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Abstract

Time-varying parameter (TVP) models are widely used in time series analysis to flexi-
bly deal with processes which gradually change over time. However, the risk of overfitting
in TVP models is well known. This issue can be dealt with using appropriate global-
local shrinkage priors, which pull time-varying parameters towards static ones. In this
paper, we introduce the R package shrinkTVP (Knaus, Bitto-Nemling, Cadonna, and
Frithwirth-Schnatter 2019), which provides a fully Bayesian implementation of shrinkage
priors for TVP models, taking advantage of recent developments in the literature, in par-
ticular that of Bitto and Frithwirth-Schnatter (2019). The package shrinkTVP allows for
posterior simulation of the parameters through an efficient Markov Chain Monte Carlo
(MCMC) scheme. Moreover, summary and visualization methods, as well as the possi-
bility of assessing predictive performance through log predictive density scores (LPDSs),
are provided. The computationally intensive tasks have been implemented in C++ and
interfaced with R. The paper includes a brief overview of the models and shrinkage priors
implemented in the package. Furthermore, core functionalities are illustrated, both with
simulated and real data.

Keywords: Bayesian inference, Gibbs sampler, Markov chain Monte Carlo (MCMC), normal-
gamma prior, time-varying parameter (TVP) models, log predictive density scores.

1. Introduction

Time-varying parameter (TVP) models are widely used in time series analysis, because of
their flexibility and ability to capture gradual changes in the model parameters over time.
The popularity of TVP models in macroeconomics and finance is based on the fact that, in
most applications, the influence of certain predictors on the outcome variables varies over time
(Primiceri 2005; Dangl and Halling 2012; Belmonte, Koop, and Korobolis 2014). TVP models,
while capable of reproducing salient features of the data in a very effective way, present a
concrete risk of overfitting, as often only a small subset of the parameters are time-varying.
Hence, in the last decade, there has been a growing need for models and methods able to
discriminate between time-varying and static parameters in TVP models. A key contribution
in this direction was the introduction of the non-centered parameterization of TVP models in
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Frithwirth-Schnatter and Wagner (2010), which recasts the problem of variance selection and
shrinkage in terms of variable selection, thus allowing any tool used to this end in multiple
regression models to be used to perform selection or shrinkage of variances. Frithwirth-
Schnatter and Wagner (2010) employ a spike and slab prior, while continuous shrinkage
priors have been utilised as a regularization alternative in, e.g., Belmonte et al. (2014) and
Bitto and Frithwirth-Schnatter (2019). For an excellent review of shrinkage priors, with a
particular focus on high dimensional regression, the reader is directed to Bhadra, Datta,
Polson, and Willard (2017).

In this paper, we describe the shrinkTVP package (Knaus et al. 2019) for Bayesian TVP
models with shrinkage. The package is available under the general public license (GPL
> 2) from the Comprehensive R Archive Network (CRAN) at https://cran.r-project.
org/web/packages/shrinkTVP. The package efficiently implements recent developments in
the Bayesian literature, in particular the ones presented in Bitto and Frithwirth-Schnatter
(2019). The computationally intensive algorithms in the package are written in C++ and
interfaced with R (R Core Team 2017) via the Repp (Eddelbuettel and Balamuta 2017) and
the ReppArmadillo (Eddelbuettel and Sanderson 2014) packages. This approach combines the
ease-of-use of R and its underlying functional programming paradigm with the computational
speed of C++. The goal is to provide an easy entry point for fitting TVP models with
shrinkage priors, while also giving more experienced users the option to adapt the model to
their needs. This is achieved by providing a robust baseline model that can be estimated by
only passing the data, while also allowing the user to specify more advanced options. Coupled
with intuitive summary and plot methods, this leads to a package that is both easy to use
while remaining highly flexible.

shrinkTVP is, to our knowledge, the only R package that combines TVP models with shrink-
age priors. In the TVP models context, the most popular R package is dlm (Petris 2010),
which provides routines for maximum likelihood estimation, Kalman filtering and smoothing,
and Bayesian analysis for dynamic linear models (DLMs), of which TVP models are a sub-
set. The package bsts (Scott 2019) performs Bayesian analysis for the closely related class
of structural time series models. Moreover, a number of R packages providing regularization
and shrinkage methods are available. For example, shrink (Dunkler, Sauerbrei, and Heinze
2016) implements various shrinkage methods for linear, generalized linear, or Cox regressions,
biglasso (Zeng and Breheny 2017) aims at very fast lasso-type models for high-dimensional
linear regression and glmnet (Friedman, Hastie, and Tibshirani 2010) provides efficient pro-
cedures for implementing elastic-net regularization for a variety of models. With regards
to Bayesian shrinkage, the normal-beta prime shrinkage prior is implemented in the pack-
age NormalBetaPrime (Bai and Ghosh 2019) and the popular horseshoe prior in the package
horseshoe (van der Pas, Scott, Chakraborty, and Bhattacharya 2016). Both of these packages
focus on high-dimensional regression models, and do not provide shrinkage for TVP models.

The remainder of the paper is organized as follows. Section 2 briefly introduces TVP mod-
els and the normal-gamma shrinkage priors, and describes the Markov Chain Monte Carlo
(MCMC) algorithm for posterior simulation. The package shrinkTVP is introduced in Sec-
tion 3. In particular, we illustrate how to run the MCMC sampler using the main function
shrinkTVP, how to choose a specific model, and how to conduct posterior inference using the
return object of shrinkTVP. Section 4 explains how to assess the performance of the model
by calculating log predictive density scores (LPDSs), and how to use LPDSs to compare the
predictive performances of different priors. This is illustrated using the usmacro.update data
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set from the bvarsv (Krueger 2015) package. Finally, Section 6 concludes the paper.

2. Model specification and estimation

2.1. TVP models

Let us recall the state space form of a TVP model. For t =1,...,T, we have that
Yt = TPt + €, et ~ N(0,07),
Bt = Bi—1 + wy, wy ~ Ng(0,Q),

where y; is a univariate response variable and x; = (z41,%2,...,2) is a d-dimensional
row vector containing the regressors at time ¢, with x4; corresponding to the intercept. For
simplicity, we assume here that Q = Diag(61,...,04) is a diagonal matrix, implying that the
state innovations are conditionally independent. Moreover, we assume the initial value follows
a normal distribution, i.e. By ~ Ny(B, Q), with initial mean 8 = (f1,...,S4). Model (1) can
be rewritten equivalently in the non-centered parametrization as

o :wt6+mtDiag(\/§1,...,\/éd),3t+et, €t NN(O,O‘?),
Bt = Bi_1 + 1y, g ~ Ng(0, 1),

with BO ~ Ny(0, ), where I, is the d-dimensional identity matrix.

(1)

(2)

shrinkTVP is capable of modelling the observation error both homoscedastically, i.e. 07 = o2

for all t = 1,...,T and heteroscedastically, via a stochastic volatility (SV) specification. In
the latter case, the log-volatility h; = logo? follows an AR(1) model (Jacquier, Polson, and
Rossi 1994; Kastner and Frithwirth-Schnatter 2014; Kastner 2016). More specifically,

ht‘ht—la M, ¢7 0127 ~ N (:u + ¢(ht—1 - M)? 0727) ) (3)

with initial state hg ~ N (,u, O'%/(l - gbz)) The stochastic volatility model on the errors can

prevent the detection of spurious variations in the TVP coefficients (Nakajima 2011; Sims
2001) by capturing some of the variability in the error term.

2.2. Prior Specification

Shrinkage priors on variances and model parameters

We place conditionally independent normal-gamma priors (Griffin and Brown 2010) both
on the standard deviations of the innovations, that is the ,/6;’s, and on the means of the
initial value §;, for j = 1,...,d. Note that, in the case of the standard deviations, this can
equivalently be seen as a double gamma prior on the innovation variances 6;, for j = 1,...,d.
This prior can be represented as a conditionally normal distribution, with the component
specific variance following a gamma distribution, that is

£,.2
Vo1e2 ~ N (0,62), E?af,m2~g<a5,a; ) (4)

7‘)\2
Bj|7'j2 ~N <O,Tj2> , Tj2|aT,)\2 ~G (aT, a4 5 ) . (5)
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The prior variances sz and sz are referred to as local shrinkage parameters, in that they control
the strength with which each individual parameter \/éj and 3; is pulled toward zero. The
parameters x? and A% are dubbed global shrinkage parameters, as they determine how strongly
all parameters are pulled to zero. Since E(6;|a%, k?) = 2/k? and E(BJ2|aT,)\2) = 2/)\?, the
larger k2 and A2, the stronger this effect. Finally, we refer to a¢ and a7 as shrinkage adaption
parameters. As a® and a7 decrease, marginally more mass is placed around zero and jointly
more mass is put on sparse specifications of the model. In particular, setting the local adaption
parameters, a® and a7, equal to one results in a Bayesian Lasso (Park and Casella 2008) prior
on the \/éj’s and the §;’s, respectively.

The parameters 2, A2, af, a” can be learned from the data through appropriate prior distri-
butions. As priors for the global shrinkage parameters, we use

K2~ G(dy,ds), A ~Gle,en). (6)

Moreover, in order to learn the shrinkage adaption parameters, we generalize the approach
taken in Bitto and Frithwirth-Schnatter (2019) and place the following gamma distributions
as priors:

at ~ GA VS, am ~ G, uThT), (7)

which corresponds to the exponential prior used in Bitto and Frithwirth-Schnatter (2019)
when ¢ =1 and v™ = 1. The parameters ¢ and 7 act as degrees of freedom and allow the
prior to be bounded away from zero.

Prior on the volatility parameter

In the homoscedastic case we employ a hierarchical prior, where the scale of an inverse gamma
prior for o2 follows a gamma distribution, that is,

0%|Co ~ G (e, Cp) , Co ~ G (g0, Go), (8)

with hyperparameters cg, go, and Gp.

In the case of stochastic volatility, the priors on the parameters u, ¢ and U% in Equation (3)
are chosen as in Kastner and Frithwirth-Schnatter (2014), that is

g+1

o~ N(b,uvB,u)a ~ ((l¢, b(]ﬁ)a 0-727 ~ g(l/Qa 1/230)a (9)

with hyperparameters b, B, ay, by, and B,.

2.3. MCMC sampling algorithm

The package shrinkTVP implements an MCMC Gibbs sampling algorithm with Metropolis-
Hasting steps to obtain draws from the posterior distribution of the model parameters.

Here, we roughly sketch the sampling algorithm and refer the interested reader to Bitto
and Frithwirth-Schnatter (2019) for further details.

Algorithm 1 Gibbs Sampling Algorithm
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1. Sample the latent states B = (BO, .. ,BT) in the non-centered parametrization from a
multivariate normal distribution;

2. Sample jointly B, ..., Bq, and \/01,...,1/04 in the non-centered parametrization from a
multivariate normal distribution;

3. Perform an ancillarity-sufficiency interweaving step and redraw 1, ..., Bq, each from a
normal distribution and 01, . .., 0y, each from a generalized inverse Gaussian distribution
using GIGrvg (Hormann and Leydold 2015);

4. (a) Sample the variance shrinkage adaption parameter a® using a random walk Metro-
polis-Hastings step;

(b) Sample the parameter shrinkage adaption parameter a™ using a random walk Metro-
polis-Hastings step;

5. (a) Sample the local shrinkage parameters EJZ, for j = 1,...,d, from conditionally
independent generalized inverse Gaussian distributions;

(b) Sample the local shrinkage prameters T]-Q, forj=1,....d, from conditionally inde-
pendent generalized inverse Gaussian distributions;

6. Sample the error variance o® from an inverse gamma distribution in the homoscedastic
case or, in the SV case, sample the level u, the persistence ¢, the volatility of the
volatility O'% and the latent log-volatilities h = (hg,...,hr) using stochvol (Kastner
2016).

When fitting the model under the full hierarchical shrinkage prior defined in Equations (4)—
(7), all steps in Algorithm 1 are performed, while steps 4(a), 4(b), 5(a) and 5(b) are skipped
in certain prior setups.

One key feature of the algorithm is the joint sampling of the time-varying parameters B,
for t =0,...,T in step 1 of Algorithm 1. We employ the procedure described in McCaus-
land, Miller, and Pelletier (2011) which exploits the sparse, block tri-diagonal structure of
the precision matrix of the full conditional distribution of 8 = (B,,...,B7), to speed up
computations.

Moreover, as described in Bitto and Frithwirth-Schnatter (2019), in step 3 we make use of
the ancillarity-sufficiency interweaving strategy (ASIS) introduced by Yu and Meng (2011).
ASIS is well known to improve mixing by sampling certain parameters both in the centered
and non-centered parameterization. This strategy has been successfully applied to univariate
SV models (Kastner and Frithwirth-Schnatter 2014), multivariate factor SV models (Kast-
ner, Frithwirth-Schnatter, and Lopes 2017) and dynamic linear state space models (Simpson,
Niemi, and Roy 2017).

3. The shrinkTVP package

3.1. Running the model

The core function of the package shrinkTVP is the function shrinkTVP, which serves as an
R-wrapper for the actual sampler coded in C++. The function works out-of-the-box, meaning
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that estimation can be performed with minimal user input. With default settings, the TVP
model in Equation (1) is estimated in a Bayesian fashion with priors (4) to (7) and the
following choice for the hyperparameters: dy = dy = e; = eg = 0.001, v$ =7 =5 and
b = b™ = 10, implying a prior mean of E(a®) = E(a”) = 0.1. The error is assumed to be
homoscedastic, with prior defined in Equation (8) and hyperparameters ¢y = 2.5, go = 5, and
Go = go/(co — 1).

The only compulsory argument is an object of class “formula”, which most users will be
familiar with (see, for example, the use in the function 1m in the package stats (R Core Team
2017)). The second argument is an optional data frame, containing the response variable and
the covariates. Exemplary usage of this function is given in the code snippet below, along

with the default output. All code was on run on a personal computer with an Intel i5-8350U
CPU.

R> library(shrinkTVP)

R>

R> # Baseline model

R> set.seed(123)

R> sim <- simTVP(theta = c(0.2, 0, 0), beta_mean = c(1.5, -0.3, 0))
R> data <- sim$data

R> res <- shrinkTVP(y ~ x1 + x2, data = data)

0% 10 20 30 40 50 60 70 80 90 100%

e e B B e e e B P e

sk ok sk sk ok sk sk ok ok ok ok ok sk sk o o o o ok ok sk sk koo ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ke kok |

Timing (elapsed): 4.39 seconds.

3417 iterations per second.

Converting results to coda objects and summarizing draws... Done!

Note that the data in the example is generated by the function simTVP, which can create
synthetic datasets of varying sizes for illustrative purposes. The inputs theta and beta can
be used to specify the true 6y,...,04 and f1,..., 34 used in the data generating process, in
order to evaluate how well shrinkTVP recaptures these true values. The values correspond
to the ones used in the synthetic example of Bitto and Frithwirth-Schnatter (2019). The
user can specify the following MCMC algorithm parameters: niter, which determines the
number of MCMC iterations including the burn-in, nburn, which equals the number of MCMC
iterations discarded as burn-in, and nthin, indicating the thinning parameter, meaning that
every nthin-th draw is kept and returned. The default values are niter = 10000, nburn =
round(niter/2) and nthin = 1. The user is strongly encouraged to check convergence of
the produced Markov chain, especially for a large number of covariates. The output is made
coda (Plummer, Best, Cowles, and Vines 2006) compatible, so that the user can utilize the
tools provided by the excellent package coda to assess convergence.

3.2. Specifying the priors

More granular control over the prior setup can be exercised by specifying all or a subset of the
parameters. In addition to changing the hyperparameters given in Section 2.2, the user can
fix one or both values of the global shrinkage parameters (x?, A?) and the shrinkage adaption
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Shrinkage on /6, Shrinkage on f3;

as K2 a” A2

Full hierarchical shrinkage prior ~ G(¥%,v50%)  G(dy,da) GV, v7b7)  G(eq, e9)

Hierarchical normal-gamma prior fixed G(di,d9) fixed G(er,e2)
Normal-gamma prior fixed fixed fixed fixed
Bayesian Lasso fixed at 1  fixed fixed at 1 fixed

Table 1: Overview of different possible model specifications

parameters (a’, ag), instead of learning them from the data as done in the default setting. The
benefit of this is twofold: on the one hand, desired degrees of sparsity and global shrinkage can
be achieved through fixing the hyperparameters; on the other hand, interesting special cases
arise from setting certain values of hyperparameters. For example, setting the local adaption
parameters, a¢ and a7, equal to one results in a Bayesian Lasso (Park and Casella 2008)
prior on the \/gj’s and the j;’s, respectively. If the user desires a higher degree of sparsity,
this can be achieved by setting the shrinkage adaption parameters to a value closer to zero.
Table 1 gives an overview of different model specifications. Note that separate prior choices
can be made for the variances and the means of the initial values. In the following, we give
some examples of models that can be estimated with the shrinkTVP package. In particular,
we demonstrate how certain combinations of input arguments correspond to different model
specifications. Note that in the following snippets of code, the argument display_progress
is always set to FALSE, in order to suppress the progress bar and other outputs.

Fixing the shrinkage adaption parameters It is possible to set the shrinkage adaption
parameter a(a”) to a fixed value through the input argument a_xi (a_tau), after setting
learn_a_xi (learn_a_tau) to FALSE. As an example, we show how to fit a hierarchical
Bayesian Lasso, both on the /0; and on the j;:

R> res_hierlasso <- shrinkTVP(y ~ x1 + x2, data = data,
+ learn_a_xi = FALSE, learn_a_tau = FALSE,

+ a_xi =1, a_tau = 1, display_progress = FALSE)

Fixing the global shrinkage parameters The user can choose to fix the value of x2(\?)
by specifying the argument kappa2 (lambda2), after setting learn_k2 (learn_lambda2) to
FALSE. In the code below, we give an example on how to fit a (non-hierarchical) Bayesian
Lasso on both /@, and j3;, with corresponding global shrinkage parameters fixed both to 100:

R> res_lasso <- shrinkTVP(y ~ x1 + x2, data = data,

+ learn_a_xi = FALSE, learn_a_tau = FALSE, a_xi = 1, a_tau = 1,

+ learn_kappa2 = FALSE, learn_lambda2 = FALSE, kappa2 = 100, lambda2 = 100,
+ display_progress = FALSE)
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3.3. Stochastic volatility specification

The stochastic volatility specification defined in Equation (3) can be used by setting the
option sv to TRUE. This is made possible by a call to the update_sv function exposed by the
stochvol package. The code below fits a model in which all the parameters are learned and
the observation equation errors are modeled through stochastic volatility:

R> res_sv <- shrinkTVP(y ~ x1 + x2, data = data, sv = TRUE,
+ display_progress = FALSE)

The priors on the SV parameters are the ones defined in Equation 9, with hyperparameters
fixedtob, =0, B, =1,a4=5,bs =15, and B, = 1.

3.4. Specifying the hyperparameters

Beyond simply switching off parts of the hierarchical structure of the prior setup, users can
also modify the hyperparameters governing the prior distributions. This can be done through
the arguments hyperprior_param and sv_param, which both have to be named lists. In
addition to user defined hyperparameters, unspecified parameters will be set to default values,
as defined in Section 3.2.

R> res_hyp <- shrinkTVP(y ~ x1 + x2, data = data,
list(b_xi = 5, nu_xi = 10),
FALSE)

+ hyperprior_param
+ display_progress

3.5. Posterior inference: Summarize and visualize the posterior distribution

The return value of shrinkTVP is an object of type shrinkTVP_res, which is a named list
containing a variable number of elements, depending on the prior specification. For the default
model, the values are:

1. the parameter draws of o2 in sigma2,

2. the parameter draws of (1/01,...,1/04) in theta_sr,
3. the parameter draws of 8 = (f1,...,34) in beta_mean,
4

. a list holding d mcmc.tvp objects (one for each B; = (Bjo,...,Hjr)) containing the
parameter draws in beta,

the parameter draws of £2, ... ,53, in xi2,
the parameter draws of ¢ in a_xi,
some acceptance statistics for the Metropolis Hastings step for a® in a_xi_acceptance,

the parameter draws of 72, ... ,Tg in tau2,

© % N oo

the parameter draws of a” in a_tau,
10. some acceptance statistics for the Metropolis Hastings step for a” in a_tau_acceptance,

11. the parameter draws for 2 in kappa2,
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12. the parameter draws for A? in lambda?2,

13. the parameter draws of Cj in CO,

14. the prior hyperparameters in priorvals,

15. the design matrix and the response in model, and

16. summary statistics for the parameter draws in summaries.

When some parameters are fixed by the user, the corresponding output value is omitted.
In the SV case, the draws for the parameters of the SV model on the errors are contained
in sv_mu, sv_phi and sv_sigma. For details, see Kastner (2016). The two main tools for
summarizing the output of shrinkTVP are the summary and plot methods implemented for
shrinkTVP_res objects. summary has two arguments beyond the mandatory shrinkTVP_res
object itself, namely digits and showprior, which control the output displayed. digits
indicates the number of decimal places to round the posterior summary statistics to, while
showprior determines whether or not to show the prior distributions resulting from the user
input. In the example below, the default digits value of 3 is used, while the prior specification
is omitted. The output of summary consists of the mean, standard deviation, median, 95%
highest posterior density region and effective sample size (ESS) for the non time-varying
parameters

R> summary(res, showprior = FALSE)

Summary of 5000 MCMC draws after burn-in of 5000.
Statistics of posterior draws of parameters (thinning = 1):

param mean sd median HPD 2.5% HPD 97.5}% ESS
sigma2 1.018 0.11 1.013 0.815 1.239 3343.207
abs(theta_sr_Intercept) 0.198 0.046 0.193 0.118 0.289 268.578
abs(theta_sr_x1) 0.007 0.015 0.001 O 0.04 284.642
abs(theta_sr_x2) 0.004 0.008 0 0 0.018 610.114
beta_mean_Intercept 1.067 0.67 1.141 -0.08 2.144 229.597
beta_mean_x1 -0.297 0.126 -0.308 -0.491 0.013 486.943
beta_mean_x2 0.001 0.037 0 -0.089 0.083 3643.73
xi2_Intercept 5.924 102.961 0.06 0.001 2.869 3979.303
xi2_x1 0.044 1.336 0 0 0.018 5000
xi2_x2 0.073 1.683 0 0 0.005 5000
a_xi 0.09 0.04 0.083 0.031 0.175 465.036
tau2_Intercept 161.552 4343.276 1.447 O 79.21 5000
tau2_x1 32.77 1105.99 0.184 O 11.658 5000
tau2_x2 0.451 10.085 O 0 0.107 5000
a_tau 0.099 0.042 0.092 0.027 0.183 574.134
kappa2 75.682 204.592 6.363 O 398.87 3932.451
lambda?2 9.399 42.184 0.317 O 41.283 823.744
co 1.721 0.629 1.644 0.651 2.983 5008.619

The plot method can be used to visualize the posterior distribution estimated by shrinkTVP.
Aside from the shrinkTVP_res object, its arguments are the mandatory pars, a character
vector containing the names of the parameters to visualize, and in the case of time-varying
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parameters nplot, which controls the number of plots to display per page. The names supplied
in pars have to coincide with the names of the list elements of the shrinkTVP_res object.
The default value is c("beta"), i.e. empirical quantiles of the posterior of B; over time are
shown. If there are too many plots to fit on one page, plot will cycle through all parameters
to display. It will call either plot.mcmc from the coda package, if the parameter is non
time-varying, or plot.mcmc.tvp from the shrinkTVP package for time-varying parameters,
passing all additional arguments specified via ... to the respective plotting functions. See
the code below for an example and Figure 1 for the corresponding output.

R> plot(res)

To visualize other parameters via the plot method, the user has to change the pars argument.
pars can either be set to a single character object or to a vector of characters containing the
names of the parameter draws to display. In the latter case, the plot method will display
groups of plots at a time, prompting the user to move on to the next series of plots, similarly
to how coda handles long plot outputs. Naturally, as all parameter draws are converted
to coda objects, any method from this package that users are familiar with (e.g. to check
convergence) can be applied to the parameter draws contained in a shrinkTVP_res object.
An example of this can be seen in Figure 2, where pars = "theta_sr", changes the output
to a graphical summary of the parameter draws of \/f1,...,1/0, using coda’s plot.mcmc
function. To obtain Figure 2, one can run

R> plot(res, pars = "theta_sr")
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Figure 1: Visualization of the evolution of the time-varying parameter 8; = (Bjo, - .., 51),j =
1,...,3, over time t = 0,...,T, as provided by the plot method. plot is in turn calling
plot.mcmc.tvp on the individual mcmc.tvp objects. The median is always displayed as
a black line, and the red dotted lines indicate the pointwise 2.5%, 25%, 75% and 97.5%

quantiles, unless otherwise specified.
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Figure 2: Trace plots (left column) and kernel density estimates of the posterior density (right
column) for the parameters V01,...,4/0s, as provided by the plot method. plot is in turn
calling coda’s plot.mcmc.
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Figure 3: Visualization of the evolution of the time-varying parameter [3;; over time
t = 100,...,200 for j = 1,...,3, as provided by the plot method. plot is in turn call-
ing plot.mcmc.tvp on the individual mcmc. tvp objects. Arbitrary arguments can be passed
to plot, in this example the x-axis of the plot was restricted with x1im and the label of the
y-axis was changed with ylab. The median is always displayed as a black line, and the red
dotted lines indicate the pointwise 2.5%, 25%, 75% and 97.5% quantiles, unless otherwise
specified.
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The plot method will pass any additional arguments on to the respective plotting functions,
allowing for some flexibility in the displayed plots. An example of this behavior is demon-
strated in the code below and the resulting Figure 3, where the x-axis is truncated with the
x1lim argument and the label for the y-axis is changed by the ylab argument.

R> plot(res, pars = "beta", xlim = c(100, 200),
+ ylab = expression(betalc]), xlab = "t")

The plot.mcmc.tvp method displays empirical posterior quantiles of a single time-varying
parameter over time. Instead of being called indirectly via plot, the user can also di-
rectly call it by calling plot on a single mcmc.tvp object within the shrinkTVP_res object.
plot.mcmc. tvp takes one additional mandatory argument, probs, which is a vector of quan-
tiles to plot. plot.mcmc.tvp will automatically add 0.5, i.e. the median, to probs if the user
does not. It will pass on any additional arguments specified via ..., allowing the user some
flexibility concerning the final plot. In the code below, this behavior is exploited to add a
title to the plot, resulting in Figure 4.

R> par(cex.main = 1, mar = c(3, 4, 4, 2) + 0.1)
R> plot(res_svésigma2, xlab = "",
+ main = bquote("Traceplot of posterior of " ~ sigmal[t]~2))

4. Predictive performances and model comparison

Within a Bayesian framework, a natural way to predict a future observation is through its
posterior predictive density. For this reason, log-predictive density scores (LPDSs) provide
a means of assessing how well the model performs in terms of prediction on real data. The
log-predictive density score for time ¢y + 1 is obtained by evaluating at y;,+1 the log of the
posterior predictive density obtained by fitting the model to the previous ty data points.
Given the data up to time tg, the posterior predictive density at time tg + 1 is given by

p(yto-i-l’yla < Ytos $t0+1) = /p(yto—l-l’wto-‘rla ,(p)p(’(b‘yl? <o 7yto)d¢7 (10)

where 1 is the set of model parameters and latent variables up to ty + 1. For a TVP
model with homoscedastic errors, ¥ = (Bo,. ,Bt0+1,\[1, oo V04,B1, ..., Ba, 02), whereas
for a TVP model with SV errors, ¥ = (8o, .. BtOJrl, VOi,....\V04,81,...,B4,0%,... ,O't20+1).
Given M samples from the posterior distribution of the parameters and latent variables,
p(¥|y1,- .., yt ), Monte Carlo integration could be applied immediately to approximate (10).
However, Bitto and Frithwirth-Schnatter (2019) propose a more efficient approximation of the
predictive density, the so-called conditionally optimal Kalman mixture approximation which
is obtained by analytically integrating out Bto+1 from the likelihood at time o + 1.

In the homoscedastic error case, given M samples from the posterior distribution of the
parameters and the latent variables up to #g, the predictive density approximated by Monte
Carlo integration is given by

M
P(Yto+11Y1s - - - Ytos Tro+1) Z yt0+1!$to+1ﬂ(m)+

F B +mi™, Fr (=M 4 1) (FT)T + (0%)),
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Figure 4: Visualization of the evolution of the stochastic volatility o? over time t = 1,...,T,
as provided by the plot.mcmc.tvp method. The median is always displayed as a black line,
and the red dotted lines indicate the pointwise 2.5%, 25%, 75% and 97.5% quantiles, unless
otherwise specified.

where the conditional predictive densities of y,41 are Gaussian with the mean and the vari-
ance depending on the MCMC draws. These moments are computed for the mth MCMC
iteration from Fj 41 = wt0+1Diag(ﬁ e \/@ and the mean my, and the covariance ma-
trix X4, of the posterior distribution of Bto- These quantities can be obtained by iteratively
calculating 3; and my up to time %y, as described in McCausland et al. (2011):

= (Qn) 7, my = 3¢y,
2= (- Q20 my =S - QL my).

The quantities ¢;, 4 and ;1 for t =1,...,% are given in Appendix A.

For the SV case, it is still possible to analytically integrate out Bto-i-l from the likelihood at
time tg + 1 conditional on a known value of afo 11, however it is not possible to integrate
the likelihood with respect to both latent variables By, and O't20 +1- Hence, at each MCMC
iteration a draw is taken from the predictive distribution of O't20 11 = exp(hy4+1), derived
from Equation (3), and used to calculate the conditional predictive density of y,+1. The
approximation of the one step ahead predictive density can then be obtained through the
following steps:

1. for each MCMC draw of (u, ¢, a%)(m) and hﬁj‘), obtain a draw of (J?OH)(’”);

15



16 Shrinkage for TVP Models Using shrinkTVP

2. calculate the conditionally optimal Kalman mixture approximation as

M
1 -
P(Yto+1|Y1s -+ s Ytos Trg+1) = i > p(Wtgs1 |2 +18™ + Ft%@ﬁi? + mg)n)j

m=1
Fy S8 + 1) (BT + (02,0)™),
where F} 1, my;, and 3, are defined as above.

The shrinkTVP package provides a way to calculate the LPDSs using the function shrinkTVP.
When LPDS is set to TRUE, the data provided via data or the formula interface are assumed
to contain the covariates and response up to time ¢y. The values of x¢,11 are then supplied
through x_test, while y;,+1 is passed to y_test, as shown in the following snippet of code.

R> y_test <- data$y[nrow(data)]

R> x test <- datal[nrow(data), c("x1", "x2")]

R> res_LPDS <- shrinkTVP(y ~ x1 + x2, data = datal[l:(nrow(data) - 1),],
+ LPDS = TRUE, y_test = y_test, x_test = x_test,

+ display_progress = FALSE)

R> res_LPDS$LPDS

[,1]
[1,] -1.398314
attr(,"type")
[1] "stat"

This leads to an additional output in the resulting shrinkTVP_res object called LPDS, which
contains the calculated log predictive density score. For an example on how to calculate
LPDSs for k£ points in time, please see Section 5.

5. Predictive exercise: usmacro dataset

In the following, we provide a brief demonstration on how to use the shrinkTVP package
on real data and compare different prior specifications via LPDSs. Specifically, we con-
sider the usmacro.update dataset from the bvarsv package (Krueger 2015). The dataset
usmacro.update contains the inflation rate, unemployment rate and treasury bill interest
rate for the United States, from 1953:Q1 to 2015:Q2, that is T" = 250. The same dataset up
to 2001:QQ3 was used by Primiceri (2005). The response variable is the inflation rate inf, while
the predictors are the lagged inflation rate inf_lag, the lagged unemployed rate une_lag and
the lagged treasury bill interest tbi_lag. We construct our dataset as follows:

R> library(bvarsv)

R> data("usmacro.update")

R> # Create matrix of lags and create final data set

R> lags <- usmacro.update[1: (nrow(usmacro.update) - 1), ]

R> colnames(lags) <- pasteO(colnames(lags), "_lag")

R> us_data <- data.frame(inf = usmacro.update[2:nrow(usmacro.update), "inf"],
+ lags)
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In the snippet of code below, we run the default TVP model with the full hierarchical shrinkage
prior for 60000 iterations, with a thinning of 10 and a burn-in of 10000, hence keeping 5000
posterior draws.

R> us_res <- shrinkTVP(inf ~ inf_lag + une_lag + tbi_lag, us_data,

+ niter = 60000, nburn = 10000, nthin = 10,

+ display_progress = FALSE)

Once we have fit the model, we can perform posterior inference by using the summary and
plot methods. The summary is shown below, while Figure 5 shows the paths of 3, evolving
over time, and Figure 6 displays the trace plots (left column) and posterior densities (right
column) of /01, ...,+/04 obtained via the plot method.

R> summary (us_res, showprior = FALSE)

Summary of 50000 MCMC draws after burn-in of 10000.

Statistics of posterior draws of parameters (thinning = 10):

param mean sd median HPD 2.5% HPD 97.5} ESS
sigma?2 0.019 0.006 0.018 0.008 0.03 1732.763
abs(theta_sr_Intercept) 0.141 0.024 0.142 0.092 0.186 716.452
abs(theta_sr_inf_lag) 0.043 0.006 0.043 0.03 0.056 2173.311
abs(theta_sr_une_lag) 0.004 0.006 0.001 O 0.016 80.178
abs(theta_sr_tbi_lag) 0.001 0.002 0 0 0.006 423.844
beta_mean_Intercept 0.352 0.411 0.196 -0.109 1.183 545.061
beta_mean_inf_ lag 0.746 0.181 0.756 0.361 1.072 1072.752
beta_mean_une_lag -0.127 0.07 -0.138 -0.233 0.004 102.591
beta_mean_tbi_lag 0.009 0.022 0 -0.023 0.067 590.672
xi2_TIntercept 1.785 53.178 0.03 0.001 0.962 5000
xi2_inf_lag 0.238 3.953 0.005 O 0.216 5000
xi2_une_lag 0.018 0.427 0 0 0.007 5000
xi2_tbi_lag 0.024 1.126 0 0 0.001 5000
a_xi 0.094 0.041 0.089 0.022 0.172 548.879
tau2_Intercept 225.777 12323.864 0.081 O 10.82 5000
tau2_inf_lag 18.332 377.616 0.765 O 20.478 5000
tau2_une_lag 2.08 31.701 0.037 O 3.022 5000
tau2_tbi_lag 0.084 1.113 0 0 0.066 5000
a_tau 0.1 0.044 0.094 0.026 0.183 754.434

kappa2 118.658 252.723 21.335 0O 576.182  4745.271

17
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lambda2 8.363 28.274 1.026 0 36.827 5000

co 0.133 0.062 0.121 0.028 0.254 3119.826

It appears clear by looking at Figure 5 that the intercept and the parameter associated with
the lagged inflation rate are time-varying, while the parameters associated with the lagged
treasury bill interest rate and the lagged unemployment rate are relatively constant. This
can be confirmed by looking at the posterior distributions of the corresponding standard de-
viations, displayed in Figure 6. The posterior densities of the standard deviations associated
with the intercept and the lagged inflation are bimodal, with very little mass around zero.
This bimodality results from the non-identifiability of the sign of the standard deviation. As a
convenient side effect, noticeable bimodality in the density plots of the posterior distribution
p(\/§j|y) of the standard deviations \/éj is a strong indication of time variability in the asso-
ciated parameter 3;;. Conversely, the posterior densities of the standard deviations associated
with the lagged unemployment and the lagged treasury bill interest rate have a pronounced
spike at zero, indicating strong model evidence in favor of constant parameters. Moreover,
the path of the parameter of the treasury bill interest rate is centered at zero, indicating that
this parameter is neither time-varying nor significant.

In order to compare the predictive performances of different shrinkage priors, we calculate
one step ahead LPDSs for the last 50 points in time for five different prior choices: (1) the full
hierarchical shrinkage prior, (2) the hierarchical normal-gamma prior with fixed at =a” =0.1,
(3) the normal-gamma prior with a® = a” = 0.1 and x2 = X2 = 20, (4) the hierarchical
Bayesian Lasso, and (5) the Bayesian Lasso with 2 = A? = 20. Figure 7 shows the cumulative
LPDSs for the last 50 quarters of the usmacro.update dataset. The default prior, that is the
fully hierarchical shrinkage prior on both the 3;’s and the /6;’s, performs the best in terms
of prediction amongst the five fitted models. In Appendix B we show how to obtain LPDSs
for different models and points in time, using the packages foreach (Microsoft and Weston
2017) and doParallel (Microsoft and Weston 2018).

6. Conclusions

The goal of this paper was to introduce the reader to the functionality of the R package shrink-
TVP (Knaus et al. 2019). This R package provides a fully Bayesian approach for statistical
inference in TVP models with shrinkage priors. On the one hand, the package provides an
easy entry point for users who want to pass on only their data in a first step of exploring
TVP models for their specific application context. Running the function shrinkTVP under
the default model with a fully hierarchical shrinkage prior with predefined hyperparameters,
estimation of a TVP model becomes as easy as using the well-known function 1m for a stan-
dard linear regression model. On the other hand, exploiting numerous advanced options
of the package, the more experienced user can also explore alternative model specifications
such as the Bayesian Lasso and use log-predictive density scores to compare various model
specifications.
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Figure 5: Visualization of the evolution of the time-varying parameter 8; = (Bjo, ..., 5;1)
over time ¢t = 0,...,T for j = 1,...,4 for the usmacro.update dataset. The median is

displayed as a black line, and the red dotted lines indicate the pointwise 2.5%, 25%, 75% and
97.5% quantiles.
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Figure 6: Trace plots (left column) and kernel density estimates of the posterior density (right
column) for the parameters /01, ..., /04 for the usmacro.update dataset.
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Figure 7: Cumulative LPDSs scores for the last 50 quarters of the usmacro.update dataset,
for five different shrinkage priors: (1) the full hierarchical shrinkage prior, (2) the hierarchical
normal-gamma prior with fixed a® = a” = 0.1, (3) the normal-gamma prior with a¢ = a”™ = 0.1

and k? = A\? = 20, (4) the hierarchical Bayesian Lasso, and (5) the Bayesian Lasso with
K2 =A% = 20.

Various examples of the usage of shrinkTVP were given, and the summary and plot methods
for straightforward posterior inference were illustrated. Furthermore, a predictive exercise
with the dataset usmacro.updade from the package bvarsv was performed, with a focus on
the calculation of LPDSs using shrinkTVP. The default model in shrinkTVP showed better
performance than its competitors in terms of cumulative LPDSs. While these examples were
confined to univariate responses, the package can also be applied in a multivariate context, for
instance to the sparse TVP Cholesky SV model considered in Bitto and Frithwirth-Schnatter

(2019), exploiting a representation of this model as a system of independent TVP models
with univariate responses.

A plan for further versions of the package is to implement additional shrinkage priors for
TVP models such as the well-known horseshoe prior (Bhadra et al. 2017).
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A. Appendix: Full conditional distribution of the latent states

Let yf = y; — #8 and F; = x;Diag (v/01,...,v0y) for t =1,...,T. Conditional on all other
variables, the joint density for the state process 8 = (B, By, ..., B7) is multivariate normal.
This distribution can be written in terms of the tri-diagonal precision matrix €2 and the mean
vector ¢ (McCausland et al. 2011):

B‘ﬂ? Qa 0-%7 ) O-%a y;a s y’j)l(“ ~ N(T—l—l)d (Q_lca Q_l) (11)
where: ) ;
Qoo o1 0 L
Qi Q1 Q5 0 0 co
T €1
Q= ) ) , €= [C2
0 Q45 - . 0
: Qr_1r-1 Qr_ir cr]
I 0O ... 0 Q}_LT Qrr |

In this representation, each submatrix €24, is a matrix of dimension d x d defined as

Qoo = 2y,

Qy = F/Fjo2+21;, t=1,...,T—1,
Qrr = FrFp/o+ 1,
Qo = Iy t=1,...,T,

where I, is the d x d identity matrix and c¢; is a column vector of dimension d x 1, defined as

co=0, c;=(F/) JoD)yr, t=1,...,T.

In the homoscedastic case, 07 = ... = 02 = 0.

B. Multicore LPDS calculation

In the code below, the following (R Core Team 2017) packages are used: doParallel (Microsoft
and Weston 2018), foreach (Microsoft and Weston 2017), zoo (Zeileis and Grothendieck 2005),
and RhpcBLASctl (Nakano and Nakama 2018).

R> # Calculate LPDS in multicore

R> # Load libraries for multicore computations

R> library(doParallel)

R> library(foreach)

R>

R> # For manipulating dates

R> library(zoo)

R>

R> # Load library for controlling number of BLAS threads
R> library(RhpcBLASctl)
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# Define how many periods to calculate LPDS for
Tmax <- nrow(us_data) - 1
TO <- Tmax - 49

# Determine number of cores to be used and register parallel backend
ncores <- 4

cl <- makeCluster(ncores)

registerDoParallel(cl)

lpds <- foreach(t = TO:Tmax, .combine = "cbind",

.packages = c("RhpcBLASctl", "shrinkTVP")) Jdopar), {

# Set number of BLAS threads, so they dont interfere with each other
blas_set_num_ threads(1)

# Create data_t from all data up to time t and

# y_test and x_test from data at time t+1

y_test <- us_data[t+1, "inf"]

x_test <- us_data[t+1, c("inf_lag", "une_lag", "tbi_lag")]
data_t <- us_datall:t,]

# Run MCMC to calculate all LPDS

res_base <- shrinkTVP(inf ~ inf lag + une_lag + tbi_lag, data = data_t,
LPDS = TRUE, y_test = y_test, x_test = x_test,
niter = 60000, nburn = 10000, nthin = 10,
hyperprior_param = list(nu_tau = 1, nu_xi = 1))

res_las_hier <- shrinkTVP(inf ~ inf_lag + une_lag + tbi_lag, data = data_t,
LPDS = TRUE, y_test = y_test, x_test = x_test,
niter = 60000, nburn = 10000, nthin = 10,
learn_a_xi = FALSE, learn_a_tau = FALSE,
axi=1, a_tau = 1)

res_las <- shrinkTVP(inf ~ inf_lag + une_lag + tbi_lag, data = data_t,
LPDS = TRUE, y_test = y_test, x_test = x_test,
niter = 60000, nburn = 10000, nthin = 10,
learn_a_xi = FALSE, learn_a_tau = FALSE,
axi=1, a_tau = 1,
learn_kappa2 = FALSE, learn_lambda2 = FALSE,
kappa2 = 20, lambda2 = 20)

res_ng hier <- shrinkTVP(inf ~ inf_lag + une_lag + tbi_lag, data = data_t,
LPDS = TRUE, y_test = y_test, x_test = x_test,
niter = 60000, nburn = 10000, nthin = 10,
learn_a_xi = FALSE, learn_a_tau = FALSE,

0.1, a_tau = 0.1)

a_xi
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+
+ res_ng <- shrinkTVP(inf ~ inf_lag + une_lag + tbi_lag, data = data_t,
+ LPDS = TRUE, y_test = y_test, x_test = x_test,

+ niter = 60000, nburn = 10000, nthin = 10,

+ learn_a_xi = FALSE, learn_a_tau = FALSE,

+ axi=0.1, a_tau = 0.1,

+ learn_kappa2 = FALSE, learn_lambda2 = FALSE)

+

+ lpds_res <- c(res_base$LPDS, res_ng hier$LPDS, res_ng$LPDS,

+ res_las_hier$LPDS, res_las$LPDS)

+

+ rm("res_base", "res_ng", "res_ng_hier", "res_las_hier", "res_las")

+

+ return(lpds_res)

+ }

R> stopCluster(cl)

R>

R> cumu_lpds <- apply(lpds, 1, cumsum)

R> # Plot results

R> par(mar=c(6,4,1,1))

R> colnames(cumu_lpds) <- c("Default", "Hierarchical Normal Gamma',

+ "Non-hierarchical Normal Gamma", "Hierarchical Lasso",

+ "Non-hierarchical Lasso")

R>

R> matplot (cumu_lpds, type = "1", ylab = "Cumulative LPDS", xaxt = "n", xlab = "")
R>

R> # Extraxt labels from time series

R> labs = as.yearmon(time(usmacro.update))[TO:Tmax + 1] [c(FALSE, TRUE)]

R>

R> # Create custom axis labels

R> axis(1, at = (1:length(T0:Tmax)) [c(FALSE, TRUE)], labels = FALSE)

R> text (x=(1:length(T0:Tmax)) [c(FALSE, TRUE)],

+ y=par () $usr[3]-0.05* (par () $usr[4]-par () $usr[3]),

+ labels=labs, srt=45, adj=1, xpd=TRUE)

R>

R> # Add legend

R> legend("topright", colnames(cumu_lpds), col=1:5, 1ty = 1:5, bty = "n", cex = 0.8)
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