=TRUE, holdout=TRUE,
testModel2 initial=testModel$initial, persistence=testModel$arma$ma+1)
testModel2#> Time elapsed: 0 seconds
#> Model estimated using adam() function: ETSX(ANN)
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 1e+300
#> Persistence vector g (excluding xreg):
#> alpha
#> 1.2748
#>
#> Sample size: 132
#> Number of estimated parameters: 1
#> Number of degrees of freedom: 131
#> Number of provided parameters: 7
#> Information criteria:
#> AIC AICc BIC BICc
#> 161.3262 161.3570 164.2090 164.2841
#>
#> Forecast errors:
#> ME: 0.426; MAE: 0.567; RMSE: 0.684
#> sCE: 3.391%; sMAE: 0.251%; sMSE: 0.001%
#> MASE: 0.465; RMSSE: 0.438; rMAE: 0.253; rRMSE: 0.273
Another feature of ADAM is the time varying parameters in the SSOE framework, which can be switched on via regressors="adapt"
:
<- adam(BJData, "ANN", h=18, silent=FALSE, holdout=TRUE, regressors="adapt")
testModel $persistence
testModel#> alpha delta1 delta2 delta3 delta4 delta5
#> 7.822109e-04 9.999948e-01 2.523320e-01 9.966819e-02 1.174178e-01 8.441907e-05
Note that the default number of iterations might not be sufficient in order to get close to the optimum of the function, so setting maxeval
to something bigger might help. If you want to explore, why the optimisation stopped, you can provide print_level=41
parameter to the function, and it will print out the report from the optimiser. In the end, the default parameters are tuned in order to give a reasonable solution, but given the complexity of the model, they might not guarantee to give the best one all the time.
Finally, you can produce a mixture of ETS, ARIMA and regression, by using the respective parameters, like this:
<- adam(BJData, "AAN", h=18, silent=FALSE, holdout=TRUE, orders=c(1,0,1))
testModel summary(testModel)
#>
#> Model estimated using adam() function: ETSX(AAN)+ARIMA(1,0,1)
#> Response variable: y
#> Distribution used in the estimation: Normal
#> Loss function type: likelihood; Loss function value: 76.6389
#> Coefficients:
#> Estimate Std. Error Lower 2.5% Upper 97.5%
#> alpha 0.8747 0.5281 0.0000 1.0000
#> beta 0.0201 0.0560 0.0000 0.1308
#> phi1[1] 0.7079 0.4054 -0.0947 1.0000
#> theta1[1] -0.3591 0.1782 -0.7119 -0.0069 *
#> level 41.6657 8.1345 25.5585 57.7433 *
#> trend -0.0298 0.2377 -0.5004 0.4399
#> ARIMAState1 2.5642 1.4710 -0.3485 5.4716
#> xLag3 4.8670 0.1157 4.6379 5.0956 *
#> xLag7 1.1150 0.1264 0.8647 1.3649 *
#> xLag4 3.9471 0.0929 3.7632 4.1307 *
#> xLag6 2.5010 0.0819 2.3388 2.6630 *
#> xLag5 3.1346 0.1846 2.7691 3.4994 *
#>
#> Sample size: 132
#> Number of estimated parameters: 13
#> Number of degrees of freedom: 119
#> Information criteria:
#> AIC AICc BIC BICc
#> 179.2778 182.3626 216.7542 224.2853
This might be handy, when you explore a high frequency data, want to add calendar events, apply ETS and add AR/MA errors to it.
While the original adam()
function allows selecting ETS components and explanatory variables, it does not allow selecting the most suitable distribution and / or ARIMA components. This is what auto.adam()
function is for.
In order to do the selection of the most appropriate distribution, you need to provide a vector of those that you want to check:
<- auto.adam(M3[[1234]], "XXX", silent=FALSE,
testModel distribution=c("dnorm","dlaplace","ds"))
#> Evaluating models with different distributions... dnorm , dlaplace , ds , Done!
testModel#> Time elapsed: 0.23 seconds
#> Model estimated using auto.adam() function: ETS(AAN)
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 255.2972
#> Persistence vector g:
#> alpha beta
#> 0.6828 0.2275
#>
#> Sample size: 45
#> Number of estimated parameters: 5
#> Number of degrees of freedom: 40
#> Information criteria:
#> AIC AICc BIC BICc
#> 520.5943 522.1328 529.6276 532.5558
#>
#> Forecast errors:
#> ME: -348.202; MAE: 348.202; RMSE: 396.376
#> sCE: -34.214%; sMAE: 4.277%; sMSE: 0.237%
#> MASE: 4.818; RMSSE: 4.427; rMAE: 3.957; rRMSE: 3.576
This process can also be done in parallel on either the automatically selected number of cores (e.g. parallel=TRUE
) or on the specified by user (e.g. parallel=4
):
<- auto.adam(M3[[1234]], "ZZZ", silent=FALSE, parallel=TRUE) testModel
If you want to add ARIMA or regression components, you can do it in the exactly the same way as for the adam()
function. Here is an example of ETS+ARIMA:
<- auto.adam(M3[[1234]], "AAN", orders=list(ar=2,i=2,ma=2), silent=TRUE,
testModel distribution=c("dnorm","dlaplace","ds","dgnorm"))
testModel#> Time elapsed: 0.39 seconds
#> Model estimated using auto.adam() function: ETS(AAN)+ARIMA(2,2,2)
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 253.3433
#> Persistence vector g:
#> alpha beta
#> 0.1127 0.0201
#>
#> ARMA parameters of the model:
#> AR:
#> phi1[1] phi2[1]
#> -0.4839 -0.4650
#> MA:
#> theta1[1] theta2[1]
#> -0.6804 0.0677
#>
#> Sample size: 45
#> Number of estimated parameters: 13
#> Number of degrees of freedom: 32
#> Information criteria:
#> AIC AICc BIC BICc
#> 532.6867 544.4286 556.1733 578.5221
#>
#> Forecast errors:
#> ME: -307.506; MAE: 307.506; RMSE: 357.019
#> sCE: -30.215%; sMAE: 3.777%; sMSE: 0.192%
#> MASE: 4.255; RMSSE: 3.987; rMAE: 3.494; rRMSE: 3.221
However, this way the function will just use ARIMA(2,2,2) and fit it together with ETS. If you want it to select the most appropriate ARIMA orders from the provided (e.g. up to AR(2), I(1) and MA(2)), you need to add parameter select=TRUE
to the list in orders
:
<- auto.adam(M3[[1234]], "XXN", orders=list(ar=2,i=2,ma=2,select=TRUE),
testModel distribution="default", silent=FALSE)
#> Evaluating models with different distributions... default , Selecting ARIMA orders...
#> Selecting differences...
#> Selecting ARMA... |-
#> The best ARIMA is selected. Done!
testModel#> Time elapsed: 0.19 seconds
#> Model estimated using auto.adam() function: ETS(ANN) with drift
#> Distribution assumed in the model: Normal
#> Loss function type: likelihood; Loss function value: 255.0565
#> Persistence vector g:
#> alpha
#> 0.9439
#>
#> Sample size: 45
#> Number of estimated parameters: 4
#> Number of degrees of freedom: 41
#> Information criteria:
#> AIC AICc BIC BICc
#> 518.1131 519.1131 525.3397 527.2431
#>
#> Forecast errors:
#> ME: -331.735; MAE: 331.735; RMSE: 375.935
#> sCE: -32.596%; sMAE: 4.074%; sMSE: 0.213%
#> MASE: 4.59; RMSSE: 4.199; rMAE: 3.77; rRMSE: 3.392
Knowing how to work with adam()
, you can use similar principles, when dealing with auto.adam()
. Just keep in mind that the provided persistence
, phi
, initial
, arma
and B
won’t work, because this contradicts the idea of the model selection.
Finally, there is also the mechanism of automatic outliers detection, which extracts residuals from the best model, flags observations that lie outside the prediction interval of thw width level
in sample and then refits auto.adam()
with the dummy variables for the outliers. Here how it works:
<- auto.adam(Mcomp::M3[[2568]], "PPP", silent=FALSE, outliers="use",
testModel distribution="default")
#> Evaluating models with different distributions... default ,
#> Dealing with outliers...
testModel#> Time elapsed: 2.37 seconds
#> Model estimated using auto.adam() function: ETSX(MMdM)
#> Distribution assumed in the model: Gamma
#> Loss function type: likelihood; Loss function value: 852.7477
#> Persistence vector g (excluding xreg):
#> alpha beta gamma
#> 0.0218 0.0218 0.0000
#> Damping parameter: 0.9588
#> Sample size: 116
#> Number of estimated parameters: 22
#> Number of degrees of freedom: 94
#> Information criteria:
#> AIC AICc BIC BICc
#> 1749.495 1760.377 1810.074 1835.938
#>
#> Forecast errors:
#> ME: 748.793; MAE: 857.854; RMSE: 1102.302
#> sCE: 185.152%; sMAE: 11.784%; sMSE: 2.293%
#> MASE: 0.349; RMSSE: 0.348; rMAE: 0.379; rRMSE: 0.363
If you specify outliers="select"
, the function will create leads and lags 1 of the outliers and then select the most appropriate ones via the regressors
parameter of adam.
If you want to know more about ADAM, you are welcome to visit the online textbook (this is a work in progress at the moment).