
The rredis Package

Bryan W. Lewis
blewis@illposed.net

April 30, 2010

1 Introduction

The rredis package provides a native R interface to Redis. Redis is an in-memory key/value
database with many innovative features written by Salvatore Sanfilippo. It supports data persis-
tence, networked client/server operation, structured value types, server replication, data expiration,
and it’s very fast.

The following simple example illustrates a typical use of the rredis package:

> library('rredis')

> redisConnect()

> redisSet('x',rnorm(5))

[1] TRUE

> redisGet('x')

[1] 0.808448325 0.341482747 -0.728739322 -0.105507214 -0.002349064

The key name “x” is associated with the R vector produced by rnorm(5) and stored in Redis. Note
that the R object associated with “x” is available to other rredis clients, and indeed to any Redis
client that can de-serialize R objects. Neither the Redis server nor the rredis clients need reside on
the machine on which the result was generated. Depending on the Redis server settings, “x” can
be persistent–that is the value and its association with “x” will persist even if the Redis server is
terminated and re-started.

Values in Redis are classified by type. Value types are perhaps the most distinguishing feature
of Redis.

� The canonical string type holds general-purpose objects, for example any serializable R object,
text, or arbitrary binary data.

The rredis Package

� The list type represents lists of Redis string objects, ordered by insertion order. Data can be
accessed from lists with stack-like PUSH and POP operations, or by directly indexing ranges
of elements. Importantly, redis lists support atomic blocking and asynchronous operation.

� Redis sets are unordered collections of unique Redis strings equipped with typical set opera-
tions like unions and intersections. Uniqueness is enforced by Redis at insertion-time. Redis
also supports ordered sets, but the rredis package does not yet include them (the next version
will!).

Expiration intervals or absolute expiration times may be set on any Redis value, even when the
database is persistent. The Redis server can handle lots of small transactions with aplomb, easily
exceeding 50,000 transactions/second even on very limited hardware1. Although Redis is an in-
memory database, it uses a custom virtual memory system to support large objects and databases
larger than available RAM.

2 Supported Platforms

The Redis server is written in ANSI C and supported on most POSIX systems including GNU/Linux,
Solaris, *BSD, and Mac OS X. The server is not officially supported on Windows systems at the
time of this writing (March, 2010).

The rredis package for R is supported on all supported R platforms, including Microsoft Windows,
and can connect to a Redis server running on a supported platform.

Redis clients are available for lots of languages other than R, including Java, C, C#, Ruby,
Python, PHP, Tcl, Perl, Erlang, Clojure, Javascript, Scala, and more...

2.1 Obtaining and Installing the Redis server

Redis is an open-source project available from http://code.google.com/p/redis, with source code
available from Github at http://github.com/antirez/redis.

It is not necessary to “install” Redis to use it. One may download the code, compile it, and run
it in place. We include an example command-line procedure applicable to most POSIX operating
systems for completeness.

wget http://redis.googlecode.com/files/redis-1.2.5.tar.gz

tar xf redis-1.2.5.tar.gz

cd redis-1.2.5

make

<<Some output from your C compiler>>

1Redis easily exceeds 100,000 transactions/second on typical high-end workstations

2

http://code.google.com/p/redis
http://github.com/antirez/redis

The rredis Package

At this point, unless an error occurred, you have a working copy of Redis. The Redis server is
completely configured by the file redis.conf. In order to run the Redis server as a background
process, edit this file and change the line:

daemonize no

to:

daemonize yes

You may wish to peruse the rest of the configuration file and experiment with the other server
settings as well. Finally, start up the Redis server with

./redis-server ./redis.conf

3 The rredis Package by Example

We explore operation of many of the Redis features available to R through a few examples. Seek
out the rredis package documentation and the excellent Redis Wiki referenced therein for additional
help and examples.

3.1 Basic Operation and Redis Strings

Redis strings represent the canonical value type. They are used to store any R object that can be
serialized to a bit-stream. Most R objects are serializeable. Notable exceptions include objects with
open connections and external reference pointers.

We assume from now on that the rredis package is loaded in the running R session using either

require('rredis')

or

library('rredis')

prior to running any example.

Open a connection to a Redis server with redisConnect. By default, redisConnect() attempts
to connect to a Redis server locally on a default port (6379). Explicitly specify a host and/or port
to connect to a server running on a computer different from the computer on which the R session
is running, for example,

redisConnect(host='illposed.net', port=5555)

to connect to a Redis server running on host ’illposed.net’ at port 5555.

3

The rredis Package

Once connected we can easily store and retrieve values in the Redis database with redisSet and
redisGet:

> x <- rnorm(5)

> print(x)

[1] -0.3297596 1.0417431 -1.3216719 -0.8186305 -0.2705817

> redisSet('x',x)

[1] TRUE

> y <- redisGet('x')

> print(y)

[1] -0.3297596 1.0417431 -1.3216719 -0.8186305 -0.2705817

> all.equal(x,y)

[1] TRUE

> redisGet('z')

NULL

Note that one must explicitly specify a key name (“x” in the above example) and that Redis key
names need not correspond to R variable names. Unlike R variable names, Redis key names may
not contain spaces.

The SET/GET operations are atomic–that is, multiple SET and or GET operations are guaran-
teed not to simultaneously occur. And redisGet always returns immediately, even if a value is not
available in which case it returns NULL (see the example).

The true power of Redis becomes apparent when we share values across multiple clients. For
example, start up a new R session and try:

> library('rredis')

> redisConnect()

> y <- redisGet('x')

> print(y)

[1] -0.3297596 1.0417431 -1.3216719 -0.8186305 -0.2705817

The default behavior of Redis is to make the database persistent, so the value associated with
“x” in the above examples will last until it is overwritten or explicitly removed, even if the Redis
server is re-started. One may immediately purge Redis of all key/value pairs with the (dangerous)
redisFlushAll command.

Redis supports multiple distinct key workspaces, indexed by number. Access may be switched
between workspaces with the redisSelect function as illustrated below. We also use redisKeys

to list all key names in the current workspace.

> redisKeys()

[[1]]

[1] "x"

4

The rredis Package

> redisSelect(1)

[1] "OK"

> redisKeys()

NULL

redisSelect(0)

> redisKeys()

[[1]]

[1] "x"

The number of available workspaces is user-configurable in the redis.conf file (the default is 16).
Note also that index values in Redis begin with 0.

One may easily store and retrieve multiple objects in one operation with redisMSet and redis-

MGet. The example also illustrates how values may be expired (in this case, after one second) with
redisExpire.

> redisMSet(list(x=pi,y=runif(5),z=sqrt(2)))

[1] TRUE

> redisMGet(c('x','y','z'))

$x

[1] 3.141593

$y

[1] 0.85396951 0.80191589 0.21750311 0.02535608 0.11929247

$z

[1] 1.414214

> redisExpire('z',1)

[1] TRUE

> Sys.sleep(1)

> redisGet('z')

NULL

3.2 Sharing Data with Clients other than R

Redis provides a particularly convenient system for sharing data between diverse applications.
We illustrate cross-application communication with simple examples using R and the redis-cli

command-line program that is included with the Redis server.

Open a terminal window and navigate to the directory in which the Redis server was compiled
(see Section 2.1). You will find a command-line application named redis-cli. Store a sample
value in the Redis database with:

5

The rredis Package

./redis-cli set shell "Greetings, R client!"

OK

Now, leaving the terminal window open, from an R session, try:

> redisGet('shell')

[1] "Greetings, R client!\n"

And, voilà, R and shell communicate text through Redis.

The reverse direction requires more scrutiny. From the R session, run:

> redisSet('R', 'Greetings, shell client!')

And now, switch over to the shell client and run:

./redis-cli get R

<<Partially decipherable garbage>>

This example produces undesirable results because the default behavior of the R redisSet command
is to store data as R objects, which the shell client cannot decipher. Instead, we must encode the
R object (in this case, a character string) in a format that shell can understand:

> redisSet('R', charToRaw('Greetings, shell client!'))

[1] TRUE

And now, switch over to the shell client and run:

./redis-cli get R

Greetings, shell client!

It can be tricky to share arbitrary R objects with other languages, but raw character strings usually
provide a reasonable, if sometimes inefficient, common tongue.

3.3 Redis Lists

Redis list value types provide us with a remarkably powerful and rich set of operations. Redis lists
may be used to set up data queues and they may be accessed either synchronously or asynchronously.

We walk through basic Redis list operation in the first example below. The example shows how
redisLPush pushes values onto a list from the left, and redisRPush pushes values from the right.

> redisLPush('a',1)

[1] 1

> redisLPush('a',2)

[1] 2

> redisLPush('a',3)

6

The rredis Package

[1] 3

> redisLRange('a',0,2)

[[1]]

[1] 3

[[2]]

[1] 2

[[3]]

[1] 1

> redisLPop('a')

[1] 3

> redisLRange('a',0,-1)

[[1]]

[1] 2

[[2]]

[1] 1

> redisRPush('a','A')

[1] 3

> redisRPush('a','B')

[1] 4

> redisLRange('a',0,-1)

[[1]]

[1] 2

[[2]]

[1] 1

[[3]]

[1] "A"

[[4]]

[1] "B"

> redisRPop('a')

[1] "B"

Like the redisGet function, redisLPop and redisRPop always return immediately, even when
no value is available in which case they return NULL. Redis includes a blocking variant of the list
“Pop” commands that is illustrated in the next example.

> redisBLPop('b',timeout=1)

NULL

> redisLPush('b',runif(5))

[1] 1

7

The rredis Package

> redisBLPop('b',timeout=1)

$b

[1] 0.3423658 0.4188430 0.2494071 0.9960606 0.5643137

In the first case above, the NULL value is returned after a one-second timeout because no value
was immediately available in the list. Once populated with data, the second attempt consumes the
list value and returns immediately.

We can also block on multiple lists, returning when data is available on at least one of the lists:

> redisFlushAll()

[1] "OK"

> redisLPush('b',5)

[1] 1

> redisBLPop(c('a','b','c'))

$b

[1] 5

Although blocking list operations seem simple, they provide an extraordinarily powerful envi-
ronment for coordinating events between multiple R (and other client) processes. The following
example illustrates a simple event stream in which data is emitted periodically by a shell script,
and consumed and processed as events arrive by an R process.

First, open an R window and block on the “a” and “b” lists:

> redisFlushAll()

> for (j in 1:5) {

+ x <- redisBLPop(c('a','b'))

+ print (x)

+ }

Your R session should freeze, waiting for events to process.

Now, open a terminal window and navigate to the directory that contains the redis-cli program.
Run (the following may all be typed on one line):

for x in 1 2 3 4 5;do sleep $x;

if test $x == "2";

then ./redis-cli lpush a $x;

else ./redis-cli lpush b $x;

fi;

done

And now you will see your R session processing the events as they are generated by the shell
script:

$b

8

The rredis Package

[1] "1"

$a

[1] "2"

$b

[1] "3"

$b

[1] "4"

$b

[1] "5"

Now, imagine that events may be processed independently, and that they occur at an extraor-
dinary rate–a rate too fast for R to keep up. The solution in this case is simple, start up another
R process and it will handle events as they come in, relieving the first R process of about half the
event load. Still not enough, start up another, etc.

Keeping in mind that the R clients can run on different computers, we realize that this simple
example can easily lead to a very scalable parallel event processing system that requires very little
programming effort!

3.4 Redis Sets

The Redis set value type operates somewhat like Redis lists, but only allowing unique values within
a set. Sets also come equipped with the expected set operations, as illustrated in the following
example.

> redisSAdd('A',runif(2))

[1] TRUE

> redisSAdd('A',55)

[1] TRUE

> redisSAdd('B',55)

[1] TRUE

> redisSAdd('B',rnorm(3))

[1] TRUE

> redisSCard('A')

[1] 2

> redisSDiff(c('A','B'))

[[1]]

[1] 0.5449955 0.7848509

9

The rredis Package

> redisSInter(c('A','B'))

[[1]]

[1] 55

> redisSUnion(c('A','B'))

[[1]]

[1] 55

[[2]]

[1] 0.5449955 0.7848509

[[3]]

[1] -1.3153612 0.9943198 -0.3725513

Redis sets do not include blocking operations.

4 A Few Remarks

Redis is a simple to use, powerful key/value database. Remember that Redis key names may not
contain spaces.

The Redis server is not yet supported on Windows operating systems. The rredis R client package
will work on Windows (as well as most other) systems and communicate with a Redis server running,
for example, on Linux.

Redis does many things exceedingly well, but does not do everything well. Redis is not optimized
for slicing list and set data, for example in OLAP-style queries or to extract subsets of long column-
oriented data. Use an appropriate database for those types of operations.

Although Redis includes a basic authentication mechanism, don’t use it. If you require secure
access to the server, or encrypted communication with the server, we recommend this alternative:
Set up Redis on a (perhaps virtual) machine that only authenticated users may access. Then block
all but local access to the Redis server port (by default, 6379). Finally, tunnel access to the port
through an authenticated SSH session or other secure port forwarding mechanism.

10

	Introduction
	Supported Platforms
	Obtaining and Installing the Redis server

	The rredis Package by Example
	Basic Operation and Redis Strings
	Sharing Data with Clients other than R
	Redis Lists
	Redis Sets

	A Few Remarks

