Modelling density surfaces in secr

Murray Efford

November 16, 2011

The formulation of spatially explicit capture-recapture (SECR) by Borchers
and Efford (2008) allows for population density to vary over space. Fitting
models that include spatial covariates (e.g., habitat class), or spatial trend, has
been possible in secr from the start, but use of this feature is now made easier
by the addition of functions for prediction and plotting. This document provides

an overview and worked examples.

Contents
Density surfaces - some background 2
Using the ‘model’ argument in secr.fit 2
Link function 3
Built-in variables oL 3
User-provided variables 0. 3
User-provided model functions 4
Prediction and plotting 6
Brushtail possum example 8
Potential problems 13
References 14

Density surfaces - some background

SECR fits a state model and an observation model. The observation model
is a detection function; this is described in secr-overview.pdf' and we will not
consider it further here. The state model is a spatial Poisson process for animal
range centres that may be homogeneous (constant over space) or inhomogeneous
(varying over space). The notation D(x; ¢) covers both possibilities: density (D)
is a function of location (the vector x representing a pair of x- and y-coordinates).
If density is homogeneous (i.e. flat expected value) then the parameter ¢ is one

number, the density. In other cases, ¢ is a vector of several parameters.

To model variation in a density surface we need to maximise the full likeli-
hood. Maximising the conditional likelihood (conditional on n, the number of
observed individuals) is a way to estimate the observation model; to go from
there to a Horvitz-Thompson estimate of density we assume that density is

homogeneous.

Although D(x;¢) may be a smooth function, in secr we evaluate it only at
the fixed points of a habitat ‘mask’ (you can think of these as the cell centres
of a pixellated or raster representation). A mask defines the region of habitat
relevant to a particular study: most simply it is a buffered zone around the

detector locations, but it may exclude interior areas of non-habitat.

A density model D(x; ¢) is specified either in the ‘model” argument of secr.fit
or in a user-written function supplied to secr.fit (examples later). Spatial co-
variates, if any, are needed for each mask point; they are stored in the ‘covariates’
attribute of the mask. Results from fitting the model (including the estimated
@) are saved in an object of class ‘secr’. To visualise a fitted density model we
first evaluate it at each point on a mask with the function predictDsurface to
create an object of class ‘Dsurface’. A Dsurface is a mask with added density

data, and plotting a Dsurface is like plotting a mask covariate.

Using the ‘model’ argument in secr.fit

The model argument of secr.fit is a list of formulae, one for each ‘real’ param-
eter? in both the state model (just ‘D’ for density) and the observation model
(typically ‘g0’ and ‘sigma’). A model formula defines variation in each parame-
ter as a function of covariates (broad sense) that is linear on the ‘link’ scale, as

in a generalized linear model.

The options differ between the state and observation models. D may vary

Isee the ‘directory’ link in the ‘secr’ package help index
2null formulae e.g. D ~ 1 may be omitted, and if a single formula is used, it may be

presented on its own rather than in list() form

with respect to group, session or point in space; g0 and sigma may vary by
group, session, occasion or latent class (finite mixture), but not with respect to
continuous space. This is partly a design choice, to tame the complexity that

would result if g0 and sigma varied continuously.

Link function

The default link for D is ‘log’. It is equally feasible in most cases to choose
'identity’ as the link (see the secr.fit argument of that name), and for the
null model D ~ 1 the estimate will be nearly the same, as will estimates involv-
ing only categorical variables (e.g., session). However, with an ‘identity’ link the
routine (asymptotic) confidence limits will be symmetrical (unless truncated at
zero) rather than asymmetrical. In all models with continuous predictors or
trend surfaces the link function will affect the result, although the difference
may be small when the amplitude of variation on the surface is small. Oth-
erwise, serious thought is needed regarding which model is biologically more

appropriate: logarithmic or linear.

You may wonder why secr.fit is ambivalent: link functions have seemed a
necessary part of the machinery for capture-recapture modelling since Lebreton
et al. (1992). Their key role is to keep the ‘real’ parameter within feasible
bounds (e.g., 0-1 for probabilities). In secr.fit any modelled value of D that
falls below zero is truncated at zero (of course this condition will not arise with

a log link).

Built-in variables

secr.fit automatically recognises the spatial variables x,y,x2,y2 and xy if they
appear in the formula for D. These refer to the x-coordinate, y-coordinate, x-
coordinate? etc. for each mask point, and will be constructed automatically as

needed.

The formula for D may also include the non-spatial variables g (group),
session (categorical), and Session (continuous), defined as for modelling g0 and

sigma (see Overview).

The built-in variables offer limited model possibilities:

D~1 flat surface (default)
D~x+y linear trend surface (planar)
D~x+ x2 quadratic trend in east-west direction only

D~x+4+y+x2+y2+xy quadratic trend surface

etc.

User-provided variables

More interesting models can be made with variables provided by the user. These
are stored in a data frame as the ‘covariates’ attribute of a mask object. Co-

variates must be defined for every point on a mask.

Variables may be categorical (a factor or character value that can be co-
erced to a factor) or continuous (a numeric vector). The habitat variable ‘hab-
class’ constructed in the Examples section of the skink help is an example of a
two-class categorical covariate. Remember that categorical variables entail one

additional parameter for each extra level.

There are several ways to create or input mask covariates.

e read columns of covariates along with the x- and y-coordinates when cre-

ating a mask from a dataframe or external file (read.mask)
e read the covariates dataframe separately from an external file (read.table)

e infer values for points on an existing mask from the nearest points in
another dataset, such as detector covariates (e.g., ‘habclass’ in skink Ex-

amples)

e infer values for points on an existing mask from GIS data, such as a
polygon shapefile or SpatialPolygonsDataFrame (see ‘sp’ (Pebesma and
Bivand 2005), ‘maptools’ (Lewin-Koh, Bivand et al. 2011), and related R
packages)

e compute from coordinates (e.g., distance to shore in possum example be-

low)

Use the function addCovariates for the third and fourth options.

User-provided model functions

Some density models cannot be coded in the generalized linear model form of
the ‘model” argument. To alleviate this problem, a model may be specified as an
R function that is passed to secr.fit, specifically as the component ‘userDfn’
of the list argument ‘details’. We document this feature here, although you may

never use it.

The userDin function must follow some rules.

e [t should accept four arguments, the first a vector of parameter values or
a character value (below), and the second a ‘mask’ object, a data frame

of x and y coordinates for points at which density must be predicted.

7

Dbeta coefficients of density model, or one of ¢(“name”, “parameters”)
mask secr habitat mask object
ngroup number of groups

nsession number of sessions

e When called with Dbeta = ‘name’, the function should return a character
string to identify the density model in output. (This should not depend

on the values of other arguments).

e When called with Dbeta = ‘parameters’, the function should return a
character vector naming each parameter. (When used this way, the call
always includes the mask argument, so information regarding the model
may be retrieved from any attributes of mask that have been set by the

user).

e Otherwise, the function should return a numeric array with dim = c(nmask,
ngroup, nsession) where nmask is the number of points (rows in mask).
Each element in the array is the predicted density (natural scale, in ani-
mals / hectare) for each point, group and session. This is simpler than it

sounds, as usually there will be a single session and single group.

The coeflicients form the density part of the full vector of ‘beta’ coeflicients
used by the likelihood maximization function (nlm or optim). Ideally, the first
one should correspond to an intercept or overall density, as this is appears in the
output of predict.secr. If transformation of density to the ‘link’ scale is required
it should be hard-coded in userDin.

Covariates are available to user-provided functions, but they must be ex-
tracted ‘manually’ (e.g., ‘covariates(mask)$habclass’ rather than just ‘habclass’).

To pass other arguments (e.g., a basis for splines), add attribute(s) to the mask.
It will usually be necessary to specify starting values for optimisation man-
ually with the ‘start’ argument of secr.fit.

If the parameter values in Dbeta are invalid the function should return an

array of all zero values.

Here is a ‘null’ userDfn that emulates D ~ 1 with log link

> userDfn0O <- function (Dbeta, mask, ngroup, nsession) {
if (Dbeta[1] == 'name') return ('0')
if (Dbeta[1] == 'parameters') return ('intercept')
D <- exp(Dbeta[1]) ## constant for all points
tempD <- array(D, dim = c(nrow(mask), ngroup, nsession))

return (tempD)

We can compare the result using userDfn0 to a fit of the same model using
the ‘model’ argument. We drop two columns of the AIC table to save space.

Note how the model description combines ‘user.” and the name ‘0’.

> library(secr)

> model.0 <- secr.fit(captdata, model = D ~ 1, trace = FALSE)

> userDfn.0 <- secr.fit(captdata, details = list(userDfn = userDfn0),
trace = FALSE)

> AIC(model.0, userDfn.0)[,-c(2,5)]

model npar logLik AICc dAICc AICwt
model.O D™1 g0™1 sigma™1 3 -759.0198 1524.373 0 0.5
userDfn.0 D userD.0 g0~1 sigma™1 3 -759.0198 1524.373 0 0.5
> predict(model.O0)
link estimate SE.estimate lcl ucl
D log 5.4788238 0.64671181 4.3507106 6.8994500

g0 logit 0.2731604 0.02705172 0.2234466 0.3292453
sigma log 29.3695713 1.30602252 26.9193515 32.0428119

> predict(userDfn.0)

link estimate SE.estimate 1cl ucl
D log 5.4788224 0.64671168 4.3507094 6.8994483
g0 logit 0.2731605 0.02705177 0.2234466 0.3292456
sigma log 29.3695700 1.30602306 26.9193492 32.0428118

> coef (userDfn.0)

beta SE.beta 1cl ucl
D.intercept 1.700890 0.11763036 1.470339 1.9314415
g0 -0.978646 0.13625084 -1.245693 -0.7115992
sigma 3.379959 0.04444662 3.292845 3.4670729

Not very exciting, maybe, but reassuring!

Prediction and plotting

We return to the main thread, predicting and plotting a fitted density surface.

Fitting a model provides estimates of its coefficients. In order to plot a
fitted model we first predict the height of the density surface at each point on
a mask. This is done with predictDsurface, which has arguments (object,
mask = NULL, se.D = FALSE, cl1.D = FALSE, alpha = 0.05). By default,
prediction is at the mask points used when fitting the model (i.e. object$mask);
specify the ‘mask’ argument to extrapolate the model to a different area. The
output from predictDsurface is a specialised mask object called a Dsurface

(class c(‘Dsurface’, ‘mask’, ‘data.frame’)).

Use the arguments se.D and cl1.D to request computation of the estimated
standard error and/or upper and lower confidence limits for each mask point®.
If requested, values are saved as additional covariates of the output Dsurface
(SE.1, lcl.1, ucl.1 for one group).

A Dsurface is a mask whose covariate dataframe has additional column(s)
for the predicted density of each group. Usually when you print a mask you see
only the x- and y-coordinates. The print method for Dsurface objects displays
both the coordinates and the density values as one dataframe, as also do the
head and tail methods.

The plot method for a Dsurface object has arguments (x, covariate =
’D’, group = 1, plottype = ’shaded’, ...). Note that covariate may
either be a prefix (one of ‘D’, ‘SE’, ‘Icl’, ‘ucl’) or any full covariate name. plot-
type may be one of ‘shaded’, ‘dots’, ‘persp’, or ‘contour’. For details on how
to specify colours, and many other options, read the help pages for plot.mask,

contour and persp.

Applying this to the pre-fitted model possum.model.Dsh2 we get

> shorePossums <- predictDsurface(possum.model.Dsh2, c1.D = TRUE)

> head(shorePossums)

X y D.0 1cl.0 ucl.O
58 2698543 6077080 1.534592 1.136332 1.932852
59 2698563 6077080 1.558118 1.161337 1.954900
60 2698583 6077080 1.581645 1.185896 1.977393
61 2698603 6077080 1.605170 1.210006 2.000335
62 2698623 6077080 1.628696 1.233665 2.023727
63 2698643 6077080 1.652221 1.256872 2.047569

> plot(shorePossums, plottype = 'shaded', polycol = 'blue', border = 100)
> plot(traps(possumCH), detpar = list(col = 'black'), add = TRUE)

3option available only for models specified in generalized linear model form with the ‘model’

argument of secr.fit, not for user-defined functions

A more extensive treatment of this example follows.

Brushtail possum example

Brushtail possums (Trichosurus vulpecula) were live-trapped by Efford et al.
(2005) in pine (Pinus radiata) forest and scrub on a ~300-ha coastal peninsula in
New Zealand. The site was surrounded by water on three sides, leaving only one
‘open’ boundary. Cage traps were set in groups of 36 at 20-m spacing around the
perimeter of five squares, each 180 m on a side. The squares (‘hollow grids’) were
centered at random points. Animals were trapped, tagged and released daily
for 5 days. Subsequently, strenuous efforts were made to remove all possums
by cyanide poisoning and leghold trapping across the entire area. The capture
data are provided as ‘possumCH’ in secr, along with a dataframe ‘possumarea’
containing the coordinates of a boundary that follows the shoreline in the west,

north and east. See ?possum in secr for more details.

There is evidence for non-spatial heterogeneity in capture probabilities (un-
publ. results) so we fit a finite-mixture observation model that allows for indi-
vidual differences (g0 ~ h2, sigma ~ h2). We use the default detection function
(halfnormal). For model fitting the mask needs to include all habitat near the
traps: we use a 400-m buffer around the traps, clipped to the shoreline (this is
larger than the 300-m buffer used by Efford et al. (2005) to allow for one class

in the finite mixture model having large sigma).

> possummask <- make.mask (traps(possumCH), buffer = 400, spacing = 20,
poly = possumarea, type = 'trapbuffer')

Results in Table 2 of Efford et al. (2005) suggest some variation between the
hollow grids (fewer possums were caught on the central grids, 1 and 2) so we
are interested to consider models of the density surface. Ideally sampling would
have been conducted at more sites with this in mind, but we’ll do what we can
with the data as they stand.

Using ‘possummask’ we can fit both a flat density surface (D ~ 1) and a
quadratic surface, suppressing output of each iteration during likelihood maxi-

mization. This takes a few minutes (11 min in R 2.14.0 on my machine).

> fitl <- secr.fit (possumCH, model = list(D ~ 1, g0 ~ h2,
sigma ~ h2), mask = possummask, trace = FALSE)

> fit2 <- secr.fit (possumCH, model = list(D ~ x + y + x2 + y2 + xy,
g0 ~ h2, sigma ~ h2), mask = possummask, trace = FALSE)

Did we gain anything by fitting the density surface?

> AIC(fit1, fit2)

model detectfn npar

fitl D”1 g0"h2 sigma™h2 pmix~h2 halfnormal 6
fit2 D"x + y + x2 + y2 + xy g0"h2 sigma™h2 pmix~h2 halfnormal 11
logLik AIC AICc dAICc AICwt

fitl -1081.268 2174.537 2175.337 0.000 0.9557
£fit2 -1078.419 2178.839 2181.479 6.142 0.0443

Probably not. Nevertheless, it is interesting to look at the quadratic model
surface. First, review the fitted model

> predict (fit2)

$ session = WaitarerePossums, h2 = 1, x =0, y = 0, x2 = 0, y2 = 0, xy
link estimate SE.estimate 1cl ucl

D log 1.8749799 0.37352554 1.273712 2.7600830

g0 logit 0.3554018 0.06868268 0.234516 0.4980571

sigma log 36.0251319 3.04893140 30.527691 42.5125546

pmix logit 0.7451412 NA NA NA

$ session = WaitarerePossums, h2 = 2, x = 0, y=0, x2=0, y2 =0, xy

link estimate SE.estimate 1lcl ucl
D log 1.87497987 0.3735255 1.27371151 2.7600830
g0 logit 0.07062142 0.0196774 0.04051248 0.1203017
sigma log 87.85032404 7.4350765 74.44435033 103.6704518
pmix logit 0.25485885 NA NA NA

Note how by default predict.secr evaluates the surface at (x = 0, y = 0).
This is not the origin of the old New Zealand metric grid somewhere in the sub-
antarctic, but the centroid of the mask points (remembering that coordinates
were scaled before the model was fitted). Now plot the surface; predictD-
surface uses the mask from the fitted object if no other is provided. The
plot.Dsurface argument plottype = ’shaded’ plots pixels instead of points,
and meshcol = NA suppresses lines between pixels.

> surface2 <- predictDsurface(fit2)

> plot(surface2, border = 150, polyc = 'blue', plottype = 'shaded',
col = terrain.colors(30), breaks = 25, meshcol = NA)

> plot(traps (possumCH), add = TRUE)

Two more tricks add value to this plot. Firstly, we can extract and (by

10

default) display the height of the fitted surface by clicking on chosen points. (If
you try this, click within each hollow grid and then exit by clicking outside the

map).
> spotHeight (surface2, dec = 1)

It can also help to add contours as a convenient alternative to a colour
legend. This is a challenge, because the ‘contour’ function in R requires a
rectangular matrix of values, and our mask is not rectangular. We could make it
so with the secr function rectangularmask, which makes a rectangular Dsurface
with missing (NA) values of density at all the external points. plot.Dsurface
recognises an irregular mask and attempts to fix this with an internal call to

rectangularMask:

> plot(surface2, border=150, polyc='blue', plottype = 'shaded',
col = terrain.colors(30), breaks = 25, mesh = NA)

> plot(traps (possumCH), add = TRUE)

> plot(surface2, plottype = 'contour',levels = seq(0.2,4,0.2), add

Contours are labelled in animals / hectare. You can control the contour

levels and labelling with the usual arguments of contour.

What if we extrapolate the fitted surface to the entire peninsula? For this
we create a new mask (‘regionmask’) using the boundary polygon in the data
object ‘possumremovalarea’. The density model is evaluated at each point in

‘regionmask’. We plot this and add contours as before.

> regionmask <- make.mask(traps(possumCH), type = 'polygon',
spacing = 10, poly = possumremovalarea)

> surface2a <- predictDsurface(fit2, regionmask)

= TRUE)

> plot(surface2a, border=150, polycol = 'blue', plottype = 'shaded’,

col = terrain.colors(30), breaks = 25, mesh = NA)

> plot(traps(possumCH), add = TRUE)

> plot(surface2a, plottype = 'contour', levels = seq(0.2,4,0.2),
add = TRUE)

11

From this plot the quadratic surface is clearly implausible when extrapolated
well beyond the traps: there is no reason to expect very low density in the
northern and southern sectors, nor the coastal peaks in the east and the west.

The artificiality of the polynomial surface leads us to consider a more plausi-
ble spatial model. If indeed there is variation among grids, perhaps it reflects a
habitat gradient away from the shore? This is not entirely realistic (the western

shore is marine, the eastern one an estuary), but it has potential.

First we need to define a covariate for distance to shore. This is easily
computed with the secr ‘distancetotrap’ function as we have access to points
along the shoreline in the object possumarea (from version 2.2.0 it no longer
matters that this is not a traps object). Then we repeat the steps of fitting the
model, comparing by AIC and plotting the surface. We choose the identity link
so that the function relating density to distance from the shore is linear rather
than exponential. The usual maximization algorithm failed, so we resort to the
more robust Nelder-Mead method.

> dts <- distancetotrap(possummask, possumarea)

> covariates(possummask) <- data.frame(d.to.shore = dts)

> fit3 <- secr.fit (possumCH, model = list(D ~ d.to.shore,
g0 ~ h2, sigma ~ h2), mask = possummask, trace = FALSE,
link = list (D = 'identity'), method = 'Nelder-Mead')

12

> AIC (fit1, fit2, fit3)

To evaluate the new surface over the entire peninsula we would use:
> dts <- distancetotrap(regionmask, possumarea)
> covariates(regionmask) <- data.frame(d.to.shore = dts)
> surface3a <- predictDsurface(fit3, regionmask)
> plot(surface3a, border=150, polycol = 'blue', plottype = 'shaded',

col = terrain.colors(30), breaks = 25, mesh = NA)

> plot(traps(possumCH), add = TRUE)
> plot(surface3a, plottype = 'contour', levels = seq(0.2,4,0.2), add = TRUE)

Although this model is not strong in terms of overall fit, its AICc is lower than
that of the quadratic model, and it has the major advantage of not predicting
implausible values immediately outside the state space used in fitting. Even
this model breaks down if pushed a little further: it implies brushtail possum

populations decline to zero about 2.1 km inland!

Potential problems

Modelling density surfaces can be tricky. Recognise when model fitting has
failed. If there is no asymptotic variance-covariance matrix, the estimates cannot
be trusted. Some forensic work may be needed. If in doubt, try repeating the fit,
perhaps starting from the previously fitted values (you can use secr.fit(...,
start=last.model) where last.model is a previously fitted secr object) or
from new arbitrary values. Problems may result when the discretization is too

coarse, so try with smaller mask cells.

It pays to adjust your model so the absolute expected values are roughly
similar for all parameters on their respective ‘link’ scales, rather than varying
by orders of magnitude. This can be achieved by setting the typsize argument
of nlm or the parscale control argument of optim. Another solution that has

sometimes worked for us is to set the ‘details’ option hessian = ’fdhess’.

You can try another optimization method; method = ‘Nelder-Mead’ is gen-
erally more robust than the default gradient-based method. Any method may
fail to find the true maximum from a given starting point. We have no experi-
ence with simulated annealing (SANN in optim); it is reputedly effective, but
slow. In the optim help it is stated ominously that “the ‘SANN’ method depends
critically on the settings of the control parameters. It is not a general-purpose
method”.

‘secr’ scales x- and y-coordinates to mean = 0, SD = 1 before using the

coordinates in a model. Remember this when you come to use the coefficients.

13

Functions such as predictDsurface should take care of scaling automatically
(if not, please report a bug). The mean and SD used in scaling are saved as
the ‘meanSD’ attribute of a mask (dataframe with columns x,y, rows mean SD).

Scaling of covariates other than x and y is up to the user.

Scaling is not performed routinely by secr.fit for other operations. Some-
times, large numeric values in coordinates can cause loss of precision in distance
calculations (there are a lot of them at each likelihood evaluation). The prob-
lem is serious in datasets that combine large coordinates with small detector
spacing, such as the Lake Station skink dataset. Set details$centred = TRUE

to force scaling; this may become the default setting in a future version of secr.

Avoid using [to extract subsets from mask, capthist and other secr objects
objects. Use the provided subset methods. (With care, it is possible to replace
selected elements in situ, but note that changing coordinates will invalidate the
meanSD attribute).

Do you really want the default log link?

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood
methods for capture-recapture studies. Biometrics 64, 377-385.

Lewin-Koh, N. J., Bivand, R., et al. (2011). maptools: Tools for reading
and handling spatial objects. R package version 0.8-10. http://CRAN.
R-project.org/package=maptools

Pebesma, E.J. and Bivand, R. S. (2005) Classes and methods for spatial data
in R. R News 5(2). http://cran.r-project.org/doc/Rnews/

Pledger, S. (2000) Unified maximum likelihood estimates for closed capture—
recapture models using mixtures. Biometrics 56, 434-442.

14

http://CRAN.R-project.org/package=maptools
http://CRAN.R-project.org/package=maptools
http://cran.r-project.org/doc/Rnews/

	Density surfaces - some background
	Using the `model' argument in secr.fit
	Link function
	Built-in variables
	User-provided variables

	User-provided model functions
	Prediction and plotting
	Brushtail possum example
	Potential problems
	References

