package: s3x 0.3.0

Enhanced S3 Programming
(Rough Draft)

Charlotte Maia

October 25, 2011

This vignette provides an overview of the s3x system, for enhanced S3 programming, including
mixing object oriented programming with numerical programming.

The S3 System

Class-based programming is necessary to implement class-based models effectively, which
in turn, is necessary for creating real-world models.

The view of the author is that R’s S3 system, supports a weak form of class-based program-
ming, which is a good thing.

In many “other” object oriented programming systems (e.g. C++, Java and S4), classes are
definitions of objects. We have to define (explicit) classes, in order to create objects. In S3,
classes are descriptions of objects. We can create objects with (implicit or explicit) classes.
After creating objects, we can optionally change their classes.

Either way, if we want to create new data-types, we must first define new classes. Many
systems have a special syntax for defining classes, however S3 uses standard functions as
constructors.

Many systems support both class-level and object-level methods, hence we can call either:
my_class (my_args)
my_object.my_method (my_args)
S3 supports generic functions and class-level methods, hence we can call either:
my_generic (my_object, my_args)
my_method.my_class (my_object, my_args)
In theory, this system could be extended for multiple despatch, hence we could call either:
my_generic (my_object_1, my_object_2, my_args)
my_method.my_class_1.my_class_2 (my_object_1, my_object_2, my_args)

One small problem occurs for mutator methods, where (in general) we must duplicate the
object:

my_object = my_generic (my_object, my_args)

Maia, C. s3x 0.3.0 2

Unfortunately, S3 allows generic functions to have argument names, which restricts method
argument names.

In many systems, classes define (and restrict) an object’s attributes. After creating an
object, we can’t change what attributes it has, only it’s attributes’ values. In S3, classes
don’t define (and don’t restrict) an object’s attributes. After creating an object, we can
change what attributes it has.

Other major strengths of R’s S3 system include:

1. All data-types (including lists, R expressions, functions, matrices and vectors) are first
class objects, hence functions can take R expressions or other functions as arguments.

2. All objects can have attributes.
3. Very strong support for lists.

4. Relatively strong support for numerical programming.
Noting that specialised tasks may require foreign language implementations.

Other major weaknesses with R’s S3 system include:
1. A lack of object references.
2. A lack of clean exception handling.

3. A lack of a member (or attribute) operator.

Enhanced S3 Programming

The s3x system is built on top of R’s S3 system.

This package represents the culmination of several attempts to enhance R’s object oriented
features.

Initially, the author was interested in creating a C++-like or Java-like system. Then later,
she became more interested in mixing object oriented programming with functions.

Then more recently, she became interested in a two-pronged approach. Firstly, mixing
object-oriented programming with lists, which forms the basis for general purpose object
oriented programming. Secondly, mixing object oriented programming with mathematical
primitives, which forms the basis for basis for mixing object oriented programming with
numerical programming.

Currently, the package has five over-arching goals:
1. To support highly readable R source code.
2. To support mainstream object oriented programming.
3. To support standard R lists and list-like syntax.

4. To provide enhanced primitives,
for mixing object oriented programming with numerical programming.

5. To provide utilities,
for mixing object oriented programming with numerical programming.

The author uses the term “enhanced primitives”, to describe top-level classes that mix
object oriented features with major mathematical features. Currently, enhanced primitives

Maia, C. 53x 0.3.0 3

include:
1. Enhanced tables (TABLE objects), which are similar to data.frame objects.
2. Enhanced functions (FUNCTION objects).
3. Enhanced vectors (VECTOR, objects).

The main difference between standard R objects and enhanced primitives, is that enhanced
primitives use an alternative attribute system. The author uses the term “R attributes” to
describe standard R attributes and “object attributes” to describe named list elements and
enhanced primitive attributes.

Like lists, enhanced primitives, use the “$” operator as an object attribute operator, to set
and get their object attributes. Enhanced functions support self-referencing, where “.$”
maybe used within their bodies to get object attribute values. This is particularly useful
for interpolated functions.

Note that with the exception of lists, object attributes are stored as a standard R attribute
named “.”.

Another difference between standard R objects and enhanced primitives is in subsetting.
By default, for enhanced tables and enhanced vectors, single brackets, return a “sub” object
of the same class with the same object attributes, where double brackets (which can have
vectorised arguments) return components standard R vectors.

In addition to enhanced primitives, the package provides the following features:
1. General purpose object oriented features, including;:
(a) Constructor utilities.
(b) Generic functions (redefinitions), with no named arguments.
(¢) Object references.
2. Tabular utilities (early prototypes).
3. Functional utilities, including:
(a) Smoothing (locally-weighted least squares).
(b) Linear interpolation.
4. Other utilities, including;:
(a) Formatted vectors.
(b) Generic and nonrandom sampling.

Other features that are being considered for the future, include exception handling, ap-
plications programming tools (e.g. text menus), an enhanced primitive superclass, more
enhanced primitives (graphs, trees, matrices and equations), 3d plots (possibly just wrap-
pers), more tabular utilities, more smoothing, optimisation, random variables, multiple
despatch and despatch for object references.

Maia, C. s3x 0.3.0 4

General Purpose Object Oriented Features

Constructors

The s3x package provides two utility functions extend and implant to simplify construction.

The extend function takes an object and a subclass name, then returns the extended object.
If the object has an implicit class, then it’s class is set to the new class. If it an explicit
class, then it’s class is concatenated. The subclass name can be vectorised, however the
order is the opposite to S3, superclass first, subclass second.

R> object = list O
R> extend (object, "myclass")

list()
attr(,"class")
[1] "myclass"

The implant function takes an object (with a “§<-” method) and a list of object attributes,
which are added to the object. The list can’t include “...”. The arguments can be named
or unnamed. If unnamed, they default to the corresponding identifier.

R> x = 10
R>y =20
R> implant (list (), x, y, z=x + y)

$x
[1] 10

$y
[1] 20

$z
[1] 30

The extend function, can also except attributes, however the author recommends against
this except for one line constructors.

R> myclass = function (x, y)

extend (list (), "myclass", x, y, z=x + y)
R> myobject = myclass (1, 2)
R> myobject

$x
[1] 1

$y
[1] 2

$z
[1] 3

attr(,"class")
[1] "myclass"

Maia, C. 53x 0.3.0 5

Generic Functions
The current version of this package, redefines all generics from the base and graphics pack-
ages. They simply call the standard versions. This may be modified in future versions.

R> print

function (...)
base::"print"(...)
<environment: namespace:s3x>

After loading this package, we can write methods (say print.myclass) that don’t require the
argument to be named “x”.

Object Referencing

Environments can be used to support object referencing, however this produces slightly
verbose and confusing syntax.

The package provides objref objects to emulate traditional object references.

An object reference is created via the objref function and dereferenced via the deref function.

R> ref = objref (1:3)
R> ref

objref -> integer
R> deref (ref)
(11 123

Currently, there are some limitations and performance issues with these objects, which will
hopefully be fixed in the near future.

The main limitation relates to method despatch, which should (however isn’t) be determined
by the class of the referenced object. Another limitation, is that there’s no direct support
for changing what a reference, references.

A few methods are defined, such $ and bracket operators, which apply to the referenced
object.

The following example illustrates typical reference behaviour, where changes to a referenced
object are reflected in another reference

R> duplicate = ref
R> ref [1] =0
R> deref (duplicate)

[1] 023
Enhanced Vectors
Enhanced vectors (VECTOR objects) are the simplest of all enhanced primitives.

We can create an enhanced vector and assign attributes to it, which is particularly useful
for representing measurements along with units.

Maia, C. 53x 0.3.0 6

Enhanced vectors are created from standard vectors (or any object that can be coerced to
a standard vector).

Simple example based on the cars dataset (which is imperial).

R> #a speed object

R> speed = VECTOR (cars$speed)
R> speed$unit = "mph"

R> speed

VECTOR

[1] 4 4 7 7 8 910 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14
[23] 14 15 15 15 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22
[45] 23 24 24 24 24 25
object attributes:
unit

R> speed$unit
[1] "mph"

R> #a distance object

R> distance = VECTOR (cars$dist)
R> distance$unit = "ft"

R> distance

VECTOR

[1] 2 10 4 22 16 10 18 26 34 17 28 14 20 24 28 26 34
[18] 34 46 26 36 60 80 20 26 54 32 40 32 40 50 42 56 76
[35] 84 36 46 68 32 48 52 56 64 66 54 70 92 93 120 85
object attributes:
unit

R> distance$unit
[1] nfpn

A subtle difference between standard vectors and enhanced vectors is that subsetting via
single brackets returns an object with a copy of the original object’s attributes and that
subsetting via double brackets returns a standard vector (including potentially more than
one element).

R> distance [1:10]

VECTOR

[1] 2 10 4 22 16 10 18 26 34 17
object attributes:
unit

R> distance [[1:10]]
[11] 2 10 4 22 16 10 18 26 34 17

Note that when we perform arithmetic operations that involve two enhanced vectors or
an enhanced vector an another object, in general, the resulting object will have the first
object’s class and attributes.

Maia, C. s3x 0.3.0

Enhanced Tables

Enhanced tables (TABLE objects) are early prototypes and should be used cautiously.

Currently, enhanced tables are created from lists (or list subclasses) and offer little data

validation.

Like data.frames, enhanced tables extend standard lists, with each list element correspond-
ing to a column. However unlike data.frames, by default attributes aren’t stripped and the
$ operator accesses object attributes rather than list elements.

R> #table with attributes

R> table = TABLE (cars)

R> table$unit_speed = "mph"
R> table$unit_distance = "ft"
R> table [1:10,]

speed dist
1 4 2
2 4 10
3 7 4
4 7T 22
5 8 16
6 9 10
7 10 18
8 10 26
9 10 34
10 11 17

R> table$unit_speed

[1] "mph"

R> #like enhanced vectors, double brackets are

R> table [["speed"]]

[1] 4 4 7 7 8 910 10 10 11 11 12 12 12
[23] 14 15 15 15 16 16 17 17 17 18 18 18 18 19

[45] 23 24 24 24 24 25

R> #or
R> table [[,"speed"]]

[1] 4 4 7 7 8 910 10 10 11 11 12 12 12
[23] 14 15 15 15 16 16 17 17 17 18 18 18 18 19

[45] 23 24 24 24 24 25

We can access all attributes, use the objattr function.

R> objattr (table)

$unit_speed
[1] "mph"

$unit_distance
[1] nfpn

Utility functions are still being designed:

R> summary (table)

used to access the elements

12 13 13 13 13 14 14 14
19 19 20 20 20 20 20 22

12 13 13 13 13 14 14 14
19 19 20 20 20 20 20 22

Maia, C. 53x 0.3.0 8

TABLE

variable class NAs mean min max
1 speed numeric O 15.4 4 25
2 dist numeric 0 42.98 2 120

Enhanced Functions

Enhanced functions (FUNCTION objects) provide the same extension for attributes, except
that they also support self-referencing (read only). Currently, there’s a bug in the print
method.

R> straight_line = function (intercept, slope)
{ f_seed = function (x) .$intercept + .$slope * x
f = FUNCTION (f_seed)
f$intercept = intercept
f$slope = slope
f
}
R> f1 = straight_line (0, 1)
R> f2 = straight_line (1, 2)
R> f1

FUNCTION (x)

{ .$intercept + .$slope * x
b

object attributes:
intercept, slope

R> objattr (f1)

$intercept
(11 0
$slope

[1] 1

R> f1 (1:4)
[1] 1234
R> £2 (1:4)
[11 3579

It’s possible to specify an xlim argument in the enhanced function constructor. If we don’t
and we want to plot our functions, then we must include it in the plot functions.

R> plot (f1, xlim=c (-5, 5))
R> lines (£f2, lty=2, xlim=c (-5, 5))

Maia, C. 53x 0.3.0 9

< -
o~ -

o

£ °
N
|
<]
|

Note that if a function f calls a function g, g doesn’t automatically have access to f’s
attributes. The object . is a named list of attributes, which needs to be given to g as an
argument, for g to use those attributes.

Tabular Utilities

The function, read_package_data, can be used to create an enhanced table from a package
dataset. Another function, read_data_file can be used read other data files. These functions
call read.table, however have different defaults. Refer to the man file for more info.

Note that the print method for table, converts the table to a data.frame. This may be
changed in future versions.

R> table = read_package_data ("rrv", "markowitz.csv")
R> print (table, 1, row.names=FALSE)

Year Am.T. A.T. & T. U.S5.S. G.M. A.T. & Sfe C.C. Bdn. Frstn. S.S.

1937 -0.3 -0.2 -0.3 -0.5 -0.5 -0.1 -0.3 -0.4 -0.4
1938 0.5 0.1 0.3 0.7 0.1 0.2 0.1 0.3 0.2
1939 0.1 0.2 0.0 0.2 -0.4 -0.1 0.3 -0.1 -0.3
1940 -0.1 0.0 0.1 0.0 -0.2 -0.1 -0.1 -0.1 0.0
1941 -0.3 -0.2 -0.2 -0.3 0.6 -0.2 0.1 -0.2 -0.2
1942 0.0 0.1 0.0 0.5 0.9 0.2 0.3 1.1 0.1
1943 0.4 0.3 0.1 0.3 0.3 0.4 0.3 0.6 0.6
1944 0.2 0.1 0.3 0.3 0.6 0.2 0.2 0.5 0.3
1945 0.4 0.2 0.4 0.2 0.4 0.3 0.4 0.2 0.6
1946 -0.1 0.0 -0.1-0.3 0.0 -0.2 0.2 -0.1 0.3
1947 -0.1 -0.1 0.2 0.1 0.0 0.4 -0.1 0.0 0.2
1948 0.0 0.1 0.0 0.1 0.2 -0.2 0.0 0.0 0.1
1949 0.3 0.0 0.1 0.3 0.1 0.2 0.3 0.2 -0.2
1950 -0.1 0.1 0.7 0.3 0.6 -0.2 0.1 0.6 0.3
1951 0.0 0.1 0.0 0.2 0.0 -0.1 0.1 -0.1 0.3
1952 0.1 0.1 0.1 0.4 0.4 0.1 0.1 0.2 0.1
1953 0.0 0.0 0.0 -0.1 0.0 0.1 0.2 -0.1 0.0
1954 0.2 0.2 0.9 0.7 0.5 0.1 0.1 0.8 0.2

Maia, C. 53x 0.3.0 10

Functional Utilities

Smoothing

The function lps, fits local polynomials, via locally-weighted least squares.

The function lps_series, is a wrapper, that takes x and y values and returns a series of length
n.

By default, the polynomials are quadratic and have a smoothness parameter (relative band-
width) equal to one (actual bandwidth = smoothness * diff (range (x))).

R> m = lps_series (trees$Height, trees$Volume, degree=1, smoothness=2, n=5)
R> plot (trees$Height, trees$Volume)
R> lines (m)

trees$Volume

10 20 30 40 50 60 70

trees$Height
R>m

u v
[1,] 63 11.62343
[2,] 69 19.52792
[3,] 75 28.47463
[4,] 81 38.00443
[5,]1 87 48.86720

Interpolation

Univariate linear interpolation (for both regularly spaced and irregularly spaced series) can
be achieved via the interpolate function. The function takes an x vector and a y vector,
with the restriction that the x vector is distinct sorted values, in ascending order, then given
a new set of x values (sometimes denoted u), the interpolated values v are computed.

R>x =c¢c (1:2, 4:5)

R>y = x°2
R> f = interpolate (x, y)

We can plot the function, along with the series.

R> plot (f, points=TRUE)

Maia, C. s3x 0.3.0 11

0 _|
N
o _|
N
o _|
_ -
x
=
o _|
—
n -

Mixed Smoothing-Interpolation

The lps_interpolate function is the same as the lps_series function, except that it returns an
interpolated function. Evaluating the function, yields fitted values.

R> f = lps_interpolate (trees$Height, trees$Volume, degree=1, smoothness=2, n=5)
R> plot (trees$Height, trees$Volume)

R> lines (f)

R> abline (v=85, h=f (85), lty=2)

trees$Volume

10 20 30 40 50 60 70

trees$Height

Other Utilities

Formatted Vectors
The vector_style class, can be used to format integer and numeric vectors, it provides
commas and potentially currency symbols.

R> x = 10e6 * rnorm (10)
R> vector_style (x)

Maia, C.

[1] -1,244,211.96 -13,738,101.71
6,144,346.41

[5] 10,536,011.19

53x 0.3.0

[9] -1,602,894.50 34,547,812.26

R> vector_style (x, 0, currency="$")

11,669,752.17 -15,399,093.21
24,572,307.87

1,010,955.35

[1] -$1,244,212 -$13,738,102 $11,669,752 -$15,399,093 $10,536,011
[e] $6,144,346 $24,572,308

Generic Sampling

$1,010,955

The sample function is redefined as a generic.

-$1,602,895 $34,547,812

12

The enhanced table method calls sample_deterministic, which gives the first n rows and last
m rows, by default the first three and last three.

R> sample (table)

Year Am.T. A.T. & T. U.S.S.

1 1937 -0.305 -0.173 -0.

2 1938 0.513 0.098

3 1939 0.055 0.200 -0.

4 1952 0.128 0.083 0

5 1953 -0.010 0.035 0

6 1954 0.154 0.176 0
S.S.

1 -0.435

2 0.238

3 -0.295

4 0.062

5 -0.048

6 0.185

R> sample (table, 4)

Year Am.T. A.T. & T.

1 1937 -0.305 -0.173

2 1938 0.513 0.098

3 1939 0.055 0.200

4 1940 -0.126 0.030

5 1951 0.016 0.090

6 1952 0.128 0.083

7 1953 -0.010 0.035

8 1954 0.154 0.176
S.S.

1 -0.435

2 0.238

3 -0.295

4 -0.036

5 0.333

6 0.062

7 -0.048

8 0.185

R> sample (table, 2, 1)

0.

318
285
047

.131
.006
.908

U.s.S.

O O O O O

.318
.285
.047
.104
.021
.131
.006
.908

Year Am.T. A.T. & T. U.S.S.

-0
0

G.M. A.T. & Sfe C.C.
477 -0.457 -0.065
.714 0.107 0.238
.165 -0.424 -0.078
.390 0.434 0.079
.072 -0.027 0.067
.715 0.469 0.077
G.M. A.T. & Sfe C.C.
477 -0.457 -0.065
.714 0.107 0.238
.165 -0.424 -0.078
.043 -0.189 -0.077
.195 0.040 -0.064
.390 0.434 0.079
.072 -0.027 0.067
.715 0.469 0.077
G.M. A.T. & Sfe C.C.

o

O O O O

.319
.076
.318
.109
.210
.112

Bdn.
.319
.076
.318
.051
.054
.109
.210
L1112

. Frstn.
.400
.336
.093
.175
.084
.756

Frstn.

.400
.336
.093
.090
.131
.175
.084
.756

Bdn. Frstn.

Maia, C. 53x 0.3.0

1 1937 -0.305 -0.173 -0.318 -0.477 -0.457 -0.065 -0.319 -0.400

2 1938 0.513 0.098 0.285 0.714 0.107 0.238 0.076 0.336

3 1954 0.154 0.176 0.908 0.715 0.469 0.077 0.112 0.756
S.S.

1 -0.435

2 0.238

3 0.185

The default method and a sample_random function, call the standard sample function.

13

