
SciDBand R
Using the scidb package for R.

The scidb Package

Contents

1 Introduction 3

2 Connecting to SciDB and Running Queries 3

2.1 Connecting to SciDB . 3

2.2 Listing and removing SciDB arrays . 3

2.3 Running SciDB queries . 4

2.4 Iterating over query results . 4

2.5 Copying data frames from R into SciDB . 6

3 SciDB Arrays for R Users 6

4 The scidbdf data frame-like class 7

4.1 Examples of scidbdf objects . 8

5 The scidb array class 8

5.1 Subsetting and indexing scidb array objects . 9

5.1.1 Arithmetic operations and their rules . 13

5.2 Persistence of dynamically-allocated scidb arrays 14

5.3 Miscellaneous array functions . 14

6 Using SciDB arrays with existing R code 15

7 Package installation 16

7.1 Installing the R package from CRAN . 16

7.2 Installing the simple network service for SciDB . 16

7.2.1 Installation on RHEL/CentOS 6 . 17

7.2.2 Installation on Ubuntu 12.04 . 17

7.3 Error handling . 17

7.4 Package options, miscellaneous notes, and software license 18

2

The scidb Package

1 Introduction

SciDB is an open-source database that organizes data in n-dimensional arrays. SciDB features
include ACID transactions, parallel processing, distributed storage, efficient sparse array storage,
and native linear algebra operations. The scidb package for R provides two ways to interact with
SciDB from R:

1. By running SciDB queries from R, optionally transferring data through data frames or data
frame iterators.

2. Through several SciDB array object classes for R. The arrays mimic standard R arrays, but
operations on them are performed by the SciDB engine. Data are materialized to R only when
requested.

In some cases, R scripts and packages may be used with little or no modification with scidb arrays,
allowing SciDB to power large-scale parallel R computation. This vignette illustrates using SciDB
from R by example. For more detailed information on the functions described in this vignette, see
the manual pages in the package.

2 Connecting to SciDB and Running Queries

This section outlines the most basic interaction between R and SciDB: running queries and trans-
ferring one-dimensional SciDB arrays between R and SciDB through R data frames.

2.1 Connecting to SciDB

The scidbconnect function establishes a connection to a SciDB coordinator instance. The function
may be safely called multiple times. Once a connection is established, connection information is
maintained until a different connection is established or the R session ends.

2.2 Listing and removing SciDB arrays

The scidblist function lists SciDB objects (arrays, instances, etc.), optionally showing detailed
schema information for arrays. Returned results may be filtered using regular expression-style
syntax.

The scidbremove function removes a SciDB array, or optionally a set of SciDB arrays defined by
regular expression. The function accepts a vector of array names, resulting in the removal of all the
specified arrays. Combine this feature with the regular expression filtering output of scidblist to
remove sets of arrays matching the filter.

3

The scidb Package

2.3 Running SciDB queries

The iquery function executes SciDB queries using either the SciDB array functional language
(AFL) or declarative array query language (AQL) syntax. When AFL is used, the iquery function
optionally returns query results in an R data frame if the argument return=TRUE is specified.
Returned output is similar to output obtained by the SciDB iquery command-line program with
the -olcsv+ option. The iquery function does not return anything by default.

Query results returned by the iquery function are internally presented to R using a generic CSV
format, providing very flexible support for many data types. (The n-dimensional array class de-
scribed in the next section uses a binary data exchange method between R and SciDB.) Note that,
although R and SciDB have a number of common data types, each system contains types not
supported by the other. Thus, conversion errors may arise. The iquery function is designed to
reasonably minimize such issues and simplify basic data transfer between the systems. Data types
common to R and SciDB include double-precision numeric, character string, logical, and 32-bit
integers.n-dimensional. They iquery function can optionally use R read.table options for parsing
value types.

Listing 1 illustrates basic use of iquery.

Listing˜1: Data frame example
library ("scidb")

scidbconnect () # Connect to SciDB on localhost

scidblist () # List SciDB arrays (nothing there yet)

[1] NULL

Build a 1-D SciDB array named "P:"

iquery ("store(build(<x:double >[i=0:99 ,100 ,0] , asin (1)*i/25),P)")

Return to R the result of an apply operator:

S = iquery ("apply(P,y,sin(x))",return=TRUE)

head(S)

i x y

1 0 0.0000000 0.0000000

2 1 0.0628319 0.0627905

3 2 0.1256640 0.1253330

4 3 0.1884960 0.1873810

5 4 0.2513270 0.2486900

plot(Sx ,Sy ,xlab="x",ylab="y",col =4)

2.4 Iterating over query results

The iquery function returns query results into a single R data frame by default. Large results
expected to contain lots of rows may be iterated over instead by setting the iterative=TRUE

4

The scidb Package

0 1 2 3 4 5 6

-1
.0

-0
.5

0.
0

0.
5

1.
0

x

y

Figure 1: Plot output from Listing 1.

argument. When iquery is used with the iterative=TRUE setting, it returns an iterator that
iterates over chunks of rows of the result data frame. Iterators are defined by the iterators package.
Their data may be directly accessed with the nextElem method, or indirectly with foreach. See
the iterators and foreach packages for many examples and further documentation of their use.

Listing˜2: Iterating over an iquery result
Build a small 1-D SciDB test array:

iquery ("store(build(<x:double >[i=1:10,10,0] ,i/10.0) ,A)")

Return the result of a SciDB apply operator in an R iterator with a

chunk size of at most 7 rows at a time:

it = iquery ("apply(A,y,sqrt(x))", return=TRUE , iterative=TRUE , n=7)

nextElem(it)

i x y

1 1 0.1 0.316228

2 2 0.2 0.447214

3 3 0.3 0.547723

4 4 0.4 0.632456

5 5 0.5 0.707107

6 6 0.6 0.774597

nextElem(it)

i x y

1 7 0.7 0.836660

2 8 0.8 0.894427

3 9 0.9 0.948683

4 10 1.0 1.000000

nextElem(it)

Error: StopIteration

5

The scidb Package

2.5 Copying data frames from R into SciDB

The df2scidb function copies an R data frame into a one-dimensional SciDB array. The data
frame rows are used as the array dimension. The data frame columns are mapped to SciDB array
attributes, each column becoming one attribute. SciDB attributes and dimensions are discussed in
greater detail below in Section 3, and in the SciDB reference documentation. The function accepts
many arguments outlined in detail in the R help page, ?df2scidb.

Listing 3 illustrates copying data from R to SciDB and back to R using the df2scidb and iquery

functions.

Listing˜3: Data frame example
library ("scidb")

scidbconnect () # Connect to SciDB

df2scidb(iris) # Copy the R 'iris ' data frame to SciDB.

scidblist(verbose=TRUE) # List SciDB arrays and schema.

[1] iris <Sepal_Length:double , Sepal_Width:double ,

Petal_Length:double , Petal_Width:double ,

Species:string > [row =0:149 ,150 ,0]

Ask for the data back from SciDB:

head(iquery ("scan(iris)",return=TRUE))

[1] row Sepal_Length Sepal_Width Petal_Length Petal_Width Species

1 0 5.1 3.5 1.4 0.2 setosa

2 1 4.9 3.0 1.4 0.2 setosa

3 2 4.7 3.2 1.3 0.2 setosa

4 3 4.6 3.1 1.5 0.2 setosa

5 4 5.0 3.6 1.4 0.2 setosa

6 5 5.4 3.9 1.7 0.4 setosa

3 SciDB Arrays for R Users

Data are organized by SciDB in n-dimensional sparse arrays. “Sparse” in SciDB arrays means that
array elements may be left undefined, and such array elements are omitted from computations. Note
that this interpretation of sparse differs from that used by sparse matrices defined by R’s Matrix
package (whose sparse matrix elements are implicitly zero).

The elements of a SciDB array, called cells, contain one or more attributes (similar to R vari-
ables). The number and data types of attributes are uniform across all cells in an array. Thus, a
one-dimensional SciDB array is conceptually similar to a data frame in R: the SciDB dimension
index corresponds to data frame row index, and SciDB attributes to data frame columns. Higher-
dimensional arrays in SciDB don’t correspond directly to objects in R; the scidb n-dimensional
array class described below is limited to working with one attribute at a time.

The integer coordinate systems used to index SciDB arrays are similar to R, except that SciDB
integer indices may be zero or negative, and are represented by 62-bit signed integers (R indices are

6

The scidb Package

unsigned positive 31-bit integer or 52-bit integer-valued double values).

SciDB attribute values within a cell may be explicitly marked missing, indicated by a special SciDB
missing code. SciDB internally supports a large number of possible missing codes. Presently, all
SciDB missing code values are mapped to NA values in R.

In addition to available missing (NULL) codes, SciDB double-precision floating point values also
provide a value indicating missing values identically to R, and use the identical NA representation
that R uses. Other SciDB data types do not define NA.

The scidb package defines two array classes for R with data backed by SciDB arrays.

4 The scidbdf data frame-like class

The scidbdf class defines a data frame-like class with data backed by one-dimensional SciDB arrays.
Like data frames, the columns may be of distinct types and the rows represent observations. Each
attribute in the backing SciDB array represents a column in the scidbdf object. The scidbdf

object elements are read-only (the backing SciDB array may be manually updated, for example
using the iquery function). Non-integer row indices are not yet supported.

Use either the df2scidb or as.scidb functions to create new SciDB arrays and corresponding
scidbdf R objects by copying R data frames into SciDB. The types and nullable options may be
used to explicitly specify the SciDB type and nullability values of each data frame column, or leave
these options undefined for the package to select SciDB types. See the R help page for df2scidb

for more information.

The scidb function returns an R scidbdf or scidb object representation of an existing SciDB
array.

Objects of class scidbdf obey a subset of R indexing operations. Columns may be selected by
numeric index or attribute name, but the short-hand R $-style variable selection notation is not
supported. Rows may only be selected using the underlying SciDB dimension type, integer by
default. And, only contiguous subsets of rows may be selected in the present version of the package.

Subsets of scidbdf objects are returned as new scidbdf objects of the appropriate size (dimension,
number of attributes/columns). The package uses the special empty-bracket notation, [], to indicate
that data should be materialized to R as an R data frame. Illustrations are provided in the examples.

7

The scidb Package

4.1 Examples of scidbdf objects

Listing˜4: SciDB data frame-like objects
library ("scidb")

scidbconnect ()

Copy the Michelson -Morley experiment data to SciDB , returning a scidbdf object

X = as.scidb(morley)

str(X)

SciDB array name: morley

Attributes:

attribute type nullable

1 Expt int32 FALSE

2 Run int32 FALSE

3 Speed int32 FALSE

Row dimension:

No name start length chunk_interval chunk_overlap low high type

1 0 row 1 100 100 0 1 100 int64

Materialize the first five rows of X to R:

X[1:5 ,][]

Expt Run Speed

0 1 1 850

1 1 2 740

2 1 3 900

3 1 4 1070

4 1 5 930

Aggregate average speed by experiment using SciDB

aggregate(X, Speed ~ Expt , FUN="avg(Speed) as mean")

Expt mean

1 1 909.0

2 2 856.0

3 3 845.0

4 4 820.5

5 5 831.5

Note that the aggregation function for SciDB arrays has a slightly different syntax than aggregation
of data frames. And note that the aggregation function is a SciDB expression, presented as a
character string.

5 The scidb array class

Similarly to the data frame-like class, the scidb package defines a scidb n-dimensional array class
for R. Array objects defined by the scidb class behave in some ways like standard R arrays. But
their data reside in SciDB and most operations on them are computed by SciDB.

8

The scidb Package

The scidb array class supports working with a single array attribute at a time to conform to R
arrays (which generally support a single value per cell). Consider the iris data presented in Listing
3, represented within SciDB as a 1-D array with five attributes. The following listing 5 illustrates
creating a 1-D scidb array object in R that refers to the iris data in SciDB, using the Sepal_Width

attribute. Unlike R, SciDB numeric array indices may be zero or negative (indices begin at zero in
the example in Listing 5). Data from scidb array objects are not materialized to R until subset
with the empty indexing function, [].

Listing˜5: A 1-d SciDB array object using one of several available attributes
x = scidb("iris", attribute =" Sepal_Width", data.frame=FALSE)

dim(x)

[1] 150 1

x[99:103][]

row

99 100 101 102 103

2.8 3.3 2.7 3.0 2.9

attributes(x) # List all available attributes in the SciDB array

[1] "Sepal_Length" "Sepal_Width" "Petal_Length" "Petal_Width" "Species"

5.1 Subsetting and indexing scidb array objects

SciDB arrays act in many ways like regular arrays in R. Rectilinear subarrays may be defined by
ranges of integer indices or by lists of specific integer and string values, if the SciDB backing array
supports that. Subarrays of scidb array objects are returned as new scidb array objects of the
appropriate size.

Despite the similarities, there are differences between regular R and scidb array object indexing.
In particular:

� The empty indexing function, [] applied to a scidb object materializes its array data as an
R array. If the data exceed a return size threshold, an iterator over the array indices and
data will be returned instead. The package option options("scidb.max.array.elements")

controls the threshold.

� Index ranges follow SciDB convention. Arrays may have non-positive integer indices. In
particular, note that the starting SciDB integer index is arbitrary, but often zero. (By contrast,
the upper left corner of R arrays is always indexed by [1,1,...].)

� Array length may exceed 231 elements.

� When SciDB arrays are materialized to R with the [] function, empty cells in the SciDB array
are mapped to a default value in R. The choice of value may be made globally by setting the
options("scidb.default.value") option, or at call time with the default option to the []

function (examples shown below).

9

The scidb Package

� scidb array objects are limited to double-precision and 32-bit signed integer numeric, logical,
and single-byte character (char) element data types.

Listing 6 illustrates basic integer indexing operations on a sparse 3-D SciDB array.

Listing˜6: Basic scidb subarray indexing
scidbremove ("A", error=warning)

Create a small , sparse 3-d array:

iquery ("store(build_sparse(<val:double >[i=0:9,10,0,j=0:9,5,0,k=0:9,2,0],k,k<99

and (j=1 or j=3 or j=5 or j=7)),A)")

A = scidb("A")

Indexing operations return new SciDB arrays:

A[0:3 ,2:3 ,5:8]

A reference to a 4x2x4 dimensional SciDB array

But their data can be materialized into an R array with []:

A[0:3 ,2:3 ,5] [,drop=FALSE]

, , 1

[,1] [,2]

[1,] NA 5

[2,] NA 5

[3,] NA 5

[4,] NA 5

String-valued SciDB non-integer dimensions are supported by scidb arrays, with some limitations
illustrated in the examples below. The example in Listing 7 illustrates indexing by string values as
well as mixed indexing by string and integer.

10

The scidb Package

Listing˜7: Integer and string subarray indexing
scidbremove(c("A","N"), error=warning)

iquery ("store(build_sparse(<val:double >[i=0:9,5,0,j=0:9,5,0],i,i=j),A)")

iquery (" create array N<val:double >[x(string)=10,10,0,y(string)=10 ,10 ,0]")

iquery (" redimension_store(apply(A,x,'x'+ string(i),y,'y'+ string(j)),N)")

n = scidb("N")

str(n)

SciDB array name: N attribute in use: val

All attributes: val

Array dimensions:

No name start length chunk_interval chunk_overlap low high type

1 0 x 0 10 10 0 0 9 string

2 1 y 0 10 10 0 0 9 string

dimnames(n)

[[1]]

[1] "x0" "x1" "x2" "x3" "x4" "x5" "x6" "x7" "x8" "x9"

[[2]]

[1] "y0" "y1" "y2" "y3" "y4" "y5" "y6" "y7" "y8" "y9"

Empty cells in SciDB are replaced by a default value , NA below.

n[]

y

x y0 y1 y2 y3 y4 y5 y6 y7 y8 y9

x0 0 NA NA NA NA NA NA NA NA NA

x1 NA 1 NA NA NA NA NA NA NA NA

x2 NA NA 2 NA NA NA NA NA NA NA

x3 NA NA NA 3 NA NA NA NA NA NA

x4 NA NA NA NA 4 NA NA NA NA NA

x5 NA NA NA NA NA 5 NA NA NA NA

x6 NA NA NA NA NA NA 6 NA NA NA

x7 NA NA NA NA NA NA NA 7 NA NA

x8 NA NA NA NA NA NA NA NA 8 NA

x9 NA NA NA NA NA NA NA NA NA 9

Note that the package drops dimension labels in some cases , for example

when arbitrary indices are selected (a warning is thrown to alert the user):

n[c("x2","x3","x1","x5") ,][]

y

x y1 y2 y3 y5

0 NA 2 NA NA

1 NA NA 3 NA

2 1 NA NA NA

3 NA NA NA 5

Warning message: Dimension labels were dropped.

The between function may be used to specify indexing range intervals for integer or string values.
It’s useful for specifying subarrays of very large arrays efficiently. The between function may be
used to specify numeric or string dimension intervals. Listing 8 illustrates its use, using the same
example arrays used in Listing 7.

11

The scidb Package

Listing˜8: Using between to specify subarrays
N[between('x3','x7 '),][]

y

x y3 y4 y5 y6 y7

x3 3 NA NA NA NA

x4 NA 4 NA NA NA

x5 NA NA 5 NA NA

x6 NA NA NA 6 NA

x7 NA NA NA NA 7

Listing 9 shows a more interesting 2-d array example that compares matrix arithmetic in R and
SciDB.

Listing˜9: Matrix arithmetic in R and SciDB
iquery ("store(build(<x:double >[i=1:5,5,0,j=1:5,5,0], double(i)/double(j)),V)")

v = scidb("V") # v is an R representation of a SciDB array

str(v)

SciDB array name: V attribute in use: x

All attributes: x

Array dimensions:

No name start length chunk_interval chunk_overlap low high type

1 0 i 1 5 5 0 1 5 int64

2 1 j 1 5 5 0 1 5 int64

t(v[]) %*% v[] # Compute V %*% V using R

[,1] [,2] [,3] [,4] [,5]

[1,] 55.00000 27.500000 18.333333 13.750000 11.000000

[2,] 27.50000 13.750000 9.166667 6.875000 5.500000

[3,] 18.33333 9.166667 6.111111 4.583333 3.666667

[4,] 13.75000 6.875000 4.583333 3.437500 2.750000

[5,] 11.00000 5.500000 3.666667 2.750000 2.200000

Now compute using SciDB , and materialize the result to R:

(t(v) %*% v)[]

[,1] [,2] [,3] [,4] [,5]

[1,] 55.00000 27.500000 18.333333 13.750000 11.000000

[2,] 27.50000 13.750000 9.166667 6.875000 5.500000

[3,] 18.33333 9.166667 6.111111 4.583333 3.666667

[4,] 13.75000 6.875000 4.583333 3.437500 2.750000

[5,] 11.00000 5.500000 3.666667 2.750000 2.200000

Linear algebra operations like the cross product in Listing 9 store their results in new dynamically-
named SciDB arrays. One may always find the SciDB name for a scidb array object from the array
object’s @name slot.

Basic matrix/vector arithmetic operations on SciDB arrays (addition, subtraction, matrix and ma-
trix vector products, scalar products, crossprod and tcrossprod) use standard R syntax. You
can mix R and SciDB matrices and vectors and the scidb package will try to do the right thing by
assigning R data to temporary SciDB arrays conforming to required database schema. Listing 10

12

The scidb Package

shows an example of computations that mix scidb array objects with R vectors.

Listing˜10: Mixed R and SciDB array arithmetic
iquery ("store(build(<x:double >[i=0:4,5,0,j=0:4,5,0], double(i+1)/double(j+1)),U)

")

u = scidb("U") # u is an R representation of a SciDB array

set.seed (1)

x = cbind(rnorm (5)) # An R column vector

y = u %*% x # Computed by SciDB , returning a SciDB array object

y[,drop=FALSE] # Return the computed result to R

[,1]

[1,] -0.3484533

[2,] -0.6969065

[3,] -1.0453598

[4,] -1.3938131

[5,] -1.7422663

Although the examples may seem trivial, the simple linear algebra capability shown in Listings 9
and 10 enable quite a lot of interesting computation. Later sections illustrate using this idea to
overload more substantial functions in existing R packages.

5.1.1 Arithmetic operations and their rules

The scidb class supports the operations shown in Table 1.

Expression Operation Operands Output
A %*% B Matrix multiplication A,B Conformable SciDB arrays or R ma-

trices/vectors
SciDB array

A±B Matrix summation/difference A,B SciDB arrays or R matrices/vectors SciDB array
crossprod(A,B) Cross product t(A) %*% B A,B SciDB arrays or R matrices/vectors SciDB array
tcrossprod(A,B) Cross product A %*% t(B) A,B SciDB arrays or R matrices/vectors SciDB array
A * B Elementwise multiplication A,B Conformable SciDB arrays or R ma-

trices/vectors
SciDB array

α * A Scalar multiplication SciDB array A, scalar α SciDB array
t(A) Transpose SciDB array A SciDB array
A[range, range, . . .] Subarray SciDB array A SciDB Array
A[] Materialize SciDB array R array

Table 1: SciDB Array Class Operations

The subarray/materialize operations [] support the standard drop argument and the argument
default=x, where x is the default scalar value to use to fill-in sparse array values when materialized
to R. The use of default overrides the related global options("scidb.default.value") package
option.

13

The scidb Package

5.2 Persistence of dynamically-allocated scidb arrays

Previous examples illustrate that new scidb arrays may be created after some R operations. For
example, the subarray of a scidb array is a new scidb array. SciDB arrays created as the result of
R operations do not persist by default–they are removed from SciDB when their corresponding R
objects are deleted in R. Consider the example in Listing 11, shown with debugging turned on.

Listing˜11: Non-persistence of intermediate arrays
iquery ("store(build(<x:double >[i=0:4,5,0,j=0:4,5,0], double(i+1)/double(j+1)),U)

")

u = scidb("U")

V = u[1:3 ,1:5] # The subarray V is a new SciDB array

options(scidb.debug=TRUE)

rm(V)

gc() # Force R to run garbage collection

remove(array64626e31022a)

The debugging message in Listing 11 illustrates that the temporary SciDB array that V represented
was removed from SciDB when R garbage collection was run. In order to set any SciDB array
associated with a scidb array object as persistent, set the array @gc$remove setting to FALSE–for
example, V@gc$remove=FALSE in the above example.

5.3 Miscellaneous array functions

The count function applied to a scidb array object returns the count of non-empty cells in in the
backing SciDB array.

crossprod and tcrossprod are defined for scidb array objects and mixtures of scidb and matrices.

The image function displays a heatmap of a regrid of a 2-D scidb array object, and returns the
regridded array to R. The grid=c(m,n) function parameter specifies the regrid window sizes in each
array dimension, and defaults to the array chunk sizes. The regrid aggregation function may be
specified using the op function argument, and by default averages the array values over the regrid
windows.

The filter function may be used to apply arbitrary SciDB filter logic to array attributes. Simple
filtering comparisons against scalars may be directly specified with the usual comparison symbols,
<, >, <=, >=, ==, !=. The result of the filter function and the simple binary comparison
operations is a new scidb object containing the filtered values.

14

The scidb Package

6 Using SciDB arrays with existing R code

This section illustrates using SciDB together with R and standard R packages from CRAN to
compute solutions to large-scale problems. R functions that rely on linear algebra and aggregation
operations may be adapted to use SciDB arrays in place of native R vectors and matrices in order
to benefit from the large-scale parallel computing capabilities of SciDB.

The truncated singular value distribution (TSVD) is an important, widely used analysis method.
Truncated SVD lies at the heart of principle components and other analysis methods.

We use the irlba package from CRAN, http://cran.r-project.org/web/packages/irlba/index.html
to efficiently compute a truncated SVD. The IRLB algorithm used by the package relies on mostly
matrix–vector products, and is well-suited for use with SciDB. In fact, we can use SciDB matrices
with the irlba package without modifying the package at all.

The irlba package includes an option for user-defined matrix-vector products between a matrix A

and a vector x, that is the R computation A %*% x, and for computation of t(A) %*% x. Because
matrix vector and transpose operations are defined for the scidb array class, we don’t technically
need to use the user-defined option in the irlba package. However, by using the option, we
can greatly improve efficiency by avoiding explicitly forming the matrix transpose by computing
t(t(x) %*% A) instead of t(A) %*% x. Listing 12 illustrates this.

Listing˜12: Efficient matrix vector product for IRLBA
Let A be a scidb matrix

Let x be a numeric vector

Compute A %*% x if transpose=FALSE

Compute t(A) %*% x if transpose=TRUE

Return an R numeric vector.

matmul = function(A, x, transpose=FALSE)

{

if(transpose)

{

return(t(crossprod(x,A))[,drop=FALSE]))

}

(A %*% x)[,drop=FALSE]

}

After defining the custom matrix or transpose matrix product in Listing 12, we can load and use
the irlba package with SciDB arrays. Listing 13 illustrates computation of a few largest singular
values and associated singular vectors of a 50, 000×50, 000 matrix with random entries (consuming
about 18 GB). That problem large enough that it can’t be computed easily in R–the matrix is too
large to even represent in R version 2 (although that changes soon in R version 3).

15

http://cran.r-project.org/web/packages/irlba/index.html

The scidb Package

Listing˜13: Example large truncated SVD computation
library ("irlba")

library ("scidb")

scidbconnect ()

Create a 50,000 x 50,000 matrix filled with random -valued entries:

iquery(

"store(build(<x:double >[i=0:49999 ,1000 ,0 ,j=0:49999 ,1000 ,0] , double(random ())

/1000000000) ,A)"

)

a = scidb("A")

dim(a)

[1] 50000 50000

Compute the three largest singular values and corresponding vectors;

S = irlba(a, nu=3, nv=3, matmul=matmul)

After a while, the algorithm returns the truncated SVD in the variable S. The result obtained is
comparable to what the svd(A, nu=3, nv=3) command would have produced, if it could handle
the large matrix. Further optimizations are possible, but this simple example shows that it can be
easy to get large-scale computation working without rewriting R code.

7 Package installation

Installation proceeds in two steps: installing the R package on any computer that has a network
connection to a SciDB database, and installing a simple network service on the SciDB database
coordinator computer.

7.1 Installing the R package from CRAN

The scidb package is available on CRAN. Start an R session and run:

Listing˜14: Installing the R package from CRAN
install.packages ("scidb")

7.2 Installing the simple network service for SciDB

The SciDB R package requires installation of a simple open-source HTTP network service called
shim on the computer that SciDB is installed on. The service needs to be installed only on the
SciDB coordinator computer, not on client computers that connect to SciDB from R. It’s available
in packaged binary form for supported SciDB operating systems, and as source code which can be
compiled and deployed on any SciDB installation.

16

The scidb Package

Both installation approaches install the shim network service on the SciDB coordinator computer.
Installing as a service requires root permission. The compiled source code version requires no special
permissions to run.

Installation from binary software packages for SciDB-supported operating systems is easiest. De-
tailed up-to-date information can be found on Paradigm4’s laboratory on Paradigm4’s Github repos-
itory at https://github.com/Paradigm4/shim/wiki/Installing-shim. We outline installation for each
supported operating system below. See our github page for source code. The open source package
author, Bryan Lewis, maintains binary packages for SciDB-supported operating systems. They are
tied to specific versions of SciDB. The present version is 13.2 (February, 2013).

7.2.1 Installation on RHEL/CentOS 6

Listing˜15: Installing the simple HTTP service on RHEL
Install with:

wget http :// illposed.net/shim -13.2 -1. x86_64.rpm

rpm -i shim -13.2 -1. x86_64.rpm

(Uninstall , if desired , with:)

yum remove shim

7.2.2 Installation on Ubuntu 12.04

Listing˜16: Installing the simple HTTP service on Ubuntu
Install with:

wget http :// illposed.net/shim_13 .2 _amd64.deb

sudo gdebi shim_13 .2 _amd64.deb

(Uninstall , if desired , with:)

apt -get remove shim

See the Wiki and web pages at https://github.com/Paradigm4/shim/ for up to date package infor-
mation and source code.

The installed shim network service exposes SciDB as a very simple HTTP API. It includes a
simple browser-based status and query tool. After installing shim, point your browser to the I.P.
address of the SciDB coordinator machine and port 8080, for example: http://localhost:8080 on the
coordinator machine itself. Note that this API is not official and may change in the future. Help
drive those changes by contributing ideas, code and bugfixes to the project on github, or feel free
to discuss the service on the SciDB.org/forum.

7.3 Error handling

SciDB errors are trapped and converted to R errors that can be handled by standard R mechanisms.
Some operations might try to return too much data to R, exceeding R’s indexing limitations, system

17

https://github.com/Paradigm4/shim/wiki/Installing-shim
https://github.com/Paradigm4/shim/
http://localhost:8080

The scidb Package

memory, or both. The package tries to avoid this kind of error using package options that limit
returned data size shown in the next section.

7.4 Package options, miscellaneous notes, and software license

The scidb package defines several global package options. Package options may be set and retrieved
with the R options function, and are listed in Table 2.

Option Default value Description
scidb.debug NULL Set to TRUE to display all queries issued to the SciDB engine and other

debugging information.
scidb.index.sequence.limit 100 000 000 Maximum allowed scidb array object sequential indexing limit (for larger

ranges, use between)
scidb.default.value 0 Default value for returned subarrays of sparse numeric matrices.
scidb.max.array.elements 100 000 000 Maximum allowed non-empty elements to return in a subsetting opera-

tion of a scidb array object.

Table 2: Package options

Miscellaneous notes follow:

- R does not support 64-bit integer types. 64-bit signed and unsigned integers smaller than 253 in magnitude will
be represented as double-precision floating point numbers. 64-bit integers outside that range appear as +/−Inf.
All other integers (int8, uint8, int16, uint16, etc.) are represented in R by 32-bit signed integers. The uint32 type
is not directly supported.

- R doesn’t support single-precision floating point numbers. iquery results convert single-precision numbers within
SciDB to double-precision floating-point numbers in R. Single-precision SciDB numbers are not supported by the
scidb array class.

- SciDB does not natively support complex numbers. Loading complex numbers directly into SciDB from R is not
defined.

- The iquery function provides the most flexible mechanism for type conversion between the systems, fully under
user control using read.table options.

- Allowed array naming conventions vary between R and SciDB. For example, SciDB does not allow decimal points
in attribute names. The package may alter names with character substitution to reconcile names when it is
reasonable to do so. A warning is emitted whenever an object is automatically renamed in this way.

18

The scidb Package

Copyright (C) 2008-2013 SciDB, Inc.

The SciDB package for R is free software: you can redistribute it and/or modify

it under the terms of the AFFERO GNU General Public License as published by the

Free Software Foundation.

The SciDB package for R is distributed "AS-IS" AND WITHOUT ANY WARRANTY OF ANY

KIND, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, OR

FITNESS FOR A PARTICULAR PURPOSE. See the AFFERO GNU General Public License for

the complete license terms.

You should have received a copy of the AFFERO GNU General Public License along

with the package. If not, see <http://www.gnu.org/licenses/agpl-3.0.html>

19

	Introduction
	Connecting to SciDB and Running Queries
	Connecting to SciDB
	Listing and removing SciDB arrays
	Running SciDB queries
	Iterating over query results
	Copying data frames from R into SciDB

	SciDB Arrays for R Users
	The scidbdf data frame-like class
	Examples of scidbdf objects

	The scidb array class
	Subsetting and indexing scidb array objects
	Arithmetic operations and their rules

	Persistence of dynamically-allocated scidb arrays
	Miscellaneous array functions

	Using SciDB arrays with existing R code
	Package installation
	Installing the R package from CRAN
	Installing the simple network service for SciDB
	Installation on RHEL/CentOS 6
	Installation on Ubuntu 12.04

	Error handling
	Package options, miscellaneous notes, and software license

