
Solving Control Problems with Linear State
Dynamics – a Practical User Guide

Juri Hinz and Jeremy Yee
School of Mathematics

University of Technology Sydney
Sydney, Australia

Email: Juri.Hinz@uts.edu.au, Jeremy.Yee@uts.edu.au

Abstract—In industrial applications, practitioners usually face
a considerable complexity when optimizing operating strategies
under uncertainty. Typical real-world problems arising in prac-
tice are notoriously challenging from a computational viewpoint,
requiring solutions to Markov Decision problems in high dimen-
sions. In this work, we address a novel approach to obtain an
approximate solution to a certain class of problems, whose state
process follows a controlled linear dynamics. Our techniques is
illustrated by an implementation within the statistical language
R, which we discuss by solving a typical problem arising in
practice.

Index Terms—Approximate dynamic programming, convex switch-
ing systems, Markov decision processes, optimal switching

I. INTRODUCTION

Optimizing a decision policy within an industrial framework
usually leads to a problem of sequential decision-making
under uncertainty. This class of questions is addressed un-
der the framework of discrete-time stochastic control and in
most cases can be formulated under the umbrella of Markov
Decision Process (see [1], [2], [4], and [9]). Closed form
solutions to such problems are exceptions and usually an exact
solution is out of reach and is not of primary importance
in applications. For these reasons, approximate numerical
solutions are targeted almost always in practice. Although a
vast variety of computational methods have been developed
in this area, the complexity of typical real-world questions
usually goes beyond what is computationally feasible. To serve
this need, the theory of approximate dynamic programming
(see [8]) aims at providing a generalized view on theoretical
insights, working solutions, and well-performing heuristics.

The accumulation of numerical inaccurateness is the main
difficulty in the stepwise calculation of approximate solutions
via backward induction (see [3]). Due to the interleaved
application of numerical integration, the calculation of each
value function relies on one which was obtained in the
previous step. This concatenation causes a deviation from the
true value functions, inevitably progressing with the number
of time steps. This difficulty becomes severe for a generic
real-world applications, since the underlying state variables in
practice usually must be modeled in terms of high-dimensional
controlled Markov processes. These issues cause a variety of
problems, frequently referred to as the curse of dimensionality.

This research was partially supported under Australian Research Council’s
Discovery Projects funding scheme (project number: DP130103315).

In what follows, we focus on a specific type of Markov
decision problems which frequently appear in practice. For
this problem class, we present an efficient algorithmic solu-
tion. Furthermore, we introduce and discuss a corresponding
solution diagnostics method, which is designed for quality as-
sessment. Our diagnostics yields an estimation of the distance
between a given approximate solution and the optimal one.
Based on this, an a-posteriori justification of the approximate
solution can be obtained, if its distance-to-optimality satisfies
user-defined precision prerequisites. Otherwise, further solu-
tion attempts may be needed.

II. MARKOV DECISION THEORY

Let us review the classical finite-horizon Markov decision
theory following [1]. On a finite time horizon 0, . . . , T ,
consider a random dynamics whose state x evolves in E and
is controlled by actions a from a finite action set A. For each
a ∈ A, we assume that Ka

t (x, dx′) is a stochastic transition
kernel on E. A mapping πt : E 7→ A which describes the
action that the controller takes at time t is called a decision
rule. A sequence of decision rules π = (πt)

T−1
t=0 is called

a policy. For each initial point x0 ∈ E and each policy
π = (πt)

T−1
t=0 , there exists a probability measure Px0,π and

a stochastic process (Xt)
T
t=0 such that Px0,π(X0 = x0) = 1

and

Px0,π(Xt+1 ∈ B |X0, . . . , Xt) = K
πt(Xt)
t (Xt, B) (1)

holds for each B ⊂ E at all times t = 0, . . . , T − 1. That is,
given that system is in state Xt at time t, the action a = πt(Xt)

is used to pick the transition probability K
a=πt(Xt)
t (Xt, ·)

which randomly drives the system from Xt to Xt+1 with the
distribution Kπt(Xt)

t (Xt, ·). Let us use Kat to denote the one-
step transition operator associated with the transition kernel
Ka
t when the action a ∈ A is chosen. In other words, for each

action a ∈ A the operator Kat acts on functions v by

(Kat v)(x) =

∫
E

v(x′)Ka
t (x, dx′) x ∈ E, (2)

whenever the above integrals are well-defined. Now, let us
turn to the definition of the control costs. For each time t, we
are given the t-step reward function rt : E × A 7→ R, where
rt(x, a) represents the reward for applying an action a ∈ A
when the state of the system is x ∈ E at time t. At the end

of the time horizon, at time T , it is assumed that no action
can be taken. Here, if the system is in a state x, a scrap value
rT (x), which is described by a pre-specified scrap function
rT : E → R, is collected. Given an initial point x0, the goal is
to maximize the expected finite-horizon total reward, in other
words to find the argument π∗ = (π∗t)T−1t=0 such that

π∗ = argmaxπEx0,π

(
T−1∑
t=0

rt(Xt, πt(Xt)) + rT (XT)

)
,

(3)
where A is the set of all policies, and Ex0,π denotes the
expectation over the controlled Markov chain defined by (1).
The maximization (3) is well-defined under diverse additional
assumptions (see [1], p. 199).

The calculation of the optimal policy is addressed in the
following setting. For t = 0, . . . , T −1, introduce the Bellman
operator

Ttv(x) = sup
a∈A

(rt(x, a) +Kat v(x)) , x ∈ E (4)

which acts on each measurable function v : E → R where
the integrals Kat v for all a ∈ A exist. Further, consider the
Bellman recursion

v∗T = rT , v∗t = Ttv∗t+1 for t = T − 1, . . . , 0. (5)

Under appropriate assumptions, there exists a recursive solu-
tion (v∗t)Tt=0 to the Bellman recursion, which gives the so-
called value functions and determines an optimal policy π∗

via

π∗t (x) = argmaxa∈A
(
rt(x, a) +Kat v∗t+1(x)

)
, x ∈ E

for all t = 0, . . . , T − 1.
Consider now a Markov decision model whose state evolu-

tion consists of one discrete and one continuous component. To
be more specific, we assume that the state space E = P ×Rd
is the product of a finite space P and the Euclidean space Rd.
We suppose that the discrete component p ∈ P is driven by a
finite number of actions a ∈ A in terms stochastic matrices

(αap,p′)p,p′∈P

where αp,p′ ∈ [0, 1] stands for the transition probability from
p ∈ P to p′ ∈ P if the action a ∈ A was taken. Furthermore,
we assume that the continuous state component evolves as an
uncontrolled Markov process (Zt)

T
t=0 on Rd whose evolution

is driven by random linear transformations

Zt+1 = Wt+1Zt

with pre-specified independent and integrable disturbance ma-
trices (Wt)

T
t=1. Finally, let us assume that the reward functions

rt(p, ·, a), t = 0, . . . , T − 1, p ∈ P, a ∈ A

and scrap functions

rT (p, ·), p ∈ P

are convex and globally Lipschitz continuous in the continuous
component z ∈ Rd of the state variable (p, z). In this setting,
the transition operators are given by

Kat v(p, z) =
∑
p′∈P

αap,p′E(v(p′,Wt+1z)), z ∈ Rd (6)

for t = 0, . . . , T − 1, and a ∈ A. Such Markov decision
problems are referred to as convex switching systems in what
follows.

III. SOLUTION ALGORITHM

Following [5], the first step in obtaining a numerical solution
to the backward induction

v∗T = rT , v∗t = Ttv∗t+1, t = T − 1, . . . 0

is an appropriate discretization of the Bellman operator

Ttv(p, z) = max
a∈A

rt(p, z, a) +
∑
p′∈P

αap,p′E(v(p′,Wt+1z))

 .

For this reason, we consider a modified Bellman operator T nt
instead of Tt with the expectation E(v(p′,Wt+1z)) replaced
by its numerical counterpart as

n∑
k=1

νnt+1(k)v(p′,Wt+1(k)z))

defined in terms of an appropriate distribution sampling
(Wt+1(k))nk=1 of each disturbance Wt+1 with corresponding
probability weighting (νnt+1(k))nk=1. In the resulting modified
backward induction

v
(n)
T = rT , v

(n)
t = T nt v

(n)
t+1, t = T − 1, . . . 0 (7)

the functions (v
(n)
t)Tt=0 need to be described by algorithmically

tractable objects. Since all reward and scrap functions are con-
vex in the second variable, then the modified value functions
(7) are also convex. We may then approximate these value
functions in terms of piecewise linear and convex functions in
the following manner. First, we introduce the so-called sub-
gradient envelope SGf of a convex function f : Rd → R on
a grid G ⊂ Rd as

SGf = ∨g∈G(Ogf)

which is a maximum of the sub-gradients Ogf of f on all
grid points g ∈ G. Using sub-gradient envelope operator, we
define the double-modified Bellman operator as

T m,nt v(p, ·) = SGmT nt v(p, ·),

where the operator SGm stands for the sub-gradient envelope
on the grid Gm = {g1, . . . , gm}. The corresponding backward
induction

v
(m,n)
T (p, ·) = SGmrT (p, ·), p ∈ P (8)

v
(m,n)
t (p, ·) = T m,nt v

(m,n)
t+1 (p, ·), t = T − 1, . . . 0.(9)

yields the so-called double-modified value functions
(vn,mt)Tt=0 which enjoy excellent algorithmic properties.

Namely, the functions (v
(m,n)
t)Tt=0 are piece-wise linear and

convex, they can be expressed using matrix representations.
Note that any piecewise convex function f can be described
by a matrix where each of the linear functionals is represented
by one of the matrix’s rows. To denote this relation, let us
agree on the following notation: Given a function f and
a matrix F , we write f ∼ F whenever f(z) = max(Fz)
holds for all z ∈ Rd. It turns out that the sub-gradient
envelope operation SG on a grid G corresponds to a specific
row-rearrangement operator in the following sense

f ∼ F ⇒ SGf ∼ ΥG[F]

where the row-rearrangement operator ΥG associated with the
grid G = {g1, . . . , gm} ⊂ Rd acts on matrix F with d columns
as follows:

(ΥGF)i,· = Largmax(Fgi),· for all i = 1, . . . ,m. (10)

Similarly, for the maximization holds

f1 ∼ F1, f2 ∼ F2 ⇒ f1 ∨ f2 ∼ F1 t F2

where t stands for binding matrices by rows, which yields a
matrix whose rows contain all rows from each participating
matrix.
It turns out that the double-modified backward induction it
can be rewritten in terms of Υ, t and summations, applied to
matrix representatives of the double-modified value functions:

Pre-calculations: Given a grid Gm = {g1, . . . , gm}, imple-
ment the row-rearrangement operator Υ = ΥGm and the
row maximization operator ta∈A. Determine a distribution
sampling (Wt(k))nk=1 of each disturbance Wt with the corre-
sponding weights (νt(k))nk=1 for t = 1, . . . , T . Given reward
functions (rt)

T−1
t=0 and scrap value rT , determine the matrix

representative of their sub-gradient envelopes

SGmrt(p, ·, a) ∼ Rt(p, a), SGmrT (p, ·) ∼ RT (p)

for t = 0, . . . , T − 1, p ∈ P and a ∈ A. Introduce matrix
representatives of each value function

v
(m,n)
t (p, ·) ∼ Vt(p) for t = 0, . . . , T , p ∈ P ,

which are obtained via the following matrix form of the
backward induction:

Initialization: Start with the matrices

VT (p) = RT (p), for all p ∈ P .

Recursion: For t = T − 1, . . . , 0 calculate for p ∈ P

Vt(p) = ta∈A
(
Υ[Rt(p, a)]

+
∑
p′∈P

αap,p′

n∑
k=1

νt+1(k)Υ[Vt+1(p′) ·Wt+1(k)]
)

Having calculated matrix representatives (Vt)
T
t=0, the approx-

imations (vt)
T
t=0, (vEt)Tt=0 of the value functions and their

expectations are obtained as

vt(p, z) = max(Vt(p)z), (11)

vEt (p, z) = max(

n∑
k=1

νt(k)Υ[Vt(p) ·Wt(k)]z) (12)

for all z ∈ Rd, t = 1, . . . , T , and p ∈ P . Furthermore, an
approximately optimal strategy (π̃t)

T−1
t=0 is obtained for t =

0, . . . , T − 1 by

πt(p, z) = argmaxa∈A(rt(p, z, a) +
∑
p′∈P

αap,p′v
E
t+1(p′, z)),

(13)

IV. DIAGNOSTICS ALGORITHM

Let us now turn to the diagnostics method whose
proof is found in [7]. Suppose that a candidate (πt)

T−1
t=0

for approximatively optimal policy is given. To estimate
its distance-to-optimality, we address the performance gap
[vπ0 (p0, z0), vπ

∗

0 (p0, z0)] at a given starting point z0 = Z0.
In what follows, we construct random variables vπ,ϕ0 (p0, z0),
vϕ0 (p0, z0) satisfying

E(vπ,ϕ0 (p0, z0)) = vπ0 (p0, z0) ≤
≤ vπ

∗

0 (p0, z0) ≤ E(v̄π,ϕ0 (p0, z0)).

The calculation of the expectations E(vπ,ϕ0 (p0, z0)),
E(v̄π,ϕ0 (p0, z0)) is realized through an efficient recursive
Monte-Carlo scheme, which yields approximations to
E(vπ,ϕ0 (p0, z0)), E(v̄π,ϕ0 (p0, z0)) along with appropriate
confidence intervals.

For a practical application of the bound estimation, we assume
that an approximate solution yields a candidate (πt)

T−1
t=0 for

an optimal strategy, as in (13) based on an approximations of
the value and of the expected value functions as in (11), (12).
Bound estimation:

1) Chose a path number K and a nesting number I ∈ N
to obtain for each k = 1, . . . ,K and i = 0, . . . , I in-
dependent realizations (wi,kt)Tt=0 of the random variables
(Wt)

T=1
t=0 .

2) Define for k = 1, . . . ,K the state trajectories (zkt)Tt=0

recursively

zk0 := z0, zkt+1 = w0,k
t+1z

k
t , t = 0, . . . , T − 1

and determine all realizations

ϕkt+1(p, a) =
1

I

I∑
i=1

∑
p′∈P

αap,p′vt+1(p, wi,kt+1z
k
t)

−
∑
p′∈P

αap,p′vt+1(p, w0,k
t+1z

k
t).

for t = 0, . . . , T − 1, k = 1, . . . ,K, p ∈ P, a ∈ A.
3) For each k = 1, . . . ,K initialize the recursion at t = T

as

v̄π,ϕT (p, zkT) = rT (zkT), vπ,ϕT (p, zkT) = rT (zkT), p ∈ P

and continue for t = T − 1, . . . , 0 by

v̄π,ϕt (p, zkt) = max
a∈A

[
rt(p, z

k
t , a) + ϕkt+1(p, a) (14)

+
∑
p′∈P

αap,p′ v̄
π,ϕ
t+1(p′, zkt+1)

]
,

vπ,ϕt (p, zkt) = rt(p, z
k
t , πt(z

k
t)) + ϕkt+1(p, πt(z

k
t))

+
∑
p′∈P

α
πt(p,z

k
t)

p,p′ vπ,ϕt+1(p′, zkt+1). (15)

Having finished the calculation, store the values for k =
1, . . . ,K, p ∈ P as

ψ̄(p, k) := v̄π,ϕ0 (p, zk0) ψ(p, k) := vπ,ϕ0 (p, zk0).

4) Calculate the sample means

1

K

K∑
k=1

ψ̄(p, k),
1

K

K∑
k=1

ψ(p, k)

to estimate the performance gap [vπ
∗

0 (p, z0), vπ
∗

0 (p, z0)]
from above and below, possibly using in-sample confi-
dence bounds.

V. EXAMPLE: A SWING OPTION

Let us consider the so-called swing option which a financial
contract popular in energy business. In the simplest form, it
gives the owner the right to obtain a certain commodity (gas,
electricity) at a pre-specified price and volume at a number
of exercise times which can be freely chosen by the contract
owner, within the lifetime of the contract. Let us consider
a specific case of such contract, referred to as a unit-time
refraction period swing option. In this contract, there is a limit
to exercise only one right at any time. Given the discounted
commodity price (St)

T
t=0, the so-called fair price of a swing

option with N rights is given by the supremum

sup
0≤τ1<···<τN≤T

E
[N∑
n=1

(Sτn −Ke−ρτn)+
]

over all stopping times τ1, . . . , τN with values in {0, . . . , T}.
In order to represent this control problem as a switching
system, we use the position set P = {1, . . . , N+1} to describe
the number of exercise rights remaining. That is p ∈ P stands
for the situation when there are p − 1 rights remaining to be
exercised. The action set A = {1, 2} represents the choice
between exercising (a = 1) or not exercising (a = 2). The
control matrices (αap,p′) are given for exercise action a = 1

α1
p,p′ =

{
1 if p′ = 1 ∨ (p− 1)
0 else,

and for not-exercise action a = 2 as

α2
p,p′ =

{
1 if p′ = p
0 else

for all p, p′ ∈ P . In the case of the swing option, the transition
between p and p′ occurs deterministically, since once the
controller decides to exercise the right, the number of rights
remaining is diminished by one. The deterministic control of

the discrete component is easier to describe in therm of the
matrix (α(p, a))p∈P,a∈A where p′ = α(p, a) ∈ P stands for
the discrete component which is reached from p ∈ P by the
action a ∈ A. For the case of the swing option this matrix is

(α(p, a))p∈P,a∈A =


1 1
1 2
2 3
.
N N + 1

 . (16)

Having modeled the discounted commodity price process as an
exponential mean-reverting process with a reversion parameter
κ ∈ [0, 1[, long run mean µ > 0 and volatility σ > 0, we
obtain the logarithm of the discounted price process as

Z̃t+1 = (1− κ)(Z̃t − µ) + µ+ σεt+1, Z̃0 = ln(S0). (17)

A further transformation of the state space is required before
linear state dynamics can be achieved. If we introduce an
augmentation with 1 via

Zt =

[
1

Z̃t

]
, t = 0, . . . , T.

then it becomes possible to represent the evolution as the linear
state dynamics

Zt+1 = Wt+1Zt, t = 0, . . . , T − 1

with independent and identically distributed matrix-valued
random variables (Wt)

T
t=1 given by

Wt+1 =

[
1 0

κµ+ σεt+1 (1− κ)

]
, t = 0, ..., T − 1.

The reward and scrap values are given by

rt(p, (z
(1), z(2)), a) = (ez

(2)

−Ke−ρt)+
(
p− α(p, a)

)
(18)

for t = 0, . . . , T − 1 and

rT (p, (z(1), z(2))) = (ez
(2)

−Ke−ρT)+
(
p− α(p, 1)

)
(19)

respectively for all p ∈ P and a ∈ A.

VI. R PACKAGE

Having described the algorithms in Sections II and III, we
now turn to their implementation in our R package rcss. The
computational effort is done mostly at the C++ level and so
our package represents a user friendly but efficient way to
utilise these algorithms. We shall demonstrate its usage on the
problem described in Section V by first setting our parameters.

P a r a m e t e r s
rho <− 0
kappa <− 0 . 9
mu <− 0
sigma <− 0 . 5
K <− 0
n_dec <− 101 ## number o f t ime epochs
N <− 5 ## number o f r i g h t s
Gr id
n _ g r i d <− 1001

g r i d <− c b i n d (r e p (1 , n _ g r i d) ,
seq (−2 , 2 , l e n g t h = n _ g r i d))

C o n t r o l m a t r i x
c o n t r o l <− c b i n d (c (1 , 1 :N) , 1 : (N+ 1))

Our grid is chosen to be equally spaced points on the interval
[−2, 2] and since our position evolves deterministically, we
can represent its evolution by the two-dimensional matrix (16)
with the interpretation that the (i, j)-th entry representing the
next position after apply action j to current position i. We
now specify our representation of the reward function using
sub-gradients.

Reward s u b g r a d i e n t r e p r e s e n t a t i o n
reward <− a r r a y (0 , dim = c (n_g r id , 2 ,

nrow (c o n t r o l) , 2 , n_dec))
s l o p e <− exp (g r i d [, 2])
f o r (t i n 1 : n_dec) {

d i s c o u n t <− exp(− rho * (t − 1))
f o r (p i n 2 : n_pos) {

i n t e r c e p t <− (exp (g r i d [, 2]) − K * d i s c o u n t) −
s l o p e * g r i d [, 2]

reward [, 1 , p , 1 , t] <− i n t e r c e p t
reward [, 2 , p , 1 , t] <− s l o p e

}
}

The sub-gradients chosen to approximate the reward function
are calculated using the gradients at grid points. Finally, an
appropriate distribution sampling for the disturbance matrix is
computed using quantiles of the standard normal distribution
in the code shown below.

D i s t u r b a n c e m a t r i c e s
n _ d i s t u r b <− 10000
d i s t u r b <− a r r a y (0 , dim = c (2 , 2 , n _ d i s t u r b))
d i s t u r b [1 , 1 ,] <− 1
d i s t u r b [2 , 2 ,] <− 1 − kappa
q u a n t i l e <− qnorm (seq (0 , 1 , l e n g t h = (n _ d i s t u r b + 2)

) [c (−1 , −(n _ d i s t u r b + 2))])
d i s t u r b [2 , 1 ,] <− kappa * mu + sigma * q u a n t i l e
r _ i n d e x <− m a t r i x (c (2 , 1) , n c o l = 2)
d i s t u r b _ w e i g h t <− r e p (1 / n _ d i s t u r b , n _ d i s t u r b)

After setting the above variables, we can now perform the
Bellman recursion through the following function in our R
package.

be l lman <− F a s t B e l l m a n (g r i d , reward , c o n t r o l , d i s t u r b ,
d i s t u r b _ w e i g h t , r _ i n d e x)

The efficiency of this method is due to next-neighbor
approximations, whose details are described in [6]. The
diagnostic algorithm presented in Section III requires a
simulation of sample paths, which can be achieved through
methods provided in our package.

G e n e r a t e and c l a s s i f y p a t h s
n_ pa th <− 1000

p a t h _ d i s t u r b <− a r r a y (0 , dim = c (2 , 2 ,
n_dec − 1 , n_ pa th))

p a t h _ d i s t u r b [1 , 1 , ,] <− 1
p a t h _ d i s t u r b [2 , 2 , ,] <− 1 − kappa
p a t h _ d i s t u r b [2 , 1 , ,] <− kappa * mu +

sigma * rnorm ((n_dec − 1) * n_ pa th)
s t a r t <− c (1 , 0)
p a t h <− Pa th (s t a r t , p a t h _ d i s t u r b)
pa th_nn <− Neighbour (m a t r i x (pa th , n c o l = 2) ,

g r i d , 1 , " k d t r e e " , 0 , 1) $ i n d i c e s

The following code sets a nested simulation of disturbance
realizations before computing the martingale increments.

S e t s u b s i m u l a t i o n d i s t u r b a n c e s
n_subsim <− 1000
subs im <− a r r a y (0 , dim = c (2 , 2 , n_subsim ,

n_path , n_dec − 1))
subs im [1 , 1 , , ,] <− 1
subs im [2 , 2 , , ,] <− 1 − kappa
subs im [2 , 1 , , ,] <− kappa * mu +

sigma * rnorm (n_subs im * n_ pa th *
(n_dec − 1))

subs im_we igh t <− r e p (1 / n_subsim , n_subs im)

Find m a r t i n g a l e i n c r e m e n t s
mar t <− F a s t M a r t i n g a l e (b e l l m a n $ v a l u e , pa th , pa th_nn ,

subsim , subs im_weigh t , g r i d ,
c o n t r o l = c o n t r o l)

To perform the upper and lower bound estimation, we use
the reward function, which must be supplied to our method.
The code required therefor is the usual function definition in
R. This code is then passed into bounds estimation.

Exac t reward f u n c t i o n
RewardFunc <− f u n c t i o n (s t a t e , t ime) {

o u t p u t <− a r r a y (0 , dim =
c (nrow (s t a t e) , nrow (c o n t r o l) * 2))

d i s c o u n t <− exp(− rho * (t ime − 1))
f o r (i i n 2 : nrow (c o n t r o l)) {

o u t p u t [, 2 * i − 1] <−
pmax (exp (s t a t e [, 2]) − K * d i s c o u n t , 0)

}
r e t u r n (o u t p u t)

}

D u a l i t y
p a t h _ a c t i o n <− P a t h P o l i c y (pa th , pa th_nn , c o n t r o l ,

RewardFunc , b e l l m a n $ e x p e c t e d ,
g r i d)

d u a l i t y <− D u a l i t y (pa th , c o n t r o l , RewardFunc , mart ,
p a t h _ a c t i o n)

For the initial state Z̄0 = 0, we obtain the following results:

Rights CSS Value 99% Confidence Interval
1 3.246 [3.255, 3.270]
2 6.076 [6.090, 6.106]
3 8.670 [8.686, 8.703]
4 11.099 [11.18,11.135]
5 13.402 [13.423,13.441]

Thereby, the first column stands for the number of right

remaining, the second column yields the realization of the
approximate value function whereas the last column represents
an in-sample confidence interval for the value of the exact
solution. For more information regarding the usage of the R
package, we refer the reader to a detailed documentation of
the R package rcss.

VII. CONCLUSION

We discuss an a posteriori justification of the numerical
approximation to a novel class of algorithms which address
stochastic switching problems with linear state dynamics.
Using this method, a distance-to-optimality estimation of the
approximate solution becomes possible due to sound and
reliable diagnostics and quality assessment tool. The authors
believe that such combination of efficient numerical schemes
with a subsequent diagnostic check can be very helpful in ap-
plications and hope that practitioners find our implementation
useful and interesting.

REFERENCES

[1] N. Bäuerle and U. Rieder. Markov Decision Processes with Applications
to Finance. Springer, Heidelberg, 2011.

[2] D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena
Scientific, 2005.

[3] Bender C., Gärtner C., and Schweizer N. Pathwise dynamic programming.
Preprint, 2015.

[4] E. A. Feinberg and A. Schwartz. Handbook of Markov Decision
Processes. Kluwer Academic, 2002.

[5] J. Hinz. Optimal stochastic switching under convexity assumptions. SIAM
Journal on Control and Optimization, 52(1):164–188, 2014.

[6] J. Hinz and N. Yap. Algorithms for optimal control of stochastic switching
systems. Theory of Probability and its Applications, to appear.

[7] J. Hinz and J. Yee. An algorithmic approach to optimal asset liquidation
problems. Preprint, 2015.

[8] W. B. Powell. Approximate dynamic programming: Solving the curses of
dimensionality. Wiley, 2007.

[9] M.L. Puterman. Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. Wiley, New York, 1994.

