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Abstract

Pseudo-code for the simplex projection algorithm [1] and the S-map
algorithm [2]. Algorithms are presented for the simple case of predicting
one variable using its own time series.

Notation

E denotes the embedding dimension.

k denotes the number of nearest neighbors we use. For the simplex
method, the default is K = E + 1 but for the S-map method it can be
much larger.

T, denotes how many time-steps into the future we are trying to predict.
X € R denotes a (potentially long) time series.

y € R¥ is a vector of lagged observations for which we want to make a
prediction — in the simplest case where all components of the vector are
single time step lags, y; represents the current value, ys is the value one
time step prior and yg is the value F — 1 time steps prior.

0 > 0 is the tuning parameter in the S-map method.

XP = (X4, X¢_1,...,Xs_g11)" € R¥ denotes the lagged embedding vec-
tors.

||v|| is an unspecified norm of v. We do not specify which norm to use and
that choice is left to the user / reader.

|v[|3 = >, v7 is the squared L2-norm (squared Euclidean distances).

Entries of matrices and vectors are indexed in the standard linear algebraic
fashion, starting at 1 (like the R standard) and not at 0 (like the C/C++
and python standard).



2 Helper Methods

2.1 Nearest neighbors

I will not write implementation of the nearst neighbors method, just present its
description. The method will be used with the signature presented in algorithm
1.

The input variables X,y and k are defined in section 1. The method returns
a list of indices N = {Ny, ..., Ni} such that

IXE —yl < IXE —ylif1<i<j<k,

Algorithm 1 Find Nearest neighbors
1: procedure NEARNEIGHBOR(y, X, k)

2.2 Least Squares

A least squares method finds x that minimizes the error in the solution of an
over-determined linear system (more equations than variables). Below, A €
RP*? p > g and b € RP and the least squares problem is to find

& := arg min || Az — b||3.
z€R?

This problem can be solved using a Singular Value Decompostion (SVD), as
outlined in algorithm 2.

Algorithm 2 Least Squares via SVD

1: procedure LEASTSQUARES(A, b) > Assume A € RP*?, p > q.
2 U,S,V «+ SVD(A) > Thus, A =USV’
3 S < 7ZEROS(q, p) > The zero matrix in R9*?
4 for i=1,...,q do

5: if S;; >107°5;; then > Note that 107° is arbitrary
6 S 5=

7 x < VSmU'h

8 return z

3 Simplex Projection

Ignoring ties in distances, minimal distances, minimal weights and other poten-
tial hazards, the following algorithm performs Simplex projection to predict T},
time-steps ahead.



Algorithm 3 Simplex Projection [1]

1: procedure SIMPLEXPREDICTION(y, X, E, k, T},)
2: N < NEARNEIGHBOR(y, X, k) > Find k nearest neighbors.
3: d + ||X}\E,1 — 9l > Define the distance scale.
4: fori=1,...,k do
5 w; + exp(—||X¥, —yll/d) > Compute weights.
6 7+ Zle (w; XN, +1,) /Zf:1 w; > prediction = average of predicitions.
7 return §

4 S-map

Ignoring ties in distances, minimal distances, minimal weights and other po-
tential hazards, the following algorithm uses the S-map method to predict T},
time-steps ahead.

Algorithm 4 S-map [2]

1: procedure SMAPPREDICTION(y, X, E, k, T}, 6 )
2 N < NEARNEIGHBOR(y, X, k) > Find NN to use for prediciton.
3 d< 1 Zle IXE5 -yl > Sum of distances.
4: fori=1,...,k do
5 w; + exp(—0|XF —yl/d) > Compute weights.
6 W + diag(w;) > Reweighting matrix.
1 XN1 XN1,1 XNI,EJrl
1 XN2 Xszl XN27E+1
7: A . . . > Design matrix.
1 XNk XNk,1 XNk7E+1
8: A—WA > Weighted design matrix.
XN+,
XNo+T,
9: b+ . > Response vector.
XNk+Tp
10: b+~ Wb > Weighted response vector.
11: ¢« argmin, ||Ac — b||3 > Least squares, can be solved via algorithm 2.
12: 9 < Co + Zf;l CiYi > Using the local linear model ¢ for prediction.
13: return g

Note that k, the number of nearest neighbors used for prediciton, can be
very large compared to the embedding dimension E. Since A € R¥*(+E)  this
means that A is “tall and skinny” and the system Ac = b is over-determined (it
has more equations than variables). This means (typically) that there does not
exist any unique c that solves said system. This is why we seek a least-squares
solution instead.
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