
R Package rjmcmc: The Calculation of Posterior

Model Probabilities from MCMC Output

Nicholas Gelling
University of Otago

Matthew R. Schofield
University of Otago

Richard J. Barker
University of Otago

Abstract

Reversible jump Markov chain Monte Carlo is a Bayesian multimodel inference method
that involves ‘jumping’ between several candidate models. The method is powerful, but
can be challenging to implement. Presented is an R package rjmcmc which automates
much of the reversible jump process, in particular the post-processing algorithms of Barker
and Link (2013). Previously-estimated posterior distributions (in the form of coda files)
are used to estimate posterior model probabilities and Bayes factors. Automatic dif-
ferentiation is used for the partial derivative calculations required in finding Jacobian
determinants.

Keywords: Reversible jump, Bayesian multimodel inference, R, post-processing, Bayes factors,
automatic differentiation.

1. Introduction

Discriminating between models is a difficult problem. There are several options for models fit-
ted using Bayesian inference, including Bayes factors and posterior model probabilities (Kass
and Raftery 1995), information criteria such as DIC and WAIC (Spiegelhalter, Best, Carlin,
and Van Der Linde 2002, Watanabe 2010) and cross validation (Arlot, Celisse et al. 2010).
All of these approaches have practical challenges: Bayes factors and posterior model probabil-
ities require either the evaluation of a complex high dimensional integral or specification of a
trans-dimensional algorithm such as reversible jump Markov chain Monte Carlo (RJMCMC);
information criteria require an estimate of the effective number of parameters; cross-validation
requires burdensome computational effort. Our focus is on the first two of these approaches.
We have developed an R package that posthoc calculates Bayes factors and posterior model
probabilities using MCMC output, simplifying a frequently daunting problem.

The Bayes factor was developed by Jeffreys (1935). It is considered by many to be the default
method of Bayesian model comparison and features in nearly every textbook on Bayesian
inference (e.g. Gelman, Carlin, and Stern 2014, Gill 2014). The Bayes factor Bij compares
the marginal likelihood for two competing models indexed i and j,

Bij =
p(y|M = i)

p(y|M = j)
=

∫
p(y|θi,M = i)p(θi|M = i)dθi∫
p(y|θj ,M = j)p(θj |M = j)dθj

,

where M is a categorical variable representing model choice, p(y|θk,M = k) is the likeli-
hood function under model k, and p(θk|M = k) is the prior distribution under model k.

2 R Package rjmcmc

It is straightforward to compute Bayes factors from posterior model probabilities and vice
versa provided the prior model weights are known (Kass and Raftery 1995). This facilitates
Bayesian model averaging (Hoeting, Madigan, Raftery, and Volinsky 1999) allowing for model
uncertainty to be accounted for in estimation.

A major limitation in the implementation of Bayes factors and corresponding posterior model
probabilities is the difficulty of calculating the marginal integral. Approximation is frequently
used; for instance, the Bayesian Information Criterion (BIC) is derived by Schwarz et al.
(1978) as an approximation to the Bayes factor.

Markov chain Monte Carlo (MCMC) approaches are also available for calculating the pos-
terior model probabilities. Carlin and Chib (1995) propose an MCMC sampler that uses
‘pseudo-priors’ to facilitate jumping between models while RJMCMC (Green 1995) augments
the model space in order to move between models using bijections. Generating sensible
pseudo-priors or augmenting variables for these algorithms is challenging. Gill (2014) notes
that reversible jump methodology continues to be an active research area. The R package
demonstrated is the first reversible jump package to be released on CRAN, and offers an
accessible framework for the calculation of Bayes factors and posterior model probabilities.

In Section 2, RJMCMC is discussed further and a Gibbs sampling approach to RJMCMC
is described. In Section 3, we introduce the R package rjmcmc which implements the Gibbs
algorithm with examples. We conclude with a discussion in Section 4.

2. Transdimensional algorithms

Suppose we have data y, a set of N models indexed 1, . . . , N , and a model-specific parameter
vector θk for each model, k = 1, . . . , N . If we also assign prior model probabilities p(M = k),
k = 1, . . . , N , we can find the posterior model probabilities

p(M = i|y)

p(M = j|y)
= Bij ×

p(M = i)

p(M = j)
.

Hereafter, we use p(·|Mk) as shorthand notation for p(·|M = k) and p(Mk|·) as shorthand
notation for p(M = k|·).
RJMCMC (Green 1995) is an approach to avoiding the integral required in finding the
posterior model probabilities. A bijection (i.e. an invertible one-to-one mapping) is spec-
ified between the parameter spaces of each pair of models; a total of

(
N
2

)
bijections are

required. To match dimensions between models, augmenting variables uk are required so that
dim(θk, uk) = dim(θj , uj) for j, k ∈ {1, . . . , N}. The augmenting variables do not change the
posterior distribution but do affect computational efficiency. Figure 1 gives a stylised visual
representation of the sets and bijections involved in RJMCMC.

The RJMCMC algorithm proceeds as follows. At iteration i of the Markov chain, a model
M∗ = h is proposed with the current value denoted M (i−1) = j. Proposed parameter values
for model M∗ are found using the bijection fjh(·)

(θ∗h, u
∗
h) = fjh(θ

(i−1)
j , u

(i−1)
j).

The joint proposal is then accepted using a Metropolis step (Green 1995). In defining a bi-
jection, we can incorporate any known relationships between the parameters of two models

Nicholas Gelling, Matthew R. Schofield, Richard J. Barker 3

Parameter Set

(θ4, u4)

for M4

Parameter Set

(θ5, u5)

for M5

Parameter Set

(θ1, u1)
for M1

Parameter Set

(θ2, u2)

for M2

Parameter Set

(θ3, u3)

for M3

Figure 1: The ten reversible jump bijections required for a five-model set. Arrows represent
bijections between parameter sets. Each parameter set contains the model-specific parameters
θk and augmenting variables uk.

and potentially simplify the relationship between the augmenting variables. Reasonable bi-
jections can be hard to find if it is unclear how the parameters in each model correspond to
one another. We can only determine if our bijections are inefficient once the algorithm has
run and failed to converge; at this point we must repeat the process with new bijections.

The RJMCMC framework is general and powerful, but has significant mathematical complex-
ity and can be challenging to implement. Barker and Link (2013) suggest a restricted version
of Green’s RJMCMC algorithm that can be implemented via Gibbs sampling. The approach
is based on the introduction of a universal parameter denoted by ψ, a vector of dimension
greater than or equal to

max{dim(θk)}, k = 1, . . . , N.

From ψ, the model-specific parameters θk, along with augmenting variables uk, can be calcu-
lated using the bijection gk(ψ) = (θ′k, u

′
k)
′ with ψ = g−1((θ′k, u

′
k)
′). In practice this means that

in order to find the parameters θj from θk we must first find the universal parameter ψ (Figure
2). If we have N models in our set, Barker & Link’s approach requires the specification of N
bijections where Green’s approach requires

(
N
2

)
bijections. Link and Barker (2009) refer to

this method as a ‘hybrid’ between RJMCMC and the approach by Carlin and Chib (1995).

The joint distribution can be expressed as

p(y, ψ,Mk) = p(y|ψ,Mk)p(ψ|Mk)p(Mk),

where p(y|ψ,Mk) = p(y|θk,Mk) is the data model for model k, p(ψ|Mk) is the prior for ψ for
model k and p(Mk) is the prior model probability for model k.

4 R Package rjmcmc

Universal

Parameter

Space
ψ

Parameter Set

(θ4, u4)

for M4

Parameter Set

(θ5, u5)

for M5

Parameter Set

(θ1, u1)
for M1

Parameter Set

(θ2, u2)

for M2

Parameter Set

(θ3, u3)

for M3

Figure 2: In Barker & Link’s reversible jump approach, five bijections are required for a
five-model set. Each transformation is evaluated via the universal parameter ψ.

In general we do not have priors in the form p(ψ|Mk) but p(θk|Mk). To find p(ψ|Mk) we note
that

p(ψ|Mk) = p(gk(ψ)|Mk)

∣∣∣∣∂gk(ψ)

∂ψ

∣∣∣∣
where p(gk(ψ)|Mk) = p(θk, uk|Mk). If we assume prior independence between θk and uk this
reduces to

p(θk, uk|Mk) = p(θk|Mk)p(uk|Mk).

The term
∣∣∣∂gk(ψ)∂ψ

∣∣∣ is the determinant of the Jacobian for the bijection gk which we hereafter

denote as |Jk|. Once we know |Jk|, we can find the prior p(ψ|Mk) and in turn the joint
distribution p(y, ψ,M).

The algorithm proceeds by defining a Gibbs sampler that alternates between updating M and
ψ. The full-conditional distribution for M is categorical with probabilities

p(Mk|·) =
p(y, ψ,Mk)∑
j p(y, ψ,Mj)

.

To draw from the full-conditional for ψ, we sample θk from its posterior p(θk|Mk, y) and uk
from its prior p(uk|Mk) and determine ψ = g−1k ((θ′k, u

′
k)
′).

Note that the dimension of Jk is dim(ψ) × dim(ψ), for each of the N models under consid-
eration. If we consider several models with several parameters each, finding J1, . . . , JN could
involve hundreds of partial derivative calculations. We describe the automatic calculation of

Nicholas Gelling, Matthew R. Schofield, Richard J. Barker 5

|Jk| in the next section. This makes Barker & Link’s formulation of RJMCMC more elegant
and user-friendly.

3. Implementation in R package rjmcmc

Available from the Comprehensive R Archive Network (CRAN), the rjmcmc package utilises
the work of Barker and Link (2013) and the madness package to perform RJMCMC post-
processing.

3.1. Automatic differentiation and madness

Automatic differentiation (AD; Griewank and Walther 2008), also called algorithmic differ-
entiation, numerically evaluates the derivative of a function for a given input in a mechanical
way. The process involves breaking a program into a series of elementary arithmetic operations
(+, ×) and elementary function calls (log, exp, etc.). The chain rule is then propogated along
these operations to give derivatives. The resulting derivatives are usually more numerically
accurate than those from finite differencing and many other numerical methods (Carpenter,
Hoffman, Brubaker, Lee, Li, and Betancourt 2015). AD tends to be more versatile than sym-
bolic differentiation as it works on any computer program, including those with loops and
conditional statements (Carpenter et al. 2015).

Automatic differentiation has two variants – forward-mode and reverse-mode. We focus on
forward-mode as this is the variant used by our software. Suppose we have a composition
such that the chain rule can be written as dy

dx = ∂y
∂w1

∂w1
∂w2

∂w2
∂x , where w1, w2 are variables

representing intermediate chain rule sub-expressions. Then forward-mode AD traverses the
chain rule from the inside to the outside. We compute ∂w2

∂x first and work backwards to get to
dy
dx . This amounts to fixing the independent variable x. In a multivariate situation where both
x and y are vectors, we consider each independent variable xi one at a time, differentiating
the entire vector y with respect to xi.

Recently published, the madness package (Pav 2016) performs forward-mode automatic dif-
ferentiation from within R using the S4 class madness. The package is not reliant on any
external AD software. The primary drawback to madness is that it only calculates deriva-
tives of specific R functions. Fortunately, the list of supported functions is extensive and is
given in Pav (2016).

The function adiff from the rjmcmc package is essentially a wrapper to the primary func-
tionality of madness as used in this application. The usage is

adiff(func, x, ...).

The object x is converted into a madness object, and the function func is applied to it.
Generally, func will be a user-defined function of some sort. The ‘...’ represents any further
arguments to be passed to func.

The adiff function returns the result of computing func(x, ...) and, more importantly,
the Jacobian matrix of the transformation func. This is accessed as the gradient attribute
of the result. For a basic example, consider the function x3, which returns the cube of an
object x. Suppose we pass x1 = 5, x2 = 6.

6 R Package rjmcmc

x3 = function(x){

return(x^3)

}

y = rjmcmc::adiff(x3, c(5,6))

attr(y, "gradient")

[,1] [,2]

[1,] 75 0

[2,] 0 108

Entry (i, j) in the Jacobian is the result of differentiating func with respect to xi and eval-
uating the derivative at xj . See the package documentation for further detail about this
function.

3.2. The rjmcmcpost function

The core function of the rjmcmc package is rjmcmcpost, which automates much of the re-
versible jump MCMC process. An rjmcmcpost function call is of the form:

rjmcmcpost(post.draw, g, ginv, likelihood, param.prior, model.prior, chainlength).

For a model set of size N , the user must provide:

• post.draw: N functions that randomly draw from the posterior distribution p(θk|y,Mk)
for every k. Generally these functions sample from the coda output of a model fitted
using MCMC. Functions that draw from the posterior in known form are also allowed.

• g: N functions specifying the transformations from ψ to (θk, uk) for every k.

• ginv: N functions specifying the transformations from (θk, uk) to ψ for every k. These
are the inverse transformations g−1.

• likelihood: N functions specifying the log-likelihood functions log p(y|θk,Mk) for the
data under each model.

• param.prior: N functions specifying the log-priors log p(θk|Mk) for each model-specific
parameter vector θk.

• model.prior: A vector of the prior model probabilities p(Mk).

There are three outputs from the rjmcmcpost function:

1. The transition matrix $TM, which describes how the Markov chain for M moves over
time. The (i, j)th entry in this matrix is the probability of moving from model Mi to
model Mj at a given time step. The diagonal entries correspond to retaining a model,
while the off-diagonal entries correspond to switching models.

2. The posterior model probabilities $prb. The ith entry in this vector is p(Mi|y).

Nicholas Gelling, Matthew R. Schofield, Richard J. Barker 7

3. The Bayes factors $BF, found using

BFij =
p(y|Mi)

p(y|Mj)
=
p(Mi|y)

p(Mj |y)

p(Mj)

p(Mi)
.

The Bayes factors from rjmcmcpost compare each model to the first model – i.e. they
are BFi1, i = 1, . . . , N . The first Bayes factor printed will always equal 1.

Crucially, this implementation is a post-processing algorithm. We use the coda to sample from
the model-specific posteriors p(θk|y,Mk). Once we have fitted each of the N models under
consideration we are able to quickly post-process for several sets of bijections g to optimize
efficiency. By contrast, standard RJMCMC requires the entire algorithm to be repeated in
order to modify the bijections.

3.3. Example 1: Poisson vs. negative binomial

This example, originally from Green and Hastie (2009), uses the goals scored over three
seasons of English Premier League football as count data. There were 380 games in each
season, so N=1140. Each observation is the total number of goals scored in a single game.

We are interested in determining whether the counts are overdispersed relative to a Poisson
distribution. To this end we consider two models. Under Model 1, the number of goals yi in
game i (i = 1, . . . , N) is assumed to follow a Poisson distribution with constant mean λ > 0.

M1 : yi ∼ Pois(λ), L(y|λ) =
N∏
i=1

λyi

yi!
exp(−λ).

Under Model 2, the number of goals is instead assumed to follow a negative binomial distri-
bution, with parameters λ > 0 and κ > 0.

M2 : yi ∼ NegBin(λ, κ), L(y|λ, κ) =
N∏
i=1

λyi

yi!

Γ(1
κ + yi)

Γ(1
κ)(1

κ+λ)yi
(1 + κλ)−1/κ

We follow Green and Hastie (2009) in using a Gamma(25, 10) prior for λ (indicating a mean
of 2.5 goals per match) and a Gamma(1, 10) prior for κ. The mean negative binomial prior
has approximately 25% more variation than the mean Poisson prior.

From Figure 3, we observe that the data are right-skewed and truncated at zero. It appears
feasible that the data might fit either a Poisson or a negative binomial distribution. The
variance of the data (σ2 = 2.62) is slightly higher than its mean (µ = 2.52), which may
indicate minor overdispersion relative to the Poisson distribution.

First we define the bijections between the ψ space and the parameter set for each model. Recall
that, under Barker and Link’s algorithm, dim(ψ) = dim(θ(k), u(k)) for all k, and specifically
dim(ψ) = max{dim(θ(k))}. In this example, max{dim(θ(k))} = dim(θ(2)) = 2 so dim(ψ) = 2,
and we will require an augmenting variable for M1.

We choose to associate the first element of the universal parameter ψ1 with λ in both models
and ψ2 with κ in model M2. Under model M1 there is no κ parameter or equivalent, so we
follow Green and Hastie (2009) in using an independent augmenting variable that follows a

8 R Package rjmcmc

0 1 2 3 4 5 6 7 8 9 10 11

Total Number of Goals

F
re

qu
en

cy

0
50

10
0

15
0

20
0

25
0

Figure 3: The empirical distribution of the goals scored in each match over three seasons of
English Premier League football.

multiplicatively-centred log-normal distribution. We give u a N(0, σ) prior, then take ψ2 =
µ × exp(u) for some reasonable σ and small µ. If we select hyperparameters in a way that
generates feasible values for κ under M2, the efficiency of our algorithm is increased. Since
the value of u does not effect inference, neither do our choices of µ and σ. We calculate ψ by
taking:

ψ = g−11

([
λ
u

])
= g−11

([
θ1
θ2

])
=

[
θ1

µ exp(θ2)

]
and solving for θ gives the inverse g1(ψ):

θ =

[
λ
u

]
= g1

([
ψ1

ψ2

])
=

[
ψ1

log
(
ψ2

µ

)]

We assume that our model-specific parameter values are in an R vector theta of length two:

M1 : θ = (λ, u); M2 : θ = (λ, κ).

Nicholas Gelling, Matthew R. Schofield, Richard J. Barker 9

Then we can define an R function to represent each direction of the bijection, as follows.

g1 = function(psi){ c(psi[1], log(psi[2]/mu)) }

ginv1 = function(theta){ c(theta[1], mu*exp(theta[2])) }

This setup allows the bijection under model M2 to be the identity such that (λ, κ)′ = g2(ψ) =
ψ and ψ = g−12 (θ) = θ. This is straightforward to represent in R:

g2 = function(psi){ psi }

ginv2 = function(theta){ theta }

Next we give the log-likelihoods for these models in R. Assuming that our data are in a vector
y of length N , we define:

L1 = function(theta){ sum(dpois(y, theta[1], log=T)) }

L2 = function(theta){ sum(dnbinom(y, 1/theta[2], mu=theta[1], log=T)) }

Now we calculate the prior distributions for ψ. Since ψ = g−1(θk), we can find p(ψ|Mk)
by applying the change of variables theorem to the prior for the parameters p(θk|Mk). The
determinant of the Jacobian |Jk| is required for this transformation. Under Model 1, ψ1 is
associated with λ and ψ2 is associated with u. So the prior for ψ is

p(ψ|M1) = p(θ1|M1)×|J1| = p(λ|M1)×p(u|M1)×|J1| = Gamma(25, 10)×Normal(0, σ)×|J1|.

The R function we define to represent this must be log p(ψ|M1), since the rjmcmcpost function
uses log-priors along with log-likelihoods. Note that we are not required to multiply by |J1|
manually, as the algorithm will automatically calculate |J1| and complete this step for us.

p.prior1 = function(theta){dgamma(theta[1], lamprior[1], lamprior[2], log=T)

+ dnorm(theta[2], 0, sigma, log=T)}

Under Model 2, ψ1 is associated with λ and ψ2 is associated with κ, so

p(ψ|M2) = p(θ2|M2)×|J2| = p(λ|M2)×p(κ|M2)×|J2| = Gamma(25, 10)×Gamma(1, 10)×|J2|.

Again, we define the R function as the logarithm of this.

p.prior2 = function(theta){dgamma(theta[1], lamprior[1], lamprior[2], log=T)+

dgamma(theta[2], kapprior[1], kapprior[2], log=T)}

Finally, we need a function defined for each model which randomly draws from the posterior.
Given the MCMC output from an analysis of the model, this function should select a timestep
at random and return the parameter vector θ at that timestep. The rjmcmc package includes
a function getsampler which may be of use here. It takes a matrix-like object modelfit

with one column per variable and defines a sampling function of the correct form. The full
function usage is:

getsampler(modelfit, sampler.name="sampler", order="default", envir=.GlobalEnv).

10 R Package rjmcmc

The parameters can be sorted using the order argument before they are returned. By de-
fault, they are in alphabetical order. The coda-sampling function is defined in the global
environment by default, but this can be altered using the envir argument.

If the posterior is in known form, no MCMC computation is required and getsampler is of
no use. Instead, a function should be defined by the user which randomly generates values
from the known distribution directly.

For this example, we fit our models using JAGS (Plummer et al. 2003) and defined functions
draw1 and draw2 (see Appendix for the code used).

We are now ready to call rjmcmcpost. In this case, we give the models equal prior probability
and run for 104 iterations. The output from the call is presented below.

n = length(y)

mu=0.015; sigma=1.5

lamprior = c(25,10); kapprior = c(1,10) # hyperparameters for lambda & kappa

goals_post = rjmcmcpost(post.draw = list(draw1, draw2), g = list(g1, g2),

ginv = list(ginv1, ginv2), likelihood = list(L1, L2),

param.prior = list(p.prior1, p.prior2),

model.prior = c(0.5, 0.5), chainlength = 10000)

goals_post

$TM

[,1] [,2]

[1,] 0.7407535 0.2592465

[2,] 0.6349091 0.3650909

##

$prb

[1] 0.7100655 0.2899345

##

$BF

[1] 1.0000000 0.4083207

The prior odds are 1, since the two models had equal prior probabilities, so BF21 = 0.29
0.71 =

0.408. By convention we work with Bayes factors greater than one, so we might prefer to
consider BF12 = 1

0.408 = 2.449 instead. This value being greater than one indicates that
Model 1 has performed better than Model 2 for this data, though by the interpretation of
Kass and Raftery (1995) it is not large enough to provide substantial evidence.

The estimated posterior distributions for each model are overlaid in Figure 4. The small
posterior estimate of κ under Model 2 (median= 0.02) indicates little overdispersion (as
κ→ 0, the distribution reduces to a Poisson).

The posterior model probabilities found by Green and Hastie (2009) using traditional RJM-
CMC were 0.708 and 0.292, agreeing with those found here. The algorithm presented is fairly
computationally efficient. The call above, with ten thousand iterations and two models, took
26.1 seconds on the lead author’s desktop machine.

Nicholas Gelling, Matthew R. Schofield, Richard J. Barker 11

0 1 2 3 4 5 6 7 8 9 10 11

Total Number of Goals

F
re

qu
en

cy

0
50

10
0

15
0

20
0

25
0

Poisson(2.522)
NegBin(2.523,0.02)

Figure 4: The fitted models for the English Premier League dataset, obtained using median
posterior estimates from JAGS output. The Poisson distribution is preferred by RJMCMC
with probability 0.71.

3.4. Example 2: Gompertz vs. von Bertalanffy

Individual growth models represent how individual organisms increase in size over time. Two
popular individual growth models are the Gompertz function (Gompertz 1825)

µi = A exp(−be−cti) A > 0, b > 0, c > 0

and the von Bertalanffy growth equation (Von Bertalanffy 1938)

µi = L(1− exp(−k(ti + t0)) L > 0, k > 0, t0 > 0.

In particular, these curves are often used in the literature to model the length of fish over time.
See, for example, Katsanevakis (2006) for a multi-model comparison across several datasets
based on AIC. Here, we analyse the Croaker2 dataset from the R package FSAdata (Ogle
2016) which records the growth of Atlantic croaker fish. We consider only the male fish. The
goal is to assess model uncertainty of male croaker growth using the rjmcmc package.

12 R Package rjmcmc

−5 0 5 10 15

0
20

40
60

80
10

0

Effect of b (Gompertz)

Age

Le
ng

th

Gompertz(100, 1, 0.5)
Gompertz(100, 5, 0.5)
Gompertz(100, 0.1, 0.5)

−5 0 5 10 15

0
20

40
60

80
10

0

Effect of c (Gompertz)

Age

Le
ng

th

Gompertz(100, 1, 0.5)
Gompertz(100, 1, 0.3)
Gompertz(100, 1, 3)

0 5 10 15

−
20

0
20

40
60

80
10

0

Effect of t0 (von Bertalanffy)

Age

Le
ng

th

von Bertalanffy(100, 1, 0.3)
von Bertalanffy(100, 0.2, 0.3)
von Bertalanffy(100, 3, 0.3)

0 5 10 15

0
20

40
60

80
10

0

Effect of k (von Bertalanffy)

Age

Le
ng

th

von Bertalanffy(100, 1, 0.5)
von Bertalanffy(100, 1, 0.1)
von Bertalanffy(100, 1, 2)

Figure 5: Some possible curves under the Gompertz and von Bertalanffy models. A and L
are fixed at 100 for their respective models. In each plot, we also fix the value of a second
parameter to ascertain the effect of the final parameter. For example, on the top left we fix
c = 0.5 to examine the effect of varying b.

Selected realisations of these curves can be found in Figure 5. Under our parameterisations,
each model has three parameters. The Gompertz curve is parameterised by A, b and c. The
value A is the mean length of a fish of infinite age, i.e. the value that the curve approaches
asymptotically. The displacement along the x-axis is controlled by b, and c is the growth rate.

The von Bertalanffy curve has parameters L, t0, and k. Also representing the mean length at
infinity, L (sometimes L∞ in other texts) corresponds with A in the Gompertz model. The
value k is a growth rate coefficient, while t0 is the theoretical time between size 0 and birth.

In order to define likelihoods for the purposes of RJMCMC, we can treat the observations yij
for fish i at time j as normally-distributed. The mean for each model is equal to the value of
the respective growth curve at time j with the same standard deviation for all fish.

Model 1: yij ∼ Normal(A exp(−be−ctj), σ2)

Model 2: yij ∼ Normal(L(1− exp(−k(tj + t0)), σ
2)

In order to represent this in R, we define simple functions dgomp and dbert which calculate

Nicholas Gelling, Matthew R. Schofield, Richard J. Barker 13

the height of the respective growth curves for supplied parameter values.

dgomp = function(t, A, b, c){ A*exp(-b*exp(-c*t)) }

dbert = function(t, L, t0, k){ L*(1-exp(-k*(t+t0))) }

Now we can easily define log-likelihoods. In each case, the parameter values are read in as a
vector theta of length four, which includes the precision τ = 1

σ2 . Note that theta corresponds
to (A, b, c, τ)′ for Model 1 but (L, t0, k, τ)′ for Model 2.

L1 = function(theta){sum(dnorm(y, dgomp(t, theta[1], theta[2], theta[3]),

1/sqrt(theta[4]), log=TRUE))}

L2 = function(theta){sum(dnorm(y, dbert(t, theta[1], theta[2], theta[3]),

1/sqrt(theta[4]), log=TRUE))}

Each model-specific parameter space has four dimensions (including τ). The universal pa-
rameter ψ will therefore also be of length 4, with no augmenting variables required. Suppose
that, under Model 2 (von Bertalanffy) we associate (ψ1, ψ2, ψ3, ψ4)

′ with the parameter vector
(L, t0, k, τ)′. Then the bijection g2 is simply the identity transformation.

g2 = function(psi){ psi }

ginv2 = function(theta){ theta }

The parameter A in the Gompertz model is exactly equivalent to L in the von Bertalanffy
model so we also associate A with ψ1 directly. Likewise, we directly relate the precision τ in
both models. We relate the other parameters so that the resulting growth curves are as similar
as possible. We do this by having the curves intersect at two points: t = 0 and t = t∗. The
choice of t∗ has no effect on the posterior distribution but does influence MCMC efficiency
and can be thought of as a tuning parameter. In practice, t∗ should be chosen where there is
high data concentration. The bijection is

g1



ψ1

ψ2

ψ3

ψ4


 =


ψ1

− log(1− exp(−ψ2ψ3))

− log
[
log(1−exp(−ψ3[ψ2+t∗]))

log(1−exp(−ψ2ψ3))

]
/t∗

ψ4


and solving for ψ gives the inverse g−11 (θ):

g−11



A
b
c
τ


 = g−11



θ1
θ2
θ3
θ4


 =


θ1

log(1− exp(−θ2))t∗/ log
[
exp(−θ2 exp(−θ3t∗))−1

exp(−θ2−1)

]
− log

[
exp(−θ2 exp(−θ3t∗))−1

exp(−θ2−1)

]
/t∗

θ4


g1 = function(psi){

temp = exp(-psi[2]*psi[3])

c(psi[1],

14 R Package rjmcmc

-log(1-temp),

-log((log(1-temp*exp(-psi[3]*tstar))) / (log(1-temp)))/tstar,

psi[4])

}

ginv1 = function(theta){

temp = -log((exp(-theta[2]*exp(-theta[3]*tstar))-1)

/ (exp(-theta[2])-1))/tstar

c(theta[1],

-log(1-exp(-theta[2]))/temp,

temp,

theta[4])

}

Next we define the priors for all seven parameters. We have used weakly informative prior
distributions (Gelman et al. 2006) so that the overall variability of the prior predictive distri-
bution was similar between the two models. We used the following independent half-normal
prior distributions:

A,L ∼ Half-Normal(0, 1000), b, t0 ∼ Half-Normal(0,
√

20), c, k ∼ Half-Normal(0, 1).

Finally, we use a conjugate gamma prior for the precision τ = 1
σ2 :

τ ∼ Gamma(0.01, 0.01).

Ordinarily, we would define one prior function per model. Since our priors are the same for
both models, we can instead use the same function twice. Recall that the rjmcmcpost function
accepts the logarithm of the prior for ψ, obtained by summing the log-priors on individual
parameters.

p.prior1 = function(theta){

sum(dnorm(theta[1:3], 0, 1/sqrt(c(1e-6, 0.05, 1)), log=T)) +

dgamma(theta[4], 0.01, 0.01, log=T)

}

We again use JAGS and getsampler to define functions draw1 and draw2 which sample from
coda output; the code used can be found in the Appendix. Finally, we read in the data and
complete the function call. We give the models equal prior probability once more. We choose
t∗ = 6 because of the high data concentration around t = 6.

library("FSAdata")

data("Croaker2")

CroakerM = Croaker2[which(Croaker2$sex=="M"),]

y = CroakerM$tl; t = CroakerM$age

n = length(y)

tstar = 6 # chosen for algorithmic efficiency

growth_post=rjmcmcpost(post.draw = list(draw1,draw2), g = list(g1,g2),

Nicholas Gelling, Matthew R. Schofield, Richard J. Barker 15

ginv = list(ginv1,ginv2), likelihood = list(L1,L2),

param.prior = list(p.prior1,p.prior1),

model.prior = c(0.5,0.5), chainlength = 1e6)

$TM

[,1] [,2]

[1,] 0.5431605 0.4568395

[2,] 0.1884140 0.8115860

##

$prb

[1] 0.292 0.708

##

$BF

[1] 1.000000 2.424657

The results indicate that Model 2, the von Bertalanffy curve, may fit Atlantic croaker growth
better than Model 1, the Gompertz function. The Bayes factor in favour of the von Bertalanffy
curve is BF21 = 2.425, despite the fitted models being barely distinguishable by eye (Figure 6).
It is perhaps unsurprising that the von Bertalanffy growth curve is preferred since Ogle (2016)
used the male croaker data to demonstrate the suitability of the von Bertalanffy function for
modelling fish growth. We also note that both fitted models seem to approximate exponential
growth; there is no evidence of a sigmoid shape in the Gompertz model. This may be due to
the lack of information we have on young fish, with only a single observation for t < 2.

4. Discussion

Bayes factors are often difficult to compute, impeding the practicality of Bayesian multimodel
inference. The rjmcmc package presents a relatively simple framework for accurately estimat-
ing Bayes factors and posterior model probabilities for a set of specified models. Further,
the user is not required to find any derivatives due to the integrated automatic differenti-
ation software. We believe this package makes reversible jump MCMC more accessible to
practitioners.

The use of Bayes factors is controversial. There are well documentated problems with the
Bayes factor when certain vague or improper priors are used (Berger and Pericchi 1998, Han
and Carlin 2001). This is particularly relevant for cases where candidate models are nested
(as in our first example) and care is needed. We think Bayes factors are best used when
candidate models are non-nested (as in our second example) and the variability in the prior
predictive distribution is similar between our models.

As the algorithm uses coda output, most of the intensive computation is completed prior to
the function call. The model fitting and model comparison steps are effectively separate. The
post-processing nature of the algorithm means that we can, for instance, adjust our choice of
bijections without recalculating posteriors. For models of very high dimensionality, storing
codas may become an issue. Because the algorithm requires a posterior distribution for every
parameter, our coda files could occupy considerable memory. If full conditional distributions

16 R Package rjmcmc

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

20
0

25
0

30
0

35
0

40
0

45
0

Age (years)

Le
ng

th
 (

m
ill

im
et

re
s)

von Bertalanffy(369.8, 1.97, 0.29)
Gompertz(358.8, 0.82, 0.41)

Figure 6: Fitted growth curves for male Atlantic croakers, obtained using median posterior
estimates from JAGS output. The von Bertalanffy curve is preferred by RJMCMC with
probability 0.708.

are known for any of the parameters, we may be able to mitigate this problem by computing
posterior draws as required, instead of storing them in a coda.

The rjmcmc package is also not suited to variable selection contexts. For example, consider
a regression problem with k predictor variables where we wish to compare all possible mod-
els. Then, even excluding interactions, we must fit 2k models and calculate each posterior
distribution. The burden of running each model is likely to be prohibitive.

The gradients calculated from reverse-mode automatic differentiation should theoretically be
more efficient for statistical purposes than the directional derivatives obtained from forward-
mode, since we usually have fewer outputs than we have parameters. If madness was swapped
out for a reverse-mode AD engine, one might expect an increase in performance for models
with many parameters. However, as mentioned earlier, madness appears a more accessible
option for R users than any current reverse-mode implementation.

Nicholas Gelling, Matthew R. Schofield, Richard J. Barker 17

References

Arlot S, Celisse A, et al. (2010). “A Survey of Cross-Validation Procedures for Model Selec-
tion.” Statistics Surveys, 4, 40–79.

Barker RJ, Link WA (2013). “Bayesian Multimodel Inference by RJMCMC: A Gibbs Sampling
Approach.” The American Statistician, 67(3), 150–156.

Berger JO, Pericchi LR (1998). On Criticisms and Comparisons of Default Bayes Factors for
Model Selection and Hypothesis Testing. Institute of Statistics and Decision Sciences, Duke
University.

Carlin BP, Chib S (1995). “Bayesian Model Choice via Markov Chain Monte Carlo Methods.”
Journal of the Royal Statistical Society. Series B (Methodological), pp. 473–484.

Carpenter B, Hoffman MD, Brubaker M, Lee D, Li P, Betancourt M (2015). “The
Stan Math Library: Reverse-Mode Automatic Differentiation in C++.” arXiv Preprint
arXiv:1509.07164.

Gelman A, Carlin JB, Stern HS (2014). Bayesian Data Analysis, volume 2.

Gelman A, et al. (2006). “Prior Distributions for Variance Parameters in Hierarchical Models
(comment on article by Browne and Draper).” Bayesian Analysis, 1(3), 515–534.

Gill J (2014). Bayesian Methods: A Social and Behavioral Sciences Approach, volume 20.
CRC Press.

Gompertz B (1825). “On the Nature of the Function Expressive of the Law of Human Mor-
tality, and on a New Mode of Determining the Value of Life Contingencies.” Philosophical
Transactions of the Royal Society of London, 115, 513–583.

Green PJ (1995). “Reversible Jump Markov Chain Monte Carlo Computation and Bayesian
Model Determination.” Biometrika, 82(4), 711–732.

Green PJ, Hastie DI (2009). “Reversible Jump MCMC.” Genetics, 155(3), 1391–1403.

Griewank A, Walther A (2008). Evaluating Derivatives: Principles and Techniques of Algo-
rithmic Differentiation. Siam.

Han C, Carlin BP (2001). “Markov Chain Monte Carlo Methods for Computing Bayes Factors:
A Comparative Review.” Journal of the American Statistical Association, 96(455), 1122–
1132.

Hoeting JA, Madigan D, Raftery AE, Volinsky CT (1999). “Bayesian Model Averaging: A
Tutorial.” Statistical Science, pp. 382–401.

Jeffreys H (1935). “Some Tests of Significance, Treated by the Theory of Probability.” In
Proceedings of the Cambridge Philosophical Society, volume 31, pp. 203–222.

Kass RE, Raftery AE (1995). “Bayes Factors.” Journal of the American Statistical Association,
90(430), 773–795.

18 R Package rjmcmc

Katsanevakis S (2006). “Modelling Fish Growth: Model Selection, Multi-model Inference and
Model Selection Uncertainty.” Fisheries Research, 81(2), 229–235.

Link WA, Barker RJ (2009). Bayesian Inference: With Ecological Applications. Academic
Press.

Ogle DH (2016). FSAdata: Fisheries Stock Analysis, Datasets. R package version 0.3.5.

Pav SE (2016). madness: Automatic Differentiation of Multivariate Operations. R package
version 0.2.0, URL https://github.com/shabbychef/madness.

Plummer M, et al. (2003). “JAGS: A Program for Analysis of Bayesian Graphical Models
using Gibbs Sampling.” In Proceedings of the 3rd international workshop on distributed
statistical computing, volume 124, p. 125. Vienna.

Schwarz G, et al. (1978). “Estimating the Dimension of a Model.” The Annals of Statistics,
6(2), 461–464.

Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A (2002). “Bayesian Measures of
Model Complexity and Fit.” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 64(4), 583–639.

Von Bertalanffy L (1938). “A Quantitative Theory of Organic Growth (Inquiries on Growth
Laws. II).” Human Biology, 10(2), 181–213.

Watanabe S (2010). “Asymptotic Equivalence of Bayes Cross Validation and Widely Appli-
cable Information Criterion in Singular Learning Theory.” Journal of Machine Learning
Research, 11(Dec), 3571–3594.

https://github.com/shabbychef/madness

Nicholas Gelling, Matthew R. Schofield, Richard J. Barker 19

Appendix

Defining coda-sampling functions for Example 1

We obtain coda files using the program JAGS (Plummer et al. 2003), specifically the package
R2jags which interfaces with R. A coda file contains the posterior distribution for the param-
eters, which we randomly sample from. First, we must define our models. Using R2jags, the
models can be defined in an external text file, or in an R function using JAGS syntax. Here,
we use text files goalsPois.txt and goalsNB.txt.

Inside goalsPois.txt:

model{

for(i in 1:n){

y[i] ~ dpois(lambda)

}

lambda ~ dgamma(lamprior[1], lamprior[2])

kappa ~ dnorm(0, 1/(sigma^2)) # precision

}

Inside goalsNB.txt:

model{

for(i in 1:n){

y[i] ~ dnegbin(p, r)

}

p <- 1/(lambda*kappa + 1)

r <- 1/kappa

lambda ~ dgamma(lamprior[1],lamprior[2])

kappa ~ dgamma(kapprior[1],kapprior[2])

}

Next, we perform the MCMC sampling using R2jags.

library("R2jags")

inits = function(){list("lambda" = rgamma(1, 1, 0.1),

"kappa" = rgamma(1, 1, 0.1))}

params = c("lambda", "kappa")

jagsfit1 = jags(data = c('y', 'n', 'lamprior', 'sigma'), inits, params,

n.iter=10000, model.file = "goalsPois.txt")

jagsfit2 = jags(data = c('y', 'n', 'lamprior', 'kapprior'), inits, params,

n.iter=10000, model.file = "goalsNB.txt")

Finally, we define functions which randomly select a timestep and return the values of both
parameters at that timestep. Note that JAGS includes an estimate of the deviance as a third
parameter, which these functions exclude.

20 R Package rjmcmc

Manually

fit1 = as.mcmc(jagsfit1); C1 = as.matrix(fit1)

draw1 = function(){rev(C1[sample(dim(C1)[1], 1, replace=T),

-which(colnames(C1) == "deviance")])}

Using getsampler function

getsampler(jagsfit2, "draw2", order=c(3,2)) # alphabetically, lambda is 3rd pa-

rameter and kappa is 2nd

Defining coda-sampling functions for Example 2

In fishGomp.txt:

model{

for(ti in 1:10){

mu[ti] <- A*exp(-b*exp(-c*ti))

}

for(i in 1:n){

y[i] ~ dnorm(mu[t[i]], tau)

}

A ~ dnorm(0, 0.00001)T(0,) #

b ~ dnorm(0, 0.05)T(0,) # precision = 1/variance

c ~ dnorm(0, 1)T(0,) #

tau ~ dgamma(0.01, 0.01)

}

In fishBert.txt:

model{

for(ti in 1:10){

mu[ti] <- L*(1-exp(-k*(ti+t0)))

}

for(i in 1:n){

y[i] ~ dnorm(mu[t[i]], tau)

}

L ~ dnorm(0, 0.000001)T(0,)

t0 ~ dnorm(0, 0.05)T(0,)

k ~ dnorm(0, 1)T(0,)

tau ~ dgamma(0.01, 0.01)

}

We then run the sampler to estimate the posteriors and define the coda functions.

Gompertz model

inits = function(){list(A = abs(rnorm(1, 350, 200)), b = abs(rnorm(1, 2, 3)),

c = abs(rnorm(1, 1, 2)), tau = rgamma(1, 0.1, 0.1))}

params = c("A", "b", "c", "tau")

Nicholas Gelling, Matthew R. Schofield, Richard J. Barker 21

jagsfit1 = jags(data = c('y', 't', 'n'), inits, params, n.iter=1e5,

n.thin=20, model.file = "fishGomp.txt")

von Bertalanffy model

inits = function(){list(L = abs(rnorm(1, 350, 200)), t0 = abs(rnorm(1, 2, 3)),

k = abs(rnorm(1, 1, 2)), tau = rgamma(1, 0.1, 0.1))}

params = c("L", "t0", "k", "tau")

jagsfit2 = jags(data = c('y', 't', 'n'), inits, params, n.iter=1e5,

n.thin=20, model.file = "fishBert.txt")

Define samplers

getsampler(jagsfit1, "draw1")

getsampler(jagsfit2, "draw2", c(3,4,2,5))

Affiliation:

Nicholas Gelling
University of Otago
Department of Mathematics and Statistics
PO Box 56
Dunedin 9054
New Zealand
E-mail: ngelling@maths.otago.ac.nz

mailto:ngelling@maths.otago.ac.nz

	Introduction
	Transdimensional algorithms
	Implementation in R package rjmcmc
	Automatic differentiation and madness
	The rjmcmcpost function
	Example 1: Poisson vs. negative binomial
	Example 2: Gompertz vs. von Bertalanffy

	Discussion

