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“Nothing in Nature is random. . .

a thing appears random only through
the incompleteness of our knowledge.”
Spinoza, Ethics I'.

1 Introduction

The simulation of random variables has a big
number of applications from insurance to biology,
and from computer science to finance. Actually
the only things that are truly random are the
measurement of physical phenomena such as ther-
mal noises of semiconductor chips or radioactive

SOUI‘CGS2 .

Thus the only way to simulate some random-
ness on computers are carried out by deterministic
algorithms. Excluding true randomness?, there
are two kinds random generation: pseudo and
quasi random number generators.

The package randtoolbox provides R func-

! quote taken from Niederreiter| (1978).

2for more details go to http://www.random.orqg/
randomness/|

°For true random number generation on R, use the
random package of [Eddelbuettel| (2007).

tions for pseudo and quasi random number
generations, as well as statistical tests to quantify
the quality of random numbers generated.

2 Brief overview of random gen-
eration algoritms

In this section, we present first the pseudo
random number generation and second the quasi
random number generation. By “random num-
bers”, we mean random variates of the uniform
U(0,1) distribution. More complex distributions
can be generated with uniform variates and
rejection/inversion algorithms. Pseudo random
number generation aims to seem random whereas
quasi random number generation aims to be
deterministic.

Those familiars with algorithms such as linear
congruential generation, Mersenne-Twister type
algorithms, and low discrepancy sequences should
go directly to the next section.

2.1 Pseudo random generation

At the beginning of the nineties, there was no
state-of-the-art algorithms to generate pseudo


http://www.random.org/randomness/
http://www.random.org/randomness/
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random numbers. And despite this fact, most
users thought the rand function they used was
good, because of a short period and a term to term
dependence. But in 1998, Japenese mathemati-
cians Matsumoto and Nishimura invents the first
algorithm whose period (2'9937 — 1) exceeds the
number of electron spin changes since the creation
of the Universe (1050% against 102°).

As described in [L’Ecuyer| (1990), a (pseudo)
random number generator (RNG) is defined by
a structure (S, p, f, U, g) where

e S a finite set of states,

e 1 a probability distribution on S, called the
initial distribution,

a transition function f: S +— S,

a finite set of output symbols U,

an output function g: S +— U.

Then the generation of random numbers is as
follows:

1. generate the initial state (called the seed) s
according to p and compute ug = g(sop),

2. iterate for i = 1,..., s; = f(s;-1) and u; =
9(si)-

Generally, the seed sy is determined using the
clock machine, and so the random variates
UQ, - . ., Up, ... seems “real” i.i.d. uniform random
variates. The period of a RNG is the smallest
integer p € N, such that Vn € N, 5,4, = s5,.

2.1.1 Linear congruential generators

There are many families of RNGs : linear congru-
ential, multiple recursive,...and “computer oper-
ation” algorithms. Linear congruential generators
have a transfer function of the following type

f(z) = (ax+¢) mod m!,

Lthis representation could be easily generalized for
matrix, see |L’Ecuyer| (1990).

where a is the multiplier, ¢ the increment and m
the modulus and z,a,c,m € N (i.e. S is the set
of (positive) integers). f is such that

xn = (axp—1 +c¢) mod m.

Typically,c and m are chosen to be relatively
prime and a such that Vx € N,ax mod m # 0.
When ¢ = 0, we find the special of Park-Miller
algorithm or Lehmer algorithm (see Park & Miller
(1988)). Let us note that the n+ jth term can be
easily derived from the nth term with a puts to
a’ mod m (still when ¢ = 0).

Finally, we generally use of the three types
of output function: g(x) = x/m, x/(m — 1) or
x/m + 1/m?. Linear congruential generators are
implemented in the R function congruRand.

2.1.2 Multiple recursive generators

The multiple recursive generators are based on
the following recurrences

Tn = (@1xp—1 + -+ agrp_rc) mod m,

where k is a fixed integer. Hence the nth term of
the sequence depends on the k& previous one. A
particular case of this type of generators is when
_ 30
Tp = (Tn—37 + Tn—100) mod 27,
which is a Fibonacci-lagged generator®. This
generator has been invented by Knuth (2002)) and
is implemented in the R function runif (see
.Random. seed).

2.1.3 Mersenne-Twister

These two types of generators are in the big fam-
ily of matrix linear congruential generators (cf.
L’Ecuyer| (1990)). But until here, no algorithms
exploit the binary structure of computers (i.e.

2the last one has the good property to generate variate
in )0, 1.
3see [L’Ecuyer] (1990).
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use binary operations). In 1994, Matsumoto and
Kurita invented the TT800 generator using binary
operations. But [Matsumoto & Nishimura/ (1998))
greatly improved the use of binary operations
and proposed a new type of random number
generators, which could be called “Mersenne-
Twister type”! generators.

Matsumoto & Nishimura (1998) work on the
finite set No = {0,1}, so a variable z is
represented by a vectors of w bits (e.g. 32 bits).
They use the following linear recurrence for the
kth term:

Thpn = Thpm @ (7P |2} A,
where n,m are constant integers, x;"” (respec-
tively 21°?) means the upper (lower) w — r (r)
bits of xp and A a w X w matrix of Nay. | is the
operator of concatenation, so xzp P \xﬂ_"l appends
the upper w — r bits of xj with the lower r bits
of xr1q1. After a right multiplication with the
matrix A%, @ adds the result with xj.,, bit to
bit. Once provided an initial seed xzq,...,Z,_1,
Mersenne Twister produces random integers in

0,...,20me9a _ 1,

All operations used in the recurrence are bit-
wise operations, thus it is a very fast computation
compared to modulus operations used in previous
algorithms. To increase the equidistribution,
Matsumoto & Nishimura (1998]) added a temper-
ing step:

Y < Tk4n b (xk—i-n >> u)a
Uk — Y ® ((ye <<s)DDb),
Uk — Y © ((yx <<t) Do),
Uk — Uk ® (g >>1),

where >> wu (resp. << s) denotes a rightshift
(leftshift) of w (s) bits. At last, we transform
random integers to reals with the output function
g(z) = %t Details of the order of the suc-
cessive operations used in the Mersenne-Twister

lthe name comes from the fact this generator has a
Mersenne-prime number period.

2whose right multiplication can be done with a bitwise
rightshift operation and an addition with integer a. See
the section 2 of |[Matsumoto & Nishimura, (1998) for
explanations.

(MT) algorithm can be found at the page 7 of
Matsumoto & Nishimura| (1998)). However, the
least, we need to learn and to retain, is all these
(bitwise) operations can be easily done in many
computer languages (e.g in C) ensuring a very fast
algorithm.

The set of parameters used are

o (w,n,m,r) = (32,624,397,31),

e a =0 x 9908BODF,b = 0 x 9D205680, ¢ =
0 x EFC60000,

eu=11,1=18 s=7and t = 15.

These parameters ensure a good equidistribution
and a period of 2" — 1 = 219937 _ 1

The great advantages of the MT algorithm are
a far longer period than any linear congruential
generators (greater than the period of Park &
Miller| (1988)) sequence of 232 — 1 or of Knuth!
(2002) around 2'%%), a far better equidistribution
(since it passed the DieHard test) as well as an
VERY good computation time (since it used bi-
nary operations and not the costly real operation
of modullus).

MT algorithm 1is already implemented in
R (function runif). However the package
randtoolbox provides a function to compute a
ten-years improved version of Mersenne-Twister:
SIMD-oriented Fast Mersenne Twister algorithm.
A decade after the invention of MT, Matsumoto
& Saito| (2008]) enhances their algorithm with the
computer of today, that have Single Instruction
Mutiple Data operations letting to work concep-
tually with 128 bits integers.

2.1.4 SF-Mersenne Twister

MT and its successor are part of the family of
multiple-recursive matrix generators since they
verify a multiple recursive equation with matrix
constants. For MT, we have

0 O I, O
Thtn = ThtmTTh+1 < 0 I ) A+txy, ( 0 0 ) A.
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This recursive equation can be expressed with the
following function

BTy Tt - - s Thgm—1) = Tm + (T|Tr41) A
The recursion could be rewritten as
h(wo,...,wn-1) = wWm + (Wk|wr+1) A,

where w; denotes a 32-bit integer (i.e. horizontal
vectors of Nj).

The general recurrence of SFMT generalizes
MT recursion to

h(wo, - ywn—1) = woA+wmB+wn—2C +wp_1D,

where A, B,C, D are sparse matrix over Na, w;
could be integers of w = 32,64,128 bits and
n = (%] = 156. The right multiplication
matrix operations can EASILY be done using
SIMD opertations®. Hence the transition function

of SEFMT is given by

f(Ng)" = (Ng)"

(w()a‘-'uwn—l) = (W1,...,wn_1,h(w0,...7wn_1)),

where (N§)" is the state space.

There are various sets of parameters for SEFMT
which allow different periods from 2907 — 1 to
2216091 _ 1 The advantage of SFMT over MT
is the computation speed, SFMT is twice faster
without SIMD operations and nearly fourth faster
with SIMD operations. But SFMT has also a
better equidistribution? and a better recovery
time from zeros-excess states®. The function
SFMT provides an interface to the C code of
Matsumoto and Saito.

2.2 Quasi random generation

Before detailing and explaining quasi random
generation, we must (quickly) explain Monte-
Carlo methods, which have been introduced in the

!see section 2.3 of Matsumoto & Saito| (2008)).

2See linear algebra arguments of |Matsumoto &
Nishimura/ (1998).

Sstates with too many zeros.

forties. In this section, we follow the approach
of |[Niederreiter, (1978). Let us work on the d-
dimensional unit cube I¢ = [0,1]¢ and with
a (multivariate) bounded (Lebesgues) integrable
function on I%. Then we define the Monte Carlo
approximation of integral of f over I¢ by

1 n

where (z;)1<i<n are independent random points
from I?. The strong law of large numbers ensures
the almost surely convergence of the approxima-
tion. Furthermore, the expected integration error
is bounded by O(ﬁ), with the interesting fact it
does not depend on dimension d.

The main difference between Monte-Carlo
methods and quasi Monte-Carlo methods is that
we no longer use random points (z;)1<i<n but
deterministic points.  Unlike statistical tests,
numerical integration does not rely on true
randomness. Let us note that quasi Monte-Carlo
methods dates from the fifties, and have also
been used for interpolation problems and integral
equations solving.

In the following, we consider a sequence
(u;i)1<i<n of points in I?, that are NOT random.
As n increases, we want

1

The condition on the sequence (u;); is to be
uniformly distributed in the unit cube I?¢ with the
following sense:

1 n
VI CI? lim = 1y(u) = Aa(]),
i=1

n—-+oon, 4

where A; stands for the volume (i.e.  the
d-dimensional Lebesgue measure) and 1; the
indicator function of subset J. The problem is
that our discrete sequence will never constitute a
“fair” distribution in I¢, since there will always
be a small subset with no points.

Therefore, we need to consider a more fexible
defition of uniform distribution of a sequence.
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Before introducing the discrepancy, we need
to define Cardg(u1,...,u,) as Y iy 1p(u;) the
number of points in subset E. The discrepancy
D,, of the n points (u;)1<i<n in I? is given by

Cardy(ug,...,un)

D, = sup = Aa(J)

Jeg n
where J denotes the family of all subintervals of
I of the form H?Zl[ai, bi]. If we took the family
of all subintervals of I¢ of the form Hle[(),bi],

D, is called the star discrepancy (cf. Niederreiter
(1992)).

Let us also note that the D, discrepancy
is nothing else than the L..-norm of points
(u;)1<i<n over the unit cube. A Ly-norm can be
defined as well, see Niederreiter| (1992) or Jackel
(2002).

The integral error is bounded by

1 n
PRy L

where Vy(f) is the d-dimensional Hardy and
Krause variation' of f on I¢ (supposed to be
finite). Let us notice that the integral error bound
of the product of two independent quantities: the
variability of function f through Vy(f) and the
regularity of the sequence through D,. So, we
want to minimize the discrepancy D,,.

S Vd(f)Dna

We will not explain it but this type of result
can be extented to subset .J of the unit cube I¢
in order to have a similar bound for [, f(z)dz.

In the literature, there were many ways to
find sequences with small discrepancy, generally
called low-discrepancy sequences or quasi-random
points. A first approach tries to find bounds
for these sequences and to search the good
parameters to reach the lower bound or to
decrease the upper bound. Another school tries
to exploit regularity of function f to decrease

nterested readers can find the definition page 966 of
Niederreiter| (1978]). In a sentence, the Hardy and Krause
variation of f is the supremum of sums of d-dimensional
delta operators applied to function f.

the discrepancy. Sequences coming from the first
school are called quasi-random points while those
of the second school are called good lattice points.

2.2.1 Quasi-random points and discrep-
ancy

Until here, we do not give any example of quasi-
random points. In the unidimensional case,
an easy example of quasi-random points is the
sequence of n terms given by (ﬁ, %, e )
This sequence has a discrepancy %, see |Niederre-

iter| (1978)) for details.

The problem with this finite sequence is it de-
pends on n. If we want different points numbers,
we need to recompute the whole sequence. In
the following, we will work the first n points
of an infinite sequence in order to use previous
computation if we increase n.

We introduce the notion of discrepancy on a
finite sequence (u;)1<i<p. In the example, we are
able to calculate exactly the discrepancy. With
infinite sequence, this is no longer possible. Thus,
we will try to estimate asymptotic equivalents of
discrepancy.

The discrepancy of the average sequence of
points is governed by the law of the iterated
logarithm :

D
lim supﬁ =1,
n—+oo V1oglogn

which leads to the following asymptotic equivalent

for D,:
D, -0 <loglogn> .

NG

2.2.2 Van der Corput sequences

An example of quasi-random points which are
low discrepancy is the the (unidimensional) Van
der Corput sequences. The big advantage of
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Van der Corput sequence is that they use p-
adic fractions easily computable on the binary
structure of computers.

Let p be a prime number. Every integer n
can decompose the p basis, i.e. there exists some
integer k such that

k

n:Zajpj.

Jj=1
Thus, we can define the radical-inverse function
of integer n as

k

o) = 3

=1

And finally, the Van der Corput sequence is given

by (¢p(0),Pp(1),...,¢0p(n),...) € [0,1]. First
terms of those sequence for prime numbers 2 and

3 are given in table

n in p-basis op(n)
p=2 p=3 p=5 p=2 p=3 p=>H
0 0 0 0 0 0
1 1 1 0.5 0.333 0.2
10 2 2 0.25 0.666 0.4
11 10 3 0.75 0.111 0.6
100 11 4 0.125 0.444 038

101 12 10 0.625 0.777 0.04

110 20 11 0.375 0.222 0.24

111 21 12 0.875 0.555 0.44

o~ oo x| w ol—lol S

1000 22 13 0.0625 0.555 0.64

Table 1: Van der Corput first terms

2.2.3 Halton sequences

The d-dimensional version of the Van der Corput
sequence is known as the Halton sequence. The
nth term of the sequence is define as

(pr(n), s Ppa(n)) € I,

where pi,...,pq are pairwise relatively prime

bases. The discrepancy of the Halton sequence

is asymptotically O (M> .

n

The following Halton theorem gives us better
discrepancy estimate of infinite sequences. For
any dimension d > 1, there exists an infinite
sequence of points in I% such that the discrepancy

b~ o (LY,

n

Therefore, we have a significant guarantee there
exists quasi-random points which are outperform-
ing than traditional Monte-Carlo methods.

2.2.4 Faure sequences

The Faure sequences is also based on the decom-
position of integers into prime-basis but they have
two differences: it uses only one prime number for
basis and it permutes vector elements from one
dimension to another.

The basis prime number is chosen as the small-
est prime number greater than the dimension d,
i.e. 3 whend = 2,5 whend=3 or 4etc...In
the Van der Corput sequence, we decompose
integer n into the p-basis:

k
n = Zajpj.
=1

Let a1 ; be integer a; used for the decomposition
of n. Now we define a recursive permutation of
Qg

k
V2< D <d,ap; = ZC;:GD_L]‘ mod p,
j=i
where Cl-j denotes standard combination
ﬁl])' Then we take the radical-inversion
¢plap,i,...,apy) defined as

k

oplar,...,a;) = Z

Jj=1

a;

pel

which is the same as above for n defined by the
CLDJ"S.

1if the sequence has at least two points, cf. Niederreiter
(1978)).
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Finally the (d-dimensional) Faure sequence is
defined by

(¢p(a1,1, ey aLk), ey gbp(ad,h ... ,ad7k)) S Id.

In the bidimensional case, we work in 3-basis, first
terms of the sequence are listed in table

n  ajzaizail’  aszazeazr  Plars..)  ¢(ags..)

0 0 0 0 0

1 1 1 1/3 1/3
2 2 2 2/3 2/3
3 10 12 1/9 7/9
4 11 10 4/9 1/9
5 12 11 7/9 4/9
6 20 21 2/9 5/9
7 21 22 5/9 8/9
8 22 20 8/9 2/9

Table 2: Faure first terms

2.2.5 Kronecker sequences

Another kind of low-discrepancy sequence uses
irrational number and fractional part. The
fractional part of a real = is given by {z} =
xz — |x]. The infinite sequence (n{a})n<o has a
bound for its discrepancy

1+ logn
—

D, <C

This family of infinite sequence (n{a})n<o is
called the Kronecker sequence.

A special case of the Kronecker sequence is the
Torus algorithm where irrational number « is a
square root of a prime number. The nth term of
Torus algorithm is defined by

(n{y/p1},-...n{/pa}) € I,

where (p1,...,pq) are prime numbers, generally
the first d prime numbers. With the previous
inequality, we can derive an estimate of the Torus
algorithm discrepancy:

o (1 —i—logn) '
n

lwe omit commas for simplicity.

2.2.6 Mixed pseudo quasi random se-
quences

Sometimes we want to use quasi-random se-
quences as pseudo random ones, i.e. we want to
keep the good equidistribution of quasi-random
points but without the term-to-term dependence.

One way to solve this problem is to use pseudo
random generation to mix outputs of a quasi-
random sequence. For example in the case of the
Torus sequence, we have repeat for 1 <i<n

e draw an integer n; from Mersenne-Twister in
{0,...,2¢ —1}
e then u; = {n;/p}

2.2.7 Good lattice points

In the above methods we do not take into account
a better regularity of the integrand function f
than to be of bounded variation in the sense of
Hardy and Krause. Good lattice point sequences
try to use the eventual better regularity of f.

If f is 1-periodic for each variable, then the
approximation with good lattice points is

[ f@ye~ 230 1)
=1

where g € Z% is suitable d-dimensional lattice
point.  To impose f to be l-periodic may
seem too brutal. But there exists a method
to transform f into a l-periodic function while
preserving regularity and value of the integrand
(see Niederreiter (1978)) page 983).

We have the following theorem for good lattice
points. For every dimension d > 2 and integer
n > 2, there exists a lattice points g € Z% which
coordinates relatively prime to n such that the
discrepancy D,, of points {%g}, .., { g} satisfies
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Numerous studies of good lattice points try to
find point g which minimizes the discrepancy. Ko-
robov test g of the following form (1,m, ..., m%!)
with m € N. Bahvalov tries Fibonnaci numbers
(F1,...,Fy). Other studies look directly for the
point @« = £ eg. o = (pﬁ,m,...,p#ll) or
some cosinus functions. We let interested readers

to look for detailed information in [Niederreiter
(1978).

3 Description of the random
generation functions

In this section, we detail the R functions imple-
mented in randtoolbox and give examples.

3.1 Pseudo random generation

For pseudo random generation, R provides
many algorithms through the function runif
parametrized with .Random.seed. We encour-
age readers to look in the corresponding help
pages for examples and usage of this function.
Let us just say runif use the Mersenne-Twister
algorithm by default and other generators such as
Wichmann-Hill, Marsaglia-Multicarry or Knuth-
TAOCP-2002".

3.1.1 congruRand

The randtoolbox package provides two pseudo-
random generators functions : congruRand and
SFMT. congruRand computes linear congruen-
tial generators, see sub-section By default,
it computes the |Park & Miller| (1988) sequence, so
it needs only the observation number argument.
If we want to generate 10 random numbers, we

type

> congruRand (10)

'see Wichmann & Hill| (1982), Marsaglial (1994) and
Knuth| (2002)

.6485238 0.7387460 0.1032293
.9747305 0.2957171 0.1177271
.6395649 0.1672669 0.2548319
.9590469

O O O O

One will quickly note that two calls to
congruRand will not produce the same output.
This is due to the fact that we use the machine
time to initiate the sequence at each call. But
the user can set the seed with the function
setRandSeed:

> setRandSeed (1)
> congruRand (10)

[1] 7.826369e-06 1.315378e-01
[3] 7.556053e-01 4.586501e-01
[5] 5.327672e-01 2.189592e-01
[7] 4.704462e-02 6.788647e-01
[9] 6.792964e-01 9.346929e-01

One can follow the evolution of the nth integer
generated with the option echo=TRUE.

> setRandSeed (1)
> congruRand (10, echo = TRUE)

1 th integer generated 16807
2 th integer generated 282475249
3 th integer generated 1622650073
4 th integer generated 984943658
5 th integer generated 1144108930
6 th integer generated 470211272
7 th integer generated 101027544
8 th integer generated 1457850878
9 th integer generated : 1458777923
10 th integer generated 2007237709

[1] 7.826369e-06 1.315378e-01

[3] 7.556053e-01 4.586501e-01

[5] 5.327672e-01 2.189592e-01

[7] 4.704462e-02 6.788647e-01

[9] 6.792964e-01 9.346929e-01

The integers used for the 10 first terms are listed
in table [3



3 DESCRIPTION OF THE RANDOM GENERATION FUNCTIONS 9

n  Tp n  Tp
1 16807 6 470211272
2 282475249 7 101027544
3 1622650073 8 1457850878
4 984943658 9 1458777923
5 1144108930 10 2007237709

Table 3: 10 first integers of Park & Miller| (1988))
sequence

We can check that the 9998th term of the
sequence. From CITATION, we know for sure
that integers of the Park-Miller sequence are
925166085, 1484786315, 1043618065, 1589873406,
2010798668. The congruRand generates

> setRandSeed (1614852353)
> congruRand (5, echo = TRUE)

1 th integer generated : 925166085
2 th integer generated : 1484786315
3 th integer generated : 1043618065
4 th integer generated : 1589873406
5 th integer generated : 2010798668
[1] 0.4308140 O. 6914075 0.4859725
[4] 0.7403425 0.9363511

with 1614852353 being the 9997th term.

However, we are not limited to the Park-
Miller sequence. If we change the modulus,
the increment and the multiplier, we get other
random sequences. For example,

> setRandSeed (12)
congruRand (5, mod = 278, mult = 25,
+ incr = 16, echo = TRUE)

\%

th integer generated : 60

th integer generated : 236
th integer generated : 28

th integer generated : 204
th integer generated : 252
1] 0.234375 0.921875 O 109375
4] 0.796875 0.984375

—, — O W N

Those values are correct according to |[Planchet
et al. (2005) (page 119).

Here is a list of RNGs computable with
congruRand:

RNG mod mult incr
Knuth - Lewis 232 1664525  1.01e9!
Lavaux - Jenssens 248 31167285 1
Haynes 264 6.36e172 1
Marsaglia 232 69069 0

Park - Miller 232 1 16807 0

Table 4: some linear RNGs

One may wonder why we implement such
a short-period algorithm since we know the
Mersenne-Twister algorithm. It is provided to
make comparisons with other algorithms. The
Park-Miller should not be viewed as a “good”
random generator.

Finally, congruRand function has a dim
argument to generate dim- dimensional vectors
of random numbers. The nth vector is build with
d consecutive numbers of the RNG sequence (i.e.

(Un+1, -+ -5 Untd))-

3.1.2 SFMT

The SF- Mersenne Twister algorithm is described
in sub-section Usage of SFMT function im-
plementing the SF-Mersenne Twister algorithm
is the same. First argument n is the number
of random variates, second argument dim the
dimension.

> SFMT (10)
> SFMT (5, 2)

[1] 0.82755719 0.41069176 0.47995492
[4] 0.06337025 0.63308225 0.07371121

11013904223
2636412233846793005
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—
~J
—
(@]

.75031772 0.39574669 0.56246988
[10] 0.78700141

(,1] [,2]
[1,] 0.3142382 0.50739370
[2,] 0.3066768 0.94906450
[3,] 0.1136327 0.06708027
[4,] 0.7164584 0.42288663
[5,] 0.1820726 0.82182600

We must precise that we do not implement
the SFMT algorithm, we “just” use the C code
of Matsumoto & Saito| (2008]). For the moment,
we do not fully use the strength of their code.
For example, we do not use block generation
for multivariate generation as well as SIMD
operations.

3.2 Quasi-random generation

In a near future, randtoolbox package will have
more than one quasi-random sequence. Currently,
we only have the Torus sequence with the function
torus. Its usage is the same.

> torus (10)

.41421356 0.82842712 0.24264069
.65685425 0.07106781 0.48528137
.89949494 0.31370850 0.72792206
.14213562

= o— —
o I
R
o o o o

These numbers are fractional parts of

V2,2¢/2,3V/2,..., see sub-section :2.2.1 for

details.

> torus (5, use = TRUE)

[1] 0.1375012 0.5517149 0.9659286
[4] 0.3801417 0.7943554

The optional argument useTime can be used to
the machine time or not to initiate the seed. If we
do not use the machine time, two calls of torus
produces obviously the same output.

If we want the random sequence with prime
number 7, we just type:

> torus (5, p = 7)

[1] 0.6457513 0.2915026 0.9372539
[4] 0.5830052 0.2287566

As described in sub-section [2.2.6] one way to
deal with serial dependence is to mix the Torus
algorithm with a pseudo random generator. The
torus function offers this operation thanks to

argument mixed (the Torus algorithm is mixed
with SFMT).

> torus (5, mixed = TRUE)

[1] 0.8823128 0.3098669 0.3084612
[4] 0.9642344 0.2850962

In order to see the difference between, we can plot
the empirical autocorrelation function acf.

> par (mfrow = c(2, 1))
> acf (torus (1075))
> acf(torus(10°5, mix = TRUE))

3.3 Visual comparisons

Before doing some serious statistical tests, we can
make visual comparisons of how random numbers
fill the unit square.

> par (mfrow = c(2, 1))
> plot (SFMT (1000, 2))
> plot (torus (1073, 2))
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Series torus(1075)
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Figure 1: Auto-correlograms
3.4 Applications of QMC methods

In this sub-section, we will present one financial
application of QMC methods. Firstly, we want to
price a vanilla European call. In the framework of
a geometric Brownian motion for the underlying
asset, Those options are already implemented in
the package fOptions of Rmetrics bundlel.

The payoff of this classical option is
f(57) = (Sr — K)+,

where K is the strike price. A closed formula for
this call was derived by [Black & Scholes| (1973]).

Lereated by [Wuertz et al.| (20075).
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The Monte Carlo method to price this option
is quite simple

1. simulate s7; for ¢ = 1...n from starting
point Sy,
2. compute the mean of the discounted payoff

% Z?:l €7TT(ST’Z‘ — K)+.

With parameters (Sp = 100, 7" = 1, r = 5%,
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K =60, 0 = 20%), we get the following relative
error as a function of number of simulation n.

We test two pseudo-random generators (namely
Park Miller and SF-Mersenne Twister) and one
quasi-random generator (Torus algorithm). No
code will be shown, see the file gmc.R in the
package source. But we use a step-by-step
simulation for the Brownian motion simulation
and the inversion function method for Gaussian
distribution simulation (default in R).

Vanilla Call

0.02
I

—— SFMT
— Torus
—— Park Miller

0.01
1

relative error
0.00
1

-0.01

-0.02

T T T T T T
0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

simulation number

As showed on the supra figure, the convergence
of Monte Carlo price for the Torus algorithm is
extremly fast. Whereas for SF-Mersenne Twister
and Park Miller prices, the convergence is very
slow.

Secondly, we want to price a barrier option:
a down-out call i.e. an Downward knock-Out
Call'. These kind of options are path-dependent,
i.e. we need to simulate a whole trajectory of the
underlying asset on [0, 7.

In the same framework of a geometric Brow-
nian motion, there exists a closed formula for
DOCs (see Rubinstein & Reiner| (1991)). Those
options are already implemented in the package
fExoticOptions of Rmetrics bundle?.

'DOC is disactived when the underlying asset hits the
barrier.
Zcreated by [Wuertz et al.| (2007d).

The payoff of a DOC option is

f(S1) = (51— K)4 L(7y>7),

where K is the strike price, T' the maturity, 74
the stopping time associated with the barrier H
and S; the underlying asset at time t¢.

As the price is needed on the whole period
[0,T], we produc as follows:

1. start from point s,
2. for simulation ¢ = 1...n and time index j =

1...d

e simulate St;i s
e update disactivation boolean D;

3. compute the mean of the discounted payoff
w2 e (sri — K)4Di,

where n is the simulation number, d the point
number for the grid of time and D; the opposite
of boolean D;.

In the following, we set T = 1, r = 5%, Sy =
100, H = K = 50, d = 250 and o = 20%. We
test crude Monte Carlo methods with Park Miller
and SF-Mersenne Twister generators and a quasi-
Monte Carlo method with (multidimensional)
Torus algoritm on the figure below.

Down Out Call

0.02
1

— SFMT
— Torus
—— Park Miller

0.01
L

relative error
0.00
1

T T T T T T
0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

simulation number

One may wonder how the Torus algorithm is
still the best (on this example). We use the d-
dimensional Torus sequence. Thus for time ¢;, the
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simulated underlying assets (st].,i)i are computed
with the sequence (i{,/p;});- Thanks to the
linear independence of the Torus sequence over
the rationals', we guarantee a non-correlation of
Torus quasi-random numbers.

However, these results do not prove the Torus
algorithm is always better than traditional Monte
Carlo. The results are sensitive to the barrier level
H, the strike price X (being in or out the money
has a strong impact), the asset volatility o and
the time point number d.

4 Random generation tests

Tests of random generators aim to check the
output wq,...,up,... could be considered as
independent and identically distributed (i.i.d.)
uniform variates. There are two kinds of tests
of the uniform distribution: first on the interval
10, 1], second on the binary set {0,1}. In this
note, we only describe tests for |0, 1] outputs (see
L’Ecuyer & Simard| (2007) for details about these
two kind of tests).

Some RNG tests can be two-level tests, i.e. we
do not work directly on the RNG output u;’s but
on a function of the output such as the spacings
(coordinate difference of the sorted sample).

4.1 Test on one sequence of n numbers
4.1.1 Goodness of Fit

Goodness of Fit tests compare the empirical
distribution F, of w;’s with a specific dis-
tribution (U4(0,1) here).The most known test
are Kolmogorov-Smirnov, Cramer-von Mises and
Anderson-Darling tests. They use different norms
to quantify the difference between F,, and Fug -

Yiee. for k # j, Vi, (i{\/P;}): and (i{\/pk})i are linearly

independent over Q.
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e Kolmogorov-Smirnov statistic is

Kn:\r

Fp(z) — FU(OJ) ()|,

zeR
e Cramer-von Mises statistic is
2 oo 2
W2 —n / (Fn(x) — Fu(oyw(x)) By, , (),
—0o

e and Anderson-Darling statistic is

2
o /+oo (Fu2) = B (@) dFig ()
" — 00 FZ//(OJ) (:B)(]‘ - Fu(o’l) (LU)) ‘

Those statistics can be evaluated empirically
thanks to the sorted sequence of w;’s. But we
will not detail any further those tests, since
according to |L’Ecuyer & Simard (2007) they are
not powerful for random generation testing.

4.1.2 The gap test

The gap test investigates for special patterns in
the sequence (u;)1<i<n. We take a subset [[,u] C
[0,1] and compute the ’gap’ variables with

G _[1 ifi<Ui<u
"1 0 otherwise.

The probability p that G; equals to 1 is just the
u — | (the Lebesgue measure of the subset). The
test computes the length of zero gaps. If we
denote by n; the number of zero gaps of length j.

The chi-squared statistic of a such test is given

by
S = Z (ng = np;)”
7j=1
where p; = (1 — p)?p’ stands for the probability

the length of gaps equals to j and m the max
number of lengths. We fix m to be at least

{log(l()_l) —2log(1—1p) — log(n)J
log(p)

in order to have lengths whose appearance prob-
abilitie is at least 0.1.

)
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4.1.3 The order test

The order test looks for another kind of patterns.
For a d-tuple, if the coordinates are ordered
equiprobably. For example with d = 3, we should
have an equal number of vectors (u;, wjt1, Ui1+2)i
such that

U < Uil < Ujt-2,
Ui < Uit2 < Ui,
Uit1 < Up < Ui42,
Uil < U2 < U,
Uit2 < Ui < Ui
and w1 < Ujya < U;.

For some d, we have d! possible orderings of
coordinates, which have the same probability to
appear %. The chi-squared statistic for the order
test for a sequence (u;)1<i<n is just

d!

g — Z (nj — m%)Q

=y
= Ma

where n;’s are the counts for different orders and

_n
m= 7.

4.1.4 The frequency test

The frequency test works on a serie of ordered
contiguous integers (J = [i1,...,4] NZ). If we
denote by (ni)1<i<n the sample number of the set
I, the expected number of integers equals to j € J
is

1
ip—11+1
which is independent of j. From this, we can
compute a chi-squared statistic

n,

g_ i (Card(n; = 1i;) — m)2.

m
=1

4.2 Tests based on multiple sequences

Under the i.i.d. hypothesis, a vector of output
values u;, ..., ujy+¢—1 is uniformly distributed over
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the unit hypercube [0, 1]*. Tests based on multiple
sequences partition the unit hypercube into cells
and count the number of points in each cell.

4.2.1 The serial test

The most intuitive way to split the unit hypercube
[0,1]" into k = d' subcubes. It is achieved by
splitting each dimension into d > 1 pieces. The
volume (i.e. a probability) of each cell is just %

The associated chi-square statistic is defined as

= (V=22
5= Z n\x
7=1
where NN; denotes the counts and A = % their

expectation.

4.2.2 The collision test

The philosophy is still the same: we want to
detect some pathological behavior on the unit
hypercube [0,1]*. A collision is defined as when
a point v; = (u;,...,u;+t—1) falls in a cell where
there are already points v;’s. Let us note C' the
number of collisions

The distribution of collision number C' is given

k-l
P(C=c¢) = H e 25,

=0

where 9S* denotes the Stirling number of the
second kind! and ¢ =0,...,n — 1.

But we cannot use this formula for large n since
the Stirling number need O(nlog(n)) time to be
computed. As L’Ecuyer et al| (2002) we use a
Gaussian approximation if A\ = 7 > 3% and n >
28 a Poisson approximation if A < % and the
exact formula otherwise.

they are defined by 2S5 = k x 2SF_; + 2SF"] and
28} = 287 = 1. For example go to wikipedia.
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The normal approximation assumes C follows
a normal distribution with mean m = n — k +
k (%)n and variance very complex (see L’Ecuyer
& Simard| (2007)). Whereas the Poisson approxi-
mation assumes C' follows a Poisson distribution
of parameter %

4.2.3 The ¢-divergence test

There exists generalizations of these tests where
we take a function of counts N;, which we called
¢-divergence test. Let f be a real valued function.
The test statistic is given by

We retrieve the collision test with f(z) = (z—1)4
and the serial test with f(z) = ﬂ Plenty of
statistics can be derived, for example if we want
to test the number of cells with at least b points,
f(z) = 1 (,—). For other statistics, see |L’Ecuyer

et al.| (2002).

4.2.4 The poker test

The poker test is a test where cells of the unit cube
[0,1]% do not have the same volume. If we split
the unit cube into d* cells, then by regrouping cells
with left hand corner having the same number of
distinct coordinates we get the poker test. In a
more intuitive way, let us consider a hand of k
cards from k different cards. The probability to
have exactly ¢ different cards is

1k .
P(C = C) = ﬁm QSka

where C' is the random number of different cards
and 259 the second-kind Stirling numbers. For a
demonstration, go to |[Knuth (2002).
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5 Description of RNG test func-
tions

In this section, we will give usage examples of
RNG test functions, in a similar way as section
illustrates section 21

5.1 Test on one sequence of n numbers

Goodness of Fit tests are already imple-
mented in R with the function ks.test for
Kolmogorov-Smirnov test and in package adk
for Anderson-Darling test. In the following, we
will focus on one-sequence test implemented in
randtoolbox.

5.1.1 The gap test

The function gap.test implements the gap test
as described in sub-section By default,
lower and upper bound are [ = 0 and u = 0.5,
just as below.

> gap.test (runif (1000))

Gap test

chisq stat = 15, df = 10
, p~—value = 0.14

(sample size : 1000)

length observed freqg theoretical freq

1 119 125
2 56 62

3 38 31

4 8 16

5 10 7.8
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6 5 3.9
7 3 2.0
8 3 0.98
9 1 0.49
10 1 0.24
11 0 0.12

If you want [ = 1/3 and u = 2/3 with a SFMT
sequence, you just type

> gap.test (SFMT(1000), 1/3, 2/3)

5.1.2 The order test

The Order test is implemented in function
order.test for d-uples when d = 2,3,4,5. A
typical call is as following

> order.test (runif (4000), d = 4)
Order test

chisg stat = 16, df = 15
, p-value = 0.35

(sample size : 1000)

observed number 37 55 44 41 40 39
45 35 37 42 39 38 43 56 36 46 38 41
34 41 47 43 39 44

expected number 42

Let us notice that the sample length must be a
multiple of dimension d, see sub-section [4.1.3

5.1.3 The frequency test

The frequency test described in sub-section
is just a basic equi-distribution test in [0, 1] of the
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generator. We use a sequence integer to partition
the unit interval and test counts in each sub-
interval.

> freq.test (runif (1000), 1:4)

Frequency test

chisq stat = 3, df = 3
, p~-value = 0.39

(sample size : 1000)

observed number 259 247 265 229

expected number 250

5.2 Tests based on multiple sequences

Let us study the serial test, the collision test and
the poker test.

5.2.1 The serial test

Defined in sub-section[4.2.1] the serial test focuses
on the equidistribution of random numbers in the
unit hypercube [0,1]*. We split each dimension
of the unit cube in d equal pieces. Currently in
function serial.test, we implement ¢t = 2 and
d fixed by the user.

> serial.test (runif (3000), 3)

Serial test

chisqg stat = 4.9, df = 8
, p-value = 0.77
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(sample size : 3000)

observed number 169 159 175 172
157 160 186 167 155

expected number 167

In newer version, we will add an argument ¢ for
the dimension.

5.2.2 The collision test

The exact distribution of collision number costs
a lot of time when sample size and cell number
are large (see sub-section . With function
coll.test, we do not yet implement the normal
approximation.

The following example tests Mersenne-Twister
algorithm (default in R) and parameters implying
the use of the exact distribution:

> coll.test (runif, 277, 2710)
Collision test

chisg stat = 20, df = 16
, p—value = 0.22

exact distribution
(sample number : 1000/sample size
/ cell number : 1024)

collision observed expected

number count count
1 4 2.3
2 15 10
3 28 29

128

4 74 62

5 115 102
6 148 138
7 139 156
8 130 151
9 131 126
10 92 93
11 60 61
12 36 36
13 13 19
14 10 9
15 2 3.9
16 1 1.5
17 2 0.56
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When the cell number is far greater than the
sample length, we use the Poisson approximation.
For example with congruRand generator we

have

> coll.test (congruRand, 278, 2714)

Collision test

chisqg stat = 57, df =7
, p—value = 5.6e-10

Poisson approximation
(sample number : 1000/sample size
/ cell number : 16384)

collision observed expected

number count count

0 177 135

1 212 271

2 270 271

3 183 180

4 129 90

5 26 36

6 0 12

7 3 3.4

256
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5.2.3 The poker test

Finally the function poker.test implements
the poker test as described in sub-section [4.2.4
We implement for any “card number” denoted by
k. A typical example follows

> poker.test (SFMT (10000))

Poker test

chisg stat = 0.92, df = 4
, p—value = 0.92

(sample size : 10000)

observed number 3 193 979 752 73

expected number 3.2 192 960 768 77

6 Calling the functions from
other packages

In this section, we briefly present what to do if
you want to use this package in your package.
This section is mainly taken from package expm
available on R-forge.

Package authors can use facilities from rand-
toolbox in two ways:

e call the R level functions (e.g. torus) in R
code;

e if random number generators are needed in
C, call the routine torus,...

Using R level functions in a package simply
requires the following two import directives:

Imports: randtoolbox

in file DESCRIPTION and

import (randtoolbox)

in file NAMESPACE.

Accessing C level routines further requires to
prototype the function name and to retrieve
its pointer in the package initialization function
R_init_pkg, where pkg is the name of the
package.

For example if you want to use torus C
function, you need

void (xtorus) (double *u, int nb, int dim,
int *prime, int ismixed, int usetime);

void R_init_pkg(DllInfo xdll)

{

torus = (void (%) (double, int, int,
int, int, int) \

R_GetCCallable ("randtoolbox", "torus");
}

See file randtoolbox.h to find headers of
RNGs. The definitive reference for these matters
remains the Writing R Extensions manual, page
20 in sub-section “specifying imports exports”
and page 64 in sub-section “registering native
routines”.
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