
R-package “seqampl”

A Short Introduction

Axel Gandy

May 28, 2009

This document describes briefly how to use the R-package which implements
the algorithm for“Sequential implementation of monte carlo tests with uniformly
bounded resampling risk.” based on Gandy [2009].

1 Installation

The installation is as for most R-packages that do not reside in CRAN. The
general procedure is described in the Section 6 on “Add-on packages” in the R
Manual on Istallation and Administration:
http://cran.r-project.org/doc/manuals/R-admin.html.

The following is merely an adaptation of those procedures to our package.

1.1 Linux/Unix

If you do not have write access to the package repository:

1. Download the package “simctest 1.0-0.tar.gz” and place it into your home
directory.

2. Issue the following commands:

echo ".libPaths(\"$HOME/Rlibrary\")" >$HOME/.Rprofile
R CMD INSTALL -L $HOME/Rlibrary simctest_1.0-0.tar.gz

3. You may now delete the file “simctest 1.0-0.tar.gz”.

2 Usage

Obviously, the pacakge is loaded by typing

> library(simctest)

This document can be accessed via

1

http://cran.r-project.org/doc/manuals/R-admin.html


> vignette("simctest-intro")

Documentation of the most useful command can be obtained as follows:

> ? simctest

The following is an artificial example. By default the algorithm will report
back after at most 10000 steps, work with a threshold of α = 0.05 and use the
spending sequence

εn = 0.001
n

1000 + n
.

A simple example of a test with true p-value 0.07.

> res <- simctest(function() runif(1) < 0.07)

> res

p.value: 0.06610067
Number of samples: 3298

One can also obtain a confidence interval (wrt the resampling procedure) of
the computed p-value. By default a 95% confidence interval is computed.

> confint(res)

2.5 % 97.5 %
p.value 0.05613075 0.07381973

2.1 Behaviour at the Threshold

Next, consider an example where the true p-value is precisely equal to the thresh-
old α. Here, we will expect that the algorithm stops only with probability
2ε = 0.002. If the algorithm has not stopped after 10000 steps the algorithm
will return.

> res <- simctest(function() runif(1) < 0.05)

> res

No decision reached.
Final estimate will be in [ 0.04159918 , 0.05952146 ]
Current estimate of the p.value: 0.0488
Number of samples: 10000

Note that a part of the output it the interval in which the final estimator will
lie.

One can always take a few more steps

> res <- cont(res, 10000)

> res

No decision reached.
Final estimate will be in [ 0.04367672 , 0.056915 ]
Current estimate of the p.value: 0.0488
Number of samples: 20000

2



2.2 A simple bootstrap test

An example from [Davison and Hinkley, 1997, section 11.4, p. 534]:

> data(fir, package = "boot")

> fir.mle <- c(sum(fir$count), nrow(fir))

> fir.gen <- function(data, mle) {

+ d <- data

+ y <- sample(x = mle[2], size = mle[1], replace = TRUE)

+ d$count <- tabulate(y, mle[2])

+ d

+ }

> fir.fun <- function(data) (nrow(data) - 1) * var(data$count)/mean(data$count)

> resampl <- function() {

+ obs < fir.fun(fir.gen(data = fir, mle = fir.mle))

+ }

> obs <- fir.fun(fir)

> simctest(resampl)

p.value: 0.3809524
Number of samples: 21

2.3 Computing the power of a test

> n <- 10

> system.time(replicate(1000, {

+ obs <- mean(rnorm(n) + 0.01)

+ simctest(function() mean(rnorm(n)) > obs, maxsteps = 1000)

+ }))

user system elapsed
8.947 0.019 9.035

Compared with the naive approach:

> system.time(replicate(1000, {

+ obs <- mean(rnorm(n) + 0.01)

+ mean(replicate(1000, mean(rnorm(n)) > obs))

+ }))

user system elapsed
30.610 0.080 31.594

To reduce the overhead of computing the boundaries, they can be pre-
computed.

> alg <- getalgprecomp()

> system.time(replicate(1000, {

3



+ obs <- mean(rnorm(n) + 0.01)

+ run(alg, function() mean(rnorm(n)) > obs, maxsteps = 1000)

+ }))

user system elapsed
7.414 0.021 7.514

For comparison purposes, the same without without pre-computation:

> alg <- getalgonthefly()

> system.time(replicate(1000, {

+ obs <- mean(rnorm(n) + 0.01)

+ run(alg, function() mean(rnorm(n)) > obs, maxsteps = 1000)

+ }))

user system elapsed
7.447 0.009 7.811

References

A.C. Davison and D.V. Hinkley. Bootstrap methods and their application. Cam-
bridge University Press, 1997.

Axel Gandy. Sequential implementation of Monte Carlo tests with uniformly
bounded resampling risk. To appear in JASA, 2009.

4


	Installation
	Linux/Unix

	Usage
	Behaviour at the Threshold
	A simple bootstrap test
	Computing the power of a test


