You can explore all the economic data from different providers by following the link db.nomics.world
(N.B. : in the examples, data have already been retrieved on january 5th 2019).
ids
First, let’s assume that we know which series we want to download. A series identifier (ids
) is defined by three values, formatted like this: provider_code
/dataset_code
/series_code
.
library(magrittr)
library(dplyr)
library(ggplot2)
library(rdbnomics)
df <- rdb(ids = 'AMECO/ZUTN/EA19.1.0.0.0.ZUTN') %>%
filter(!is.na(value))
In such data.frame (data.table or tibble), you will always find at least nine columns:
provider_code
dataset_code
dataset_name
series_code
series_name
original_period
(character string)period
(date of the first day of original_period
)value
@frequency
(harmonized frequency generated by DBnomics)The other columns depend on the provider and on the dataset. They always come in pairs (for the code and the name). In the data.frame df
, you have:
unit
(code) and Unit
(name)geo
(code) and Country
(name)freq
(code) and Frequency
(name)ggplot(df, aes(x = period, y = value, color = series_code)) +
geom_line(size = 2) +
dbnomics()
In the event that you only use the argument ids
, you can drop it and run :
df <- rdb('AMECO/ZUTN/EA19.1.0.0.0.ZUTN')
df <- rdb(ids = c('AMECO/ZUTN/EA19.1.0.0.0.ZUTN', 'AMECO/ZUTN/DNK.1.0.0.0.ZUTN')) %>%
filter(!is.na(value))
ggplot(df, aes(x = period, y = value, color = series_code)) +
geom_line(size = 2) +
dbnomics()
df <- rdb(ids = c('AMECO/ZUTN/EA19.1.0.0.0.ZUTN', 'Eurostat/une_rt_q/Q.SA.TOTAL.PC_ACT.T.EA19')) %>%
filter(!is.na(value))
ggplot(df, aes(x = period, y = value, color = series_code)) +
geom_line(size = 2) +
dbnomics()
mask
The code mask notation is a very concise way to select one or many time series at once.
df <- rdb('IMF', 'CPI', mask = 'M.DE.PCPIEC_WT') %>%
filter(!is.na(value))
ggplot(df, aes(x = period, y = value, color = series_code)) +
geom_step(size = 2) +
dbnomics()
In the event that you only use the arguments provider_code
, dataset_code
and mask
, you can drop the name mask
and run :
df <- rdb('IMF', 'CPI', 'M.DE.PCPIEC_WT')
You just have to add a +
between two different values of a dimension.
df <- rdb('IMF', 'CPI', mask = 'M.DE+FR.PCPIEC_WT') %>%
filter(!is.na(value))
ggplot(df, aes(x = period, y = value, color = series_code)) +
geom_step(size = 2) +
dbnomics()
df <- rdb('IMF', 'CPI', mask = 'M..PCPIEC_WT') %>%
filter(!is.na(value)) %>%
arrange(desc(period), REF_AREA) %>%
head(100)
df <- rdb('IMF', 'CPI', mask = 'M..PCPIEC_IX+PCPIA_IX') %>%
filter(!is.na(value)) %>%
group_by(INDICATOR) %>%
top_n(n = 50, wt = period)
dimensions
Searching by dimensions
is a less concise way to select time series than using the code mask
, but it works with all the different providers. You have a “Description of series code” at the bottom of each dataset page on the DBnomics website.
df <- rdb('AMECO', 'ZUTN', dimensions = list(geo = "ea19")) %>%
filter(!is.na(value))
# or
# df <- rdb('AMECO', 'ZUTN', dimensions = '{"geo": ["ea19"]}') %>%
# filter(!is.na(value))
ggplot(df, aes(x = period, y = value, color = series_code)) +
geom_line(size = 2) +
dbnomics()
df <- rdb('AMECO', 'ZUTN', dimensions = list(geo = c("ea19", "dnk"))) %>%
filter(!is.na(value))
# or
# df <- rdb('AMECO', 'ZUTN', dimensions = '{"geo": ["ea19", "dnk"]}') %>%
# filter(!is.na(value))
ggplot(df, aes(x = period, y = value, color = series_code)) +
geom_line(size = 2) +
dbnomics()
df <- rdb('WB', 'DB', dimensions = list(country = c("DZ", "PE"), indicator = c("ENF.CONT.COEN.COST.ZS", "IC.REG.COST.PC.FE.ZS"))) %>%
filter(!is.na(value))
# or
# df <- rdb('WB', 'DB', dimensions = '{"country": ["DZ", "PE"], "indicator": ["ENF.CONT.COEN.COST.ZS", "IC.REG.COST.PC.FE.ZS"]}') %>%
# filter(!is.na(value))
ggplot(df, aes(x = period, y = value, color = series_name)) +
geom_line(size = 2) +
dbnomics()
When you don’t know the codes of the dimensions, provider, dataset or series, you can :
go to the page of a dataset on DBnomics website, for example Doing Business,
select some dimensions by using the input widgets of the left column,
click on “Copy API link” in the menu of the “Download” button,
use the rdb_by_api_link
function such as below.
df <- rdb_by_api_link("https://api.db.nomics.world/v22/series/WB/DB?dimensions=%7B%22country%22%3A%5B%22FR%22%2C%22IT%22%2C%22ES%22%5D%7D&q=IC.REG.PROC.FE.NO&observations=1&format=json&align_periods=1&offset=0&facets=0") %>%
filter(!is.na(value))
ggplot(df, aes(x = period, y = value, color = series_name)) +
geom_step(size = 2) +
dbnomics()
rdb_by_api_link
function. Please note that when you update your cart, you have to copy this link again, because the link itself contains the ids of the series in the cart.
df <- rdb_by_api_link("https://api.db.nomics.world/v22/series?series_ids=BOE%2F8745%2FLPMB23A%2CBOE%2F8745%2FLPMB26A&observations=1&format=json&align_periods=1") %>%
filter(!is.na(value))
ggplot(df, aes(x = period, y = value, color = series_name)) +
geom_line(size = 2) +
scale_y_continuous(labels = function(x) { format(x, big.mark = " ") }) +
dbnomics()
Could not resolve host
When using the functions rdb
or rdb_...
, you may come across the following error :
Error in open.connection(con, "rb") :
Could not resolve host: api.db.nomics.world
To get round this situation, you have two options :
configure curl to use a specific and authorized proxy.
use the default R internet connection i.e. the Internet Explorer proxy defined in internet2.dll.
To retrieve the data with the default R internet connection, rdbnomics will use the base function readLines
.
To activate this feature for a session, you need to enable an option of the package :
options(rdbnomics.use_readLines = TRUE)
And then use the standard function as follows :
df1 <- rdb(ids = 'AMECO/ZUTN/EA19.1.0.0.0.ZUTN')
This configuration can be disabled with :
options(rdbnomics.use_readLines = FALSE)
If you just want to do it once, you may use the argument use_readLines
of the functions rdb
and rdb_...
:
df1 <- rdb(ids = 'AMECO/ZUTN/EA19.1.0.0.0.ZUTN', use_readLines = TRUE)
dbnomics()
used in the vignetteWe show the function dbnomics()
as an information. It’s not implemented in the package.
dbnomics <- function(legend_title = "Code") {
list(
scale_x_date(expand = c(0, 0)),
xlab(""),
ylab(""),
guides(color = guide_legend(title = legend_title)),
theme_bw(),
theme(
legend.position = "bottom", legend.direction = "vertical",
legend.background = element_rect(fill = "transparent", colour = NA),
legend.key = element_blank(),
panel.background = element_rect(fill = "transparent", colour = NA),
plot.background = element_rect(fill = "transparent", colour = NA),
legend.title = element_blank()
),
annotate(
geom = "text", label = "DBnomics",
x = structure(Inf, class = "Date"), y = -Inf,
hjust = 1.1, vjust = -0.4, col = "grey",
fontface = "italic"
)
)
}