
Shor’s Factoring Algorithm

Carsten Urbach

In order to break RSA cryptography one needs to be able to factorise a large integer n, which is known to be
the product of two prime numbers n = pq.

Factoring Algorithm
Given an integer n, the factoring algorithm determines p, q such that n = pq. We assume p, q 6= 1. The
following is Shor’s algorithm (Shor 1997) for factoring:

1. Choose m, 1 ≤ m ≤ n uniformnly random with m co-prime to n.
2. Find the order r of m modulo n.
3. If r is even, compute l = gcd(mr/2 − 1, n)
4. If l > 1 then l is a factor of n. Otherwise, or if r is odd start with 1 for another value of m.

Greatest common divisor
Euclid described a classical algorithm for finding the greatest common divisor (gcd) of two positive integers
m > n. It may be implemented recursively as follows:
gcd <- function(m, n) {

if(m < n) {
return(gcd(m=n, n=m))

}
r <- m %% n
cat(r, m, n, "\n")
if(r == 0) return(n)
return(gcd(m=n, n=r))

}

Order finding
Another ingredient is the order finding algorithm, which we are also going to solve classically here, actually
with the most naive algorithm
findOrder <- function(x, n) {

stopifnot(x < n && x > 0)
tmp <- x %% n
x <- tmp
for(r in c(1:n)) {

if(tmp == 1) return(r)
tmp <- (tmp*(x %% n)) %% n

}
if(tmp == 1) return(r)
return(NA)

}

1

Factoring
Shor’s algorithms can be implemented as follows
factoring <- function(n) {

for(i in c(1:20)){
generate random number
m <- sample.int(n=n, size=1)
cat("m=", m, "\n")
Check, whether m, n are co-prime
g <- gcd(n,m)
if(g != 1) return(g)
else {

find the order of m modulo n
r <- findOrder(x=m, n=n)
cat("r=", r, "\n")
if(!is.na(r)) {

if((r %% 2) == 0) {
l <- gcd(m^(r/2)-1, n)
if(l > 1 && l < n) return(l)

}
}

}
}
cat("could not find a factor!\n")
return(NA)

}

And we can test whether it works
set.seed(81) ## for reproducibility
factoring(65)

m= 25
15 65 25
10 25 15
5 15 10
0 10 5

[1] 5

factoring(91)

m= 86
5 91 86
1 86 5
0 5 1
r= 12
63 404567235135 91
28 91 63
7 63 28
0 28 7

[1] 7

factoring(511)

m= 504

2

7 511 504
0 504 7

[1] 7

Note that this computation is a bit tricky in R because of the integer arithmetic with large integers. However,
for our example here, the code is sufficient.

References
Shor, Peter W. 1997. “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms
on a Quantum Computer.” SIAM Journal on Computing 26 (5): 1484–1509. https://doi.org/10.1137/
s0097539795293172.

3

https://doi.org/10.1137/s0097539795293172
https://doi.org/10.1137/s0097539795293172

	Factoring Algorithm
	Greatest common divisor
	Order finding
	Factoring

	References

