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Abstract

We present an introduction to QTL analysis based on new Bayesian scan routines
available in the R/qtlbim package. These routines allow exploration of single and
multiple QTL models. Additionally plotting routines allow visual exploration of the
genetic architecure for a phenotypic trait. We present tutorial examples based on both
experimental and simulated data.

1 Overview

This document describes 1-D and 2-D Bayesian genome scan routines available in
the R/qtlbim package. In the present context, the term “scan” refers to methods
based on constructing one or two dimensional profiles of QTL likelihoods or posterior
distributions. These new scan routines in R/qtlbim are analogous to the routines
scanone and scantwo from the R/qtl package. On a practical level, using R/qtlbim
scan routines is very similar to using R/qtl’s scanone and scantwo methods. The key
difference between the scan routines in R/qtlbim and the scan routines in R/qtl lies
in the technique used for constructing QTL summaries. R/qtlbim extends R/qtl by
providing the ability to generate Markov chain Monte Carlo (MCMC) samples from a
posterior distribution for the genetic architecture of a trait. Furthermore the putative
genetic architectures sampled can include an arbirary number of QTL.

The R/qtlbim package’s scan routines are called qb.scanone and qb.scantwo. Be-
cause these scans are motivated by Bayesian MCMC techniques we refer to qb.scanone
and qb.scantwo collectively as “qb.scans” or “qb.scan routines”. The utility of the
qb.scan routines lies in their ability to provide interpretable summaries of the high-
dimensional MCMC samples. The scan summaries use ideas of Bayesian model av-
eraging to explore the most probable models given the data. For example, in a one
dimensional genome scan, we might consider the contribution of each potential locus
averaging over all sampled models that include that locus. This allows us to adjust for
the possible effects of all other loci by examining the marginal distributions. This has
the advantage of reducing variation explained by other loci and reducing bias due to
linked loci. Thus a one dimensional marginal scan can be informative about higher-
order models directly without bias or variance inflation. Although the development
of the qb.scan routines is motivated by Bayesian techniques, the interpretation of
qb.scans involve a mix of frequentist and Bayesian ideas. In what follows we show the
resolving power of low-dimensional scans that condition on the presence of other QTL
using simulated data with one QTL and the hyper data set.

2 Using and Interpreting Qb.Scan Routines

This section illustrates the basic uses and interpretation of the qb.scan routines using
both simulated data and experimental data. The value of the simulated data is that
we have complete control over the model from which the data are generated, so that
we can provide very simple examples with predictable outcomes. Our real data is the
hyper data included in the R/qtl package.
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2.1 Simulating Data Using R/qtl

As an initial illustration, we use simulated data with a modest sample size. For the
simulation we set the number of individuals in the sample (n.ind) to be 100,

> n.ind <- 100

assign a single QTL at position (qtl.pos) 100 on a 200cM chromosome (n.mark) with
markers at every 1cM (by.mark),

> n.mark <- 200

> by.mark <- 1

> qtl.pos <- n.mark/2

and set the substitution effect size (qtl.effect) to be 2.

> qtl.effect <- 2

In order to use these setting to simulate a data set requires four steps.

1. First, invoke the R/qtlbim library. Notice that when R/qtlbim is loaded the
R/qtl library and any other required packages will be automatically loaded.

> library(qtlbim)

Loading required package: qtl
Loading required package: lattice
Loading required package: coda

2. Second, create a sequence of marker data (markers) and use sim.cross to sim-
ulate a data set with one QTL.

> markers <- seq(0, n.mark, by = by.mark)

> names(markers) <- paste("M", markers, sep = "")

3. Third, construct a marker map (sim.map) and a model (sim.model). The marker
map specifies which markers appear on each chromosome. The model is a matrix
specifying the chromosome, the qtl position and effect size.

> sim.map <- list(ch1 = markers)

> sim.model <- matrix(c(1, qtl.pos, qtl.effect/2),

+ 1, 3)

> colnames(sim.model) <- c("chromosome", "qtl-position",

+ "effect-size")

4. Fourth, simulate data using the R/qtl function sim.cross. Because sim.cross
uses R’s internal random number generator, setting R’s random number seed prior
to calling sim.cross guarantees that the simulation is repeatable. We only do
1000 iterations here for demonstration purposes.

set.seed(1234)

sim <- sim.cross(map = sim.map, model = sim.model,

n.ind = n.ind, type = "bc")

The summary function can be used to give a quick synopsis of the simulated data.

> summary(sim)
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Backcross

No. individuals: 100

No. phenotypes: 1
Percent phenotyped: 100

No. chromosomes: 1
Autosomes: ch1

Total markers: 201
No. markers: 201
Percent genotyped: 100
Genotypes (%): AA:47.9 AB:52.1

It is worth noting that creating our simulated data has only required functions available
in the R/qtl package and that up to this point we have not called any functions from
the R/qtlbim package. Later we simulate data from multiple QTL models. Simulating
these multiple qtl models requires using the qb.sim.cross function in the R/qtlbim
package.

2.2 Loading the hyper Data

The hyper data come from 250 backcross individuals in which the phenotype is blood
pressure. To load hyper use the command

data(hyper)

A summary of hyper can be displayed with

> summary(hyper)

Backcross

No. individuals: 250

No. phenotypes: 1
Percent phenotyped: 100

No. chromosomes: 19
Autosomes: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Total markers: 170
No. markers: 22 8 6 20 14 11 7 6 5 5 14 5 5 5 11 6 12 4 4
Percent genotyped: 47.9
Genotypes (%): AA:50.1 AB:49.9

We need to exclude the X chromosome from our work with hyper as R/qtlbim does
not yet handle this properly. To accomplish this we identify the chromosome named
“X” and select all but this chromosome.

hyper <- subset(hyper,sapply(hyper$geno,class) != "X")
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2.3 Running the MCMC Analysis on Simulated Data &
The hyper Data

Now that we have data, we can begin to use the new methods available through
R/qtlbim. The next step in using the R/qtl package would be to use the function
calc.genoprob to create genotype probabilities based on a Hidden Markov model.
For the Bayesian model selection, we replace calc.genoprob with the R/qtlbim func-
tion qb.genoprob followed by the MCMC sampler (qb.mcmc). The MCMC sampler
has random number generator and does not use R’s built-in random number generator,
in order to make our simulations repeatable we pass an integer seed (qb.random.seed)
directly to qb.mcmc.

sim <- qb.genoprob(sim,step=2)

qbSim <- qb.mcmc(sim, epistasis=FALSE, n.iter = 1000,

seed=1616, verbose=FALSE, mydir="scanPDF")

By default the qb.mcmc function will print out progress messages of the number of
iterations completed. These progress messages can be suppressed by setting ver-
bose=FALSE. To run the MCMC sampler on the hyper data we use the command

hyper <- qb.genoprob(hyper, step=2)

qbHyper <- qb.mcmc(hyper, genoupdate=TRUE, n.iter = n.iter,

seed = qb.random.seed, verbose=FALSE,mydir="scanPDF")

2.4 Using qb.scanone

The object qbSim created above contains the results of the MCMC run. Each iteration
of the Monte Carlo chain represents a single QTL model. The entire Monte Carlo chain
represents a sample from the posterior distribution of all possible models. One simple
summary of the MCMC sample is the posterior profile, or the posterior probability of
a QTL at each locus. A summary and plot of these counts is carried out as follows.

> temp <- qb.scanone(qbSim, type = "posterior")

> summary(temp)

chr n.qtl pos m.pos main
ch1 1 2.677 98 98 0.277

The plot of qb.scanone.counts shows that the overwhelming majority of models in-
cluded just one QTL in the vicinity of marker 100. This is consistent with out simulated
data since the true model was for a single QTL at marker 100.

In order to run qb.scanone on the qbHyper we follow the same procedure. Here
we show 2log(BF), or log of the Bayes factor, measuring the strength of evidence (>
2.1 is high) for a QTL.

> temp <- qb.scanone(qbHyper, type = "2logBF")

The plot of qb.scanone shows noticable peaks on chromosomes 1, 4, 6 and 15. The blue
lines in the plot indicate main effects, the purple indicate epistatic effects and black
curves (where visible) represent the sum of main and epistatic effects. In order to
examine the effects on 1, 4, 6 and 15 more closely, we can plot subsets of chromosomes
(Figure 3) by using the plot command plot(temp, chr=c(1,4,6,15).
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> plot(temp)
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Figure 1: Plot of qb.scanone for posteriro of simulated data. Notice that the overwhelming
majority of the posterior is concentrated in the vicinity of marker 100.
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Figure 2: Plot of qb.scanone for 2log(Bayes factor) on blood pressure (bp) for the hyper

data.
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Figure 3: The qb.scanone results for the hyper data restricted to chomosomes 1,4,6 and 15.

2.5 Using qb.scantwo

The function qb.scantwo gives a two dimensional scan that allows us to look for
possible epistatic effects between putative QTL. Before using qb.scantwo on the hyper
data set we will illustrate the the use and interpretation of qb.scantwo on extremely
simple simulated data. After examining the results from the simulated data we will
use qb.scantwo to explore the hyper data set.

2.5.1 Simulating Data with Epistatic Effects & No Main Effects

In order to simulate data for which there is an epistatic effect but no main effects, we
use the R/qtlbim function qb.sim.cross. Through the rest of this document we reuse
the names of objects sim and qbSim to simplify presentation, but their contents change
depending on the example.

1. Determine the positions of qtl by specifying the qtl.positions parameter. This
parameter gives a matrix with dimensions (number of qtl) x 2. Each row iden-
tifies a qtl, the first column’s entries represent the chromosome’s index, the second
column’s entries represent the location on the chromosome of the qtl. The order
in which qtl are listed in this parameter is the index by which they are identified
later on in the parameters qtl.main and qtl.epi.

> qtl.positions <- rbind(qtl1 = c(chromosome = 1,

+ locus = 5), qtl2 = c(chromosome = 1, locus = 50),

+ qtl3 = c(chromosome = 2, locus = 33))

> qtl.positions

chromosome locus
qtl1 1 5

8



qtl2 1 50
qtl3 2 33

2. Specify the main effects of the qtl by the qtl.main.model parameter. The qtl
indices listed here are the row indices of the qtl.positions (or qtl.pos) param-
eter.

> qtl.main.model <- rbind(qtl1.main.effect = c(qtl = 1,

+ main.effect.size = 0), qtl2.main.effect = c(qtl = 2,

+ main.effect.size = 0), qtl3.main.effect = c(qtl = 3,

+ main.effect.size = 0))

> qtl.main.model

qtl main.effect.size
qtl1.main.effect 1 0
qtl2.main.effect 2 0
qtl3.main.effect 3 0

3. Specify the epistatic effects using the qtl.epi.model parameter.

> qtl.epi.model <- rbind(qtl1.and.qtl3.epi.effect = c(qtl1 = 1,

+ qtl2 = 3, epi.effect.size = 10))

> qtl.epi.model

qtl1 qtl2 epi.effect.size
qtl1.and.qtl3.epi.effect 1 3 10

4. Call the qb.sim.cross function. The parameter len gives the lengths of each
chromosome. Thus len = c(80,90,44) would represent a model with three chro-
mosomes of lengths 80, 90, and 44 respectively. Similarly the parameter n.mar
gives the number of markers on each chromosome. If a single number is entered
for n.mar then all chromosomes will have the same number of markers.

set.seed(1234)

sim <- qb.sim.cross(len=rep(100,2), n.mar=10, eq.spacing=TRUE,

n.ind=100, type="bc", missing.geno=0.03, qtl.pos=qtl.positions,

qtl.main=qtl.main.model, qtl.epis=qtl.epi.model)

Finally we can run qb.genoprob and qb.mcmc on the simulated data, just as we would
for data that arose from an actual experiment.

## Call qb.genoprob to fill in missing data.

sim <- qb.genoprob(sim)

## Call qb.mcmc and then analysis code.

qbSim <- qb.mcmc(sim,n.iter=n.iter,verbose=FALSE,

seed=qb.random.seed,mydir="scanPDF")

Next we use qb.scantwo to examine the heritability, or percent varianced explained,
per pair of loci.

> temp <- qb.scantwo(qbSim)

> summary(temp, digits = 2)

chr1 chr2 n.qtl l.pos1 l.pos2 lower u.pos1 u.pos2 upper
1.1 1 1 1.24 6.67 24.44 3.60 44.44 46.67 13.16
1.2 1 2 2.85 6.67 33.33 84.33 6.67 33.33 84.31
2.2 2 2 0.67 0.00 33.33 1.23 66.67 97.78 0.97
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Figure 4: Plot of qb.scantwo results from simulated data with an epistatic effect but no
main effects. Heritability is R-squared, or percent variation explained. Epistasis in the upper
triangle is indicated by the two isolated peaks. Notice that the peaks occur at the locations
expected from the simulation: around 5 cm on chromosome one and 33 cm on chromosome
two.
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The plot of the results from running qb.scantwo on the simulated data shows two
isolated peaks each representing the interaction of the first and third QTL. This illus-
trates that under idealized circumstances we would expect a plot of qb.scantwo results
to show evidence for epistasis in the form of a peak in the vicinity of the position cor-
responding to the loci of the two QTL.

2.5.2 Simulating Data with Main Effects But No Epistatic Effects.

In order to illustrate the extreme case where there are main effects but no epistatic
effects we can modify the simulation parameters qtl.main.model and qtl.epi.model.
Since qtl.main.model consisted entirely of zeros (indicating no main effects), we can
add a main effect of size 10 for the first QTL as follows.

> qtl.main.model[1, "main.effect.size"] = 10

Since we have no epistatic component to the new model, we replace qtl.epi.model in
the call to qb.sim.cross with NULL.

set.seed(1234)

sim <- qb.sim.cross(len=rep(100,2), n.mar=10, eq.spacing=TRUE,

n.ind=100, type="bc",

missing.geno=0.03, qtl.pos=qtl.positions,

qtl.main=qtl.main.model, qtl.epis=NULL)

Running qb.sim.cross, qb.mcmc and plotting the results of qb.scantwo gives a plot
of data in which there is no epistatic effect, but in which there is a main effect. This
is indicated by the horizontal band at 5cm on chromosome 1.

sim <- qb.genoprob(sim)

qbSim <- qb.mcmc(sim,n.iter=n.iter,verbose=FALSE,

seed=qb.random.seed,mydir="scanPDF")

> temp <- qb.scantwo(qbSim)

> summary(temp, digits = 2)

chr1 chr2 n.qtl l.pos1 l.pos2 lower u.pos1 u.pos2 upper
1.1 1 1 3.40 6.67 42.22 94.57 4.44 40.00 0.00
1.2 1 2 1.20 42.22 75.56 0.08 44.44 42.22 0.26
2.2 2 2 0.15 51.11 64.44 0.09 53.33 60.00 0.09

Notice that in Figure 5 the main effect is represented by the horizontal band at 5cm.
The corresponding qb.scanone results for qbSim are shown in Figure 6.

2.5.3 Simulating Data with Main Effects & Epistatic Effects.

As a final example of qb.scantwo operating on simulated data, we can take a look at
data that involves both an epistatic effect and a main effect. To do with we use the
value of qtl.main.model above which specifies a main effect and the original value of
qtl.epi.model.

set.seed(1234)

sim <- qb.sim.cross(len=rep(100,2), n.mar=10, eq.spacing=TRUE,

n.ind=100, type="bc", missing.geno=0.03, qtl.pos=qtl.positions,

qtl.main=qtl.main.model, qtl.epis=qtl.epi.model)
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Figure 5: The plot of qb.scantwo with a main effect for a QTL at position 5 on chromosome
1 but no epistatic effect. Notice the long band in the lower triangle.
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Figure 6: Heritability for simulated data with main effect but no epistasis examined under
qb.scanone. As expected from the simulate there is a peak in the blue (main effects) curve
near position five on chromosome one.
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Running qb.sim.cross, qb.mcmc and plotting the results of qb.scantwo gives an ide-
alized plot of data with both main and epistatic effects. It is essentially an overlay of
the previous two plots. We leave the details to the reader.

2.5.4 Running qb.scantwo on the hyper Data

To run qb.scan two on the hyper data set, we can use our previous results of the MCMC
algorithm running on the hyper data.

> temp <- qb.scantwo(qbHyper, chr = c(4, 6, 15))

> summary(temp, digits = 2)

chr1 chr2 n.qtl l.pos1 l.pos2 lower u.pos1 u.pos2
4.4 4 4 0.30 29.5 74.3 20.92 0.0 28.40
4.6 4 6 1.56 29.5 66.7 22.73 74.3 59.00
4.15 4 15 0.45 29.5 17.5 20.97 74.3 35.55
6.6 6 6 1.21 61.2 66.7 5.06 27.3 65.60
6.15 6 15 1.08 59.0 17.5 17.21 59.0 17.50
15.15 15 15 0.11 17.5 27.5 5.26 17.5 25.50

upper
4.4 0.00
4.6 1.71
4.15 6.86
6.6 0.36
6.15 9.80
15.15 2.41

Using the results from the two-dimensional qb.scans of the simple simulated data as a
guide, the plot of qb.scantwo shows a main effect from a QTL on chromosome 4 and
epistatic effects between the pairs of QTLs on chromosomes 4 and 15 and 6 and 15.

3 Types of Scan Summaries

We have created several types of scan summaries, illustrated below. These include
the following LPD, heritability, variance components, parameter estimates, cell means,
posterior probabilities and Bayes factors. Below we detail what these are and how they
are calculated.

For each type, we can provide a summary scan, and in addition provide detail
broken down by main effects, epistatic effects, and/or GxE (genotype by environment,
or genotype by covariate) interactions. These breakdowns can be further divided into
Cockerham (1954; see Kao and Zeng 2002) type effects (additive and dominance for
main effects, or the four epistatic interactions of aa, ad, da, dd) if desired.

� count gives the count of the number of MCMC samples including this locus.
Currently this can be viewed on a log scale using type log10.

� posterior is the Bayesian posterior probability, basically the count divided by
the total number of MCMC samples.

� BF provides the Bayes factor comparing the model with and without this locus.
It is more easily viewed as 2logBF.
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� estimate gives model parameter estimates for main effects, epistasis, and GxE
interactions.

� cellmean provides marginal means at a locus, adjusted for all other model effects
from other QTL and covariates.

� variance yields the variance components for QTL effects associated with a par-
ticular locus.

� heritability is actually at this point explained variation. In a future release we
may distinguish Rsquared and idealized heritability.

� LPD is the log posterior density, adapted from Morton’s (1995) log odds ratio
(LOD) used in human genetics to LOD maps by Lander and Botstein (1989). The
LPD for QTLs was introduced by Sen and Churchill (2001). It tests presence or
absence of a QTL at a locus, adjusting for all other possible model effects (other
QTL, epistasis and GxE). The LPD, the LR or likelihood ratio, and the deviance
are detailed in the next section.

� detection is the posterior probability of detection of a QTL at a locus.

4 Theoretical Development

This section could be skipped. It is aimed at those quantitative folks who have read Yi
et al. (2005) for the math and want to know more. Here we leave out details concerning
covariates to simplify presentation.

Given complete data on genotypes for all individuals across the genome, we could
consider a model relating phenotype y to genotype g through a design matrix X,

y = µ + XΓβ + e .

The unknown effect parameters are the grand mean, µ, the effect parameters, β, and
the unexplained variance, σ2 = V (e), which for convenience, we bring together as
θ = (µ, β, σ2) . The genetic architecture is specified by Γ = diagγ, which has values of
1 or 0 to indicate presence or absence, respectively, of the corresponding model effect.
The QTL model could thus be written as p(y|γ, X, θ) .

This genetic architecture specified by a 0-1 vector γ allows us to consider models
of different dimensions, e.g. one vs. two QTL, without resorting to a more compli-
cated (reversible jump) sampling scheme. The unknown values γ are the key device
in sampling over many different possible genetic architectures, in terms of what loci λ
are included and what gene action is important. There is some redundancy between
γ and λ: a locus is in the model only if at least one γ associated with that locus is
1. Technically, we consider probabilities p(λ|γ) that can only be 0 or 1 to indicate
whether the loci, λ , are compatible with the genetic architecture, γ . While the loci
are determined by the genetic architecture, γ is not completely determined by λ. We
exploit this to make more efficient code and to build diagnostic summaries.

Recall from Yi et al. (2005) that the whole-genome genotype information, g, and
the design matrix, X, are 1-1 mappings. In other words, p(X|g) is either 0 or 1,
depending on whether, for instance, the design is compatible with the genotypes.
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4.1 Likelihood and posterior

In a classical setting, the full likelihood augmented by genotypes, g, over the genome
is

p(y, g|m, γ, θ) = p(y|γ, X, θ)p(X|g)p(g|m,λ)p(λ|γ) ,

with m the marker genotypes across the genome and p(g|m,λ) the map function. At
most loci, we do not fully know genotypes g, hence the likelihood given observable data
is averaged over g,

L(γ, θ|y, m) =
∑
g

p(y, g|m, γ, θ) .

With no QTL, we write L(µ|y) for the null likelihood.
In a Bayesian perspective, a prior p(γ, θ) is placed on the unknowns, and we study

the posterior,
p(g, γ, θ|y, m) ∝ p(y, g|m, γ, θ)p(γ, θ) .

To study the unknown parameters of interest, (γ, θ) , we average the posterior over the
genotypes, or equivalently, form a weighted average of the augmented likelihood with
weights proportional to the prior on (γ, θ) ,

p(γ, θ|y, m) =
∑
g

p(g, γ, θ|y, m) ∝
∑
g

p(y, g|m, γ, θ)p(γ, θ) .

4.2 Parameter estimation

Classically, the parameters of interest, (λ, θ) , are estimated by maximizing the like-
lihood. This is usually done in a QTL setting by profiling the likelihood, or LOD
(see below), with respect to one locus or two loci over the genome. We think of that
here as profiling with respect to a given genetic architecture, γ , to find the maximum
likelihood estimate (MLE) for β ,

β̂ = V ΓXT y ,

with V = (ΓXT XΓ)−1 and σ2V the variance-covariance matrix for β̂ . Here we assume
the columns of X are centered on zero, so the MLE for the reference is µ̂ = ȳ .

Bayesian parameter estimates are typically found as the posterior means, which
shrink µ̂ toward its prior mean µ0 and β̂ toward the prior mean of 0, leading to poste-
riors

µ ∼ N
(
(1− b)µ0 + bȳ, bσ2/n.ind

)
,

and
β ∼ N

(
Bβ̂, Bσ2V

)
,

with b and B being Bayesian shrinkage factors. As we gather more data, the Bayesian
priors focus on the MLEs, i.e. b and B tend to 1. The likelihood and the posterior
are both fairly symmetric around the maximum, for any given γ. Thus, the posterior
mean and the MLE for β are very close in practice. This is less apparent from the
summaries in the previous section, as the Bayesian estimates are attenuated by the
putative effects of other QTL along the genome. This is a technical post-processing
issue of properly sorting out the effects of multiple linked loci, which we intend to
address in the next freeze. Notice in the second plot how closely the qb.scanone (solid
red line) and scanone (dashed black line) profiles of the substitution effect agree near
100cM.
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4.3 Variance components

Variance components can also be estimated in both approaches. The classical unbiased
estimate for environmental variance is σ̂2 = RSS(θ̂)/df , with RSS(θ) =

∑
(y − µ −

XΓβ)2 and df = n.ind− 1−
∑

γ.
A Bayesian posterior estimate of σ2 is its posterior mean, which is a weighted

average of RSS(θ)/n.ind and its prior mean. Its empirical estimate can be found by
averaging the posterior samples,

> summary(qb.scanone(qbSim, type = "variance", scan = "env"))

chr n.qtl pos m.pos env
1 1 3.124 42.222 4.444 1.446
2 2 0.370 75.556 60.000 1.437

Heritability is computed as the percent of explained variation, h2 = 100(TSS −
RSS(θ))/TSS , with TSS =

∑
(y − ȳ)2 the total sum of squares. [The idealized

variation would substitute expected fractions for the X2 terms based on the type of
cross.] We can find the posterior estimate of variability as the main entry below:

> summary(qb.scanone(qbSim, type = "heritability"))

chr n.qtl pos m.pos e.pos main epistasis sum
1 1 3.124 42.222 4.444 42.222 94.542 34.362 34.464
2 2 0.370 75.556 60.000 75.556 1.213 1.641 1.720

4.4 LOD, LPD and BF

The classical approach introduced by Lander and Botstein (1989) profiles the likelihood
only along the ridge of maximum β for each λ. That is, at each λ, find β that maximizes
the LOD. The LOD map is a plot of this profile. The LOD statistic to assess QTL is

LOD(λ) = c + log10

(
max

θ
L(γ, θ|y, m)p(λ|γ)

)
,

with the constant being c = − log10(maxµ L(µ|y)) . The likelihood ratio is LR =
10LOD , and deviance is D = 2 log(10)LOD .

The Bayesian approach provides a direct estimate of the posterior as the histogram
of the samples from the Markov chain Monte Carlo. Sen and Churchill (2002) proposed
profiling the log posterior density, LPD, which involves averaging over the unknown
parameters θ,

LPD(λ) = C + log10

(∑
θ

p(γ, θ|y, m)p(λ|γ)

)
.

[The sum over θ is actually an multidimensional integral, but we ignore those details
here.] Here the constant C would involve averaging over the null likelihood with respect
to the prior on µ. In practice, LOD and LPD are often pretty close to each other and
can be used interchangeably.

One advantage of sampling a large set of possible models by MCMC is that Bayes
factors are easily computed. We do not have to resort to fancy harmonic means as
in Newton and Raftery (199x). Instead, we construct marginal posterior histograms
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for models to be compared, and rescale by their priors. For instance, to compare two
genetic architectures, we construct

BF =
p(γ|y, m)/p(γ)

p(0|y)/p(0)
,

in which p(0) is the prior on γ being all zero (no QTL at all) and p(0|y) is the posterior.
Actually, p(0|y)/p(0) ∝ p(y) =

∑
µ p(y|µ)p(µ) , with the sum really an integral over the

real line. Often this is more interpretable on a log scale as 2 log(BF ) , which we can
compute as

> summary(qb.scanone(qbSim, type = "2logBF"))

chr n.qtl pos m.pos e.pos main epistasis sum
1 1 3.124 42.222 4.444 42.222 4.863 15.916 0
2 2 0.370 75.556 60.000 75.556 0.000 0.000 0

4.5 Marginal Summaries

Our primary interest here is in marginal statistics. Consider that the model has genetic
architecture γ that include loci λ . We want to ask what is the contribution to the model
of some subset of indicators, γ2 , associated with a locus, or a set of loci, λ2 . We might
ask this in a variety of ways, looking at evidence in terms of LOD or a related statistics,
or the contribution in terms of variance components, heritability, or parameter effects.
We can think of partitioning the genetic architecture into two components, γ = (γ1, γ2) ,
with a corresponding partition of the effect parameters,

Γβ = (Γ1 + Γ2)β .

The subset of effect parameters, β2 = Γ2β , may include, for instance, the main effects
for locus λ2 plus some or all epistatic effects that involve this locus. We can then ask
questions about β2, or about γ2 and λ2, adjusting for the presence of effects β1 = Γ1β .
Note that β1 could include some model parameters for λ2.

4.5.1 Variance components

Here and through the rest of this document, we argue that we can characterize im-
portant diagnostic summaries using marginal properties of MCMC samples. The key
technical argument is in the next paragraph. Namely, we can use the marginal variance
components of our model fit, ignoring covariances, to construct approximate statistics.

If the columns of X are nearly orthogonal to each other, then the variance-covariance
matrix for the effect parameter MLEs, var(β̂) = σ2V , would be diagonally dominant.
That is, we suppose the variances along the diagonal are larger than the sum of the
absolute covariances. Formally, with v = diag(V ) and V(j) the j column of V ,

2v(j) ≥
∑

|V(j)| .

In other words, we assume the covariances among effect estimates are negligible, and
the diagonal values are approximately v(j) ≈ γ(j)/

∑
X2

(j) , with X(j) the jth column of
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X . In this case we can approximate V by its diagonal, D = diag(v), and get a good
approximation of V −1 using D−1:

V −1 = D−1[I + O]−1 ,

with O being on the order of (V −D)D−1 . As long as the diagonal entries of D are large,
then this approximation is good. Where these variances are small, the approximation
is not so useful.

Since we are interested in learning about effects with larger variance components,
this approximation seems quite workable in the present setting. It should a pretty
reasonable between terms for unlinked loci, and under conditions of Hardy-Weinberg
equilibrium among alleles at each locus. Note also that epistatic effects between linked
loci will be addressed directly by construction of columns of X. [I believe the discrep-
ancy of the diagonal can be readily checked under H-W by adding another type to the
qb.scan routines–next freeze.]

With this approximation the explained variation can be approximated as

TSS −RSS(θ) =
∑

(XΓβ)2 ≈ γT r ,

with r(j) = β2
(j)

∑
X2

(j) being the variance explained by the jth component of the
genetic architecture. Then the difference, RSS(θ1)−RSS(θ) ≈ γT

2 r =
∑

r2 , is simply
the sum of variance components, which are readily stored for each MCMC iteration.
Here, r2 contains the elements of r corresponding to γ2 = 1, and θ1 = (µ, β1, σ

2) .
Marginal heritability is computed as the additional variation explained by the ge-

netic architecture γ2 given γ1 ,

h2 =
RSS(θ1)−RSS(θ)

TSS
=

γT
2 r

TSS
.

4.5.2 LOD, LPD and BF

The adjusted LOD to compare the full model to the reduced model with γ2 = 0 is

LOD(γ2|γ1) = log10

 max
θ

L(γ, θ|y, m)

max
θ1

L(γ1, θ1|y, m)

 .

The adjusted LPD is similarly,

LPD(γ2|γ1) = log10

(∑
θ

p(γ, θ|y, m)
p(γ1, θ1|y, m)

)
,

with again the sum actually being an integral over θ .
In the case of normal data and complete marker information, the LOD reduces to

LOD(γ2|γ1) =
n.ind

2
log10

min
θ1

RSS(θ1)/df1

min
θ

RSS(θ)/df

 ,

with degrees of freedom, df = n.ind− 1−
∑

γ , and df1 = n.ind− 1−
∑

γ1 . The LPD
follows a similar form, but involving an average (or really, integral) over θ ,

LPD(γ2|γ1) =
n.ind

2
log10

(∑
θ

RSS(θ1)/df1

RSS(θ)/df

)
.
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The Bayes factors are easily computed, as noted earlier. To compare the two genetic
architectures γ and γ1 , we construct

BF =
p(γ|y, m)/p(γ)

p(γ1|y, m)/p(γ1)
.

Often this is more interpretable on a log scale as 2 log(BF ) , which we can compute as

4.6 Model Averaging Algorithm

Here we briefly describe the model averaging idea. The MCMC samples include a
wide variety of models, indexed by γ. The 1-D and 2-D scans first compile a selected
diagnostic for each sample (also known as an iteration). That is, at each genome
position, or pair of positions, we average the values for samples that include that
position, i.e. have γ = 1 at that position. The posterior is simply an average of the γ
samples at each position.

These samples are kept for each model component, either in terms of the un-
aggregated Cockerham (1954) partition or in terms of main effects and epistasis,
and for the sum of these components. There are some mechanics involved. For in-
stance, for 1-D averages involving epistasis, we want to count each pair for both loci,
and for 2-D averages, we want to count epistatic effects separately at each locus. But
these are details that can be found by looking at the code if interested.

Chromosome summaries, or summaries within regions of chromosomes, are found
as weighted averages of these per-position summaries. The weights are naturally the
number of MCMC samples per position. At present the code does not separate out
multiple loci on a chromosome [next freeze].

With small or moderate MCMC sample sizes, the 1-D and 2-D scans can be rather
rough, or jagged. We have found nearest neighbor smoothing to be helpful. That is,
a position is equally weighted against the sum of its neighbors, accounting for number
of MCMC samples. This can be repeated several times (e.g. smooth = 3) to further
local smoothing.

5 Summary

In this tutorial we have explored the use of the Bayesian scan routines qb.scanone and
qb.scantwo as techniques for exploring the genetic architecture for a phenotypic trait.
Through examples using both simulated and experimental data we have demonstrated
the key steps in identifying both main and epistatic effects. Further information on
using using R/qtlbim to explore the hyper data set can be found in the hyperpaper
vignette. Inorder to view the vignette you can simply type

vignette(topic="hyperpaper",package="qtlbim")

at the R prompt. A demo for a simple analysis of hyper can be accessed by typing
demo(qb.hyper.tour) after the R/qtlbim library has been loaded.

[1] TRUE
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