Polygon and transect detectors in secr
Murray Efford
Wednesday, September 17, 2014

Contents

Example data: flat-tailed horned lizards
Datainput e e
Model fitting e e
Cuedata e e

More on polygons e e e e e e e e e

1
2
2
3
Transect search L L 4
6
Technical notes e e 6

7

References e e e

The ‘polygon’ detector type is used for data from searches of one or more areas (polygons). Transect detectors
are the linear equivalent of polygons; as the theory and implementation are very similar we mostly refer to
polygon detectors and only briefly mention transects. Area and linear searches differ from other modes of
detection in that each detection may have different coordinates, and the coordinates are random rather than
fixed by the field design. The method may be used with individually identifiable cues (e.g., faeces) as well as
for direct observations of individuals.

Polygons may be independent (detector type ‘polygon’) or exclusive (detector type ‘polygonX’). Exclusivity
is a particular type of dependence in which an animal may be detected at no more than one polygon on each
occasion (i.e. polygons function more like multi-catch traps than ‘count’ detectors). Transect detectors also
may be independent (‘transect’) or exclusive (‘transectX’).

Efford (2011) gives technical background on the fitting of polygon and transect models to spatially explicit
capture-recapture data by maximum likelihood. This document illustrates the methods using the R package
secr.

Example data: flat-tailed horned lizards

Royle and Young (2008) reported a Bayesian analysis of data from repeated searches for flat-tailed horned
lizards (Phrynosoma mcalli) on a 9-ha square plot in Arizona, USA. Their dataset is included in secr as
hornedlizardCH and will be used for demonstration. See ‘?hornedlizard’ for more details.

The lizards were free to move across the boundary of the plot and often buried themselves when approached.
Half of the 134 different lizards were seen only once in 14 searches over 17 days. Fig. 1 shows the distribution
of detections within the quadrat; lines connect successive detections of the individuals that were recaptured.

library(secr)
plot(hornedlizardCH, tracks = TRUE, varycol = FALSE, lablcap = TRUE, laboffset = 6,
border = 10, title ='")

14 occasions, 134 detections, 68 animals

‘1

Fig. 1. Locations of horned lizards on a 9-ha plot in Arizona (Royle and Young 2008). Grid lines are 100 m
apart.

Data input

Input of data for polygon and transect detectors is described in secr-datainput.pdf. It is little different to
input of other data for secr. The key function is read.capthist, which reads text files containing the polygon
or transect coordinates' and the capture records. Capture data should be in the ‘XY’ format of Density (one
row per record with fields in the order Session, AnimalID, Occasion, X, Y). Capture records are automatically
associated with polygons on the basis of X and Y (coordinates outside any polygon give an error). Transect
data are also entered as X and Y coordinates and automatically associated with transect lines.

Model fitting

The function secr.fit is used to fit polygon or transect models by maximum likelihood, exactly as for other
detectors. Any model fitting requires a habitat mask — a representation of the region around the detectors
possibly occupied by the detected animals (aka the ‘area of integration’ or ‘state space’). It’s simplest to use a
simple rectangular buffer around the detectors, specified via the ‘buffer’ argument of secr.fit. Alternatively,
one can construct a mask with make .mask and provide that in the ‘mask’ argument of secr.fit. Pre-building
the mask in this way can be more efficient as points can be dropped that are within the rectangle but far
from detectors (see Transect search). For the horned lizard dataset it is safe to use the default buffer width
(100 m) and the default detection function (circular bivariate normal). We use trace = FALSE to suppress
intermediate output that would be untidy here.

FTHL.fit <- secr.fit(hornedlizardCH, trace = FALSE)

1For constraints on the shape of polygon detectors see Polygon shape

http://www.otago.ac.nz/density/pdfs/secr-datainput.pdf

predict (FTHL.fit)

link estimate SE.estimate 1lcl ucl
D log 8.0578 1.06435 6.2268 10.4271
g0 logit 0.1241 0.01332 0.1003 0.1526
sigma log 18.5054 1.19897 16.3008 21.0083

The estimated density is 8.06 / ha, somewhat less than the value given by Royle and Young (2008); see Efford
(2011) for an explanation. The parameter labelled ‘g0’ is equivalent to p in Royle and Young (2008).

FTHL.fit is an object of class secr. Many methods are available for secr objects (AIC, coef, deviance, print,
etc.) - see the secr help index or Appendix 3 of secr-overview.pdf. We would use the ‘plot’ method to graph
the fitted detection function :

plot(FTHL.fit, xv = 0:70, ylab = 'p')

Cue data

By ‘cue’ in this context we mean a discrete sign identifiable to an individual animal by means such as
microsatellite DNA. Faeces and passive hair samples may be cues. Animals may produce more than one
cue per occasion. The number of cues in a specific polygon then has a discrete distribution such as Poisson,
binomial or negative binomial.

A cue dataset is not readily available, so we simulate some cue data to demonstrate the analysis. The text
file ‘temppoly.txt’ contains the boundary coordinates.

temppoly <- read.traps(file = 'temppoly.txt', detector = 'polygon')

tempcapt <- sim.capthist(temppoly, popn = list(D = 1, buffer = 200), detectpar =
list(g0 = 5, sigma = 50), noccasions = 1)

plot(tempcapt, tracks = TRUE, varycol = F, lablcap = T, laboffset = 15, title =
paste("Simulated 'polygon' data", "D = 1, g0 = 5, sigma = 50"))

Simulated 'polygon’ data D = 1, g0 = 5, sigma = 50
1 occasions, 144 detections, 42 animals

http://www.otago.ac.nz/density/pdfs/secr-overview.pdf

Fig. 2. Simulated cue data from a single search of two irregular polygons.

Our simulated sampling was a single search (noccasions = 1), and the intercept of the detection function (g0
= 5) is the expected number of cues that would be found per animal if the search was unbounded. The plot
is slightly misleading because the cues are not ordered in time, but tracks = TRUE serves to link cues from
the same animal.

To fit the model by maximum likelihood we use secr.fit as before.

cuesim.fit <- secr.fit(tempcapt, buffer = 200, trace = FALSE)

predict(cuesim.fit)

link estimate SE.estimate 1lcl ucl
D log 1.8661 0.24627 1.4424 2.4142
g0 log 0.5247 0.06046 0.4189 0.6571
sigma log 54.4066 3.45907 48.0384 61.6190

Transect search

Transect data, as understood here, include the positions from which individuals are detected along a linear
route through 2-dimensional habitat. They do not include distances from the route to the location of the
individual, at least, not yet. A route may be searched multiple times, and a dataset may include multiple
routes, but neither of these are necessary.

We simulate some data for an imaginary wiggly transect.

x <- seq(0, 4#pi, length = 20)
temptrans <- make.transect(x = x*100, y = sin(x)*300, exclusive = FALSE)
summary (temptrans)

Object class traps

Detector type transect
Number vertices 20

Number transects 1

Total length 2756 m
x-range 0 1257 m
y-range -299 299 m

tempcapt <- sim.capthist(temptrans, popn = list(D = 2, buffer = 300), detectpar =
list(g0 = 1.0, sigma = 50), binomN = 0)

By setting exclusive = FALSE we signal that there may be more than one detection per animal per occasion
on this single transect (i.e. this is a ‘transect’ detector rather than ‘transectX’).

Constructing a habitat mask explicitly with make.mask (rather than relying on ‘buffer’ in secr.fit) allows
us to specify the point spacing and discard outlying points (Fig. 3).

tempmask <- make.mask(temptrans, type = 'trapbuffer', buffer = 300, spacing = 20)

par (mar=c(3,1,3,1))

plot(tempmask, border = 0)

plot(temptrans, add = TRUE, detpar = list(lwd = 2))
plot(tempcapt, tracks = TRUE, add = TRUE, title = '')

5 occasions, 315 detections, 101 animals

[/]

Fig. 3. Habitat mask (grey dots) and simulated transect data from five searches of a 2.8-km transect.
Colours differ between individuals, but are not unique.

Model fitting uses secr.fit as before. We specify the distribution of the number of detections per individual
per occasion as Poisson (binomN = 0), although this also happens to be the default. Setting method =
‘BFGS’ is more likely to yield valid estimates of standard errors than using the default method (see Technical
notes).

transim.fit <- secr.fit(tempcapt, mask = tempmask, binomN = O, method = 'BFGS', trace = FALSE)

predict (transim.fit)

link estimate SE.estimate 1cl ucl
D log 1.783 0.19487 1.4406 2.208
g0 log 1.046 0.08539 0.8918 1.227
sigma log 50.822 1.99349 47.0629 54.882

Another way to analyse transect data is to discretize it. We divide the transect into 25-m segments and
then change the detector type. In the resulting capthist object the transect has been replaced by a series of
proximity detectors, each at the midpoint of a segment.

newCH <- snip(tempcapt, by = 25)
newCH <- reduce(newCH, outputdetector = 'proximity')

We can fit a model using the same mask as before. The result differs in the scaling of the g0 parameter, but
in other respects is similar to that from the transect model.

snipped.fit <- secr.fit(newCH, mask = tempmask, trace = FALSE)

predict(snipped.fit)

link estimate SE.estimate 1cl ucl
D log 1.7623 0.19647 1.4174 2.1912
g0 logit 0.1853 0.01689 0.1545 0.2208
sigma log 52.0743 2.36679 47.6382 56.9234

More on polygons

The implementation in secr allows any number of disjunct polygons or non-intersecting transects.

Polygons may be irregularly shaped, but there are some limitations. Polygons may not be concave in an
east-west direction, in the sense that there are more than two intersections with a vertical line. Sometimes
east-west concavity may be fixed by rotating the polygon and its associated data points (see function rotate).

@ /\

N

\

Fig. 4. The polygon on the left is not allowed because its boundary is intersected by a vertical line at more
than two points.

Technical notes

Fitting models for polygon detectors with secr.fit requires the hazard function to be integrated in two-
dimensions many times. This is done with repeated one-dimensional gaussian quadrature using the C function
Rdqgags provided by R (Rdqgags is also used by R’s own function integrate) (see R manual ‘Writing R
extensions’). Error messages including ‘ier’ may be traced in the code for Rdqags. A few such errors during
maximisation may be ignored, as long as they do not occur at the end.

Polygon and transect SECR models seem to be prone to numerical problems in estimating the information
matrix (negative Hessian), which flow on into poor variance estimates and missing values for the standard
errors of ‘real’” parameters. At the time of writing these seem to be overcome by overriding the default
maximisation method (Newton-Raphson in ‘nlm’) and using, for example, ‘method = "BFGS”. Another
solution, perhaps more reliable, is to compute the information matrix independently by setting 'details =
list(hessian = ’fdhess’)’ in the call to secr.fit.

The algorithm for finding a starting point in parameter space for the numerical maximisation is not entirely
reliable; it may be necessary to specify the ‘start’ argument of secr.fit, remembering that the values should
be on the link scale (defaults: D log, g0 log (logit if exclusive or binomN = 1), sigma log).

Data for polygons and transects are unlike those from detectors such as traps in several respects:

o The association between vertices in a ‘traps’ object and polygons or transects resides in an attribute
‘polyID’ that is out of sight, but may be retrieved with the polyID or transectID functions. If the
attribute is NULL, all vertices are assumed to belong to one polygon or transect.

e The x-y coordinates for each detection are stored in the attribute ‘detectedXY’ of a capthist object. To
retrieve these coordinates use the function xy. Detections are ordered by occasion, animal, and detector
(i.e., polyID).

e subset or split applied to a polygon or transect ‘traps’ object operate at the level of whole polygons
or transects, not vertices (rows).

» usage also applies to whole polygons or transects. The option of specifying varying usage by occasion
is not fully tested for these detector types.

e The interpretation of detection functions and their parameters is subtly different; the detection function
must be integrated over 1-D or 2-D rather than yielding a probability directly (see Efford 2011).

References
Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for capture-recapture
studies. Biometrics 64, 377-385.

Efford, M. G. (2011) Estimation of population density by spatially explicit capture-recapture analysis of
data from area searches. Ecology 92, 2202-2207.

Marques, T. A., Thomas, L. and Royle, J. A. (2011) A hierarchical model for spatial capture-recapture data:
Comment. Ecology 92, 526-528.

Royle, J. A. and Young, K. V. (2008) A hierarchical model for spatial capture-recapture data. Ecology 89,
2281-2289.

	Example data: flat-tailed horned lizards
	Data input
	Model fitting
	Cue data
	Transect search
	More on polygons
	Technical notes
	References

