qdap-tm Package Compatibility

Tyler W. Rinker

September 3, 2017

The qdap package is an R package designed to assist in quantitative discourse
analysis. The package stands as a bridge between qualitative transcripts of dialogue and statistical
analysis and visualization. The tm package (Feinerer and Hornik| 2014) is a major R
package used for a variety of text mining tasks. Many text analysis packages have been built

around the tm package’s infrastructure (see CRAN Task View: Natural Language Processing). As
qdap aims to act as a bridge to other R text mining analyses it is important that qdap provides a
means of moving between the various qdap and tm data types.

This vignette serves as a guide towards navigating between the qdap and tm packages. Specif-
ically, the two goals of this vignette are to (1) describe the various data formats of the two packages
and (2) demonstrate the use of qdap functions that enable the user to move seamlessly between
the two packages.


http://cran.r-project.org/web/views/NaturalLanguageProcessing.html

1 Data Formats

The qdap and tm packages each have two basic data formats. qdap stores raw text data in the
form of a data.frame augmented with columns of demographic variables whereas tm stores raw
text as a Corpus and annotates demographic information with Meta Data attributes. The structures
are both 1ists and are comparable.

The second format both packages use is a matrix structure of word frequency counts. The qdap
package utilizes the Word Frequency Matrix (wfm function) whereas the tm package utilizes the
Term Document Matrix or Document Term Matrix (TermDocumentMatrix and DocumentTermMatrix
functions). Again the structure is similar between these two data forms. Table[I|lays out the data
forms of the two packages.

Package Raw Text Word Counts
qdap Dataframe Word Frequency Matrix
tm Corpus Term Document Matrix/Document Term matrix

Table 1: qdap-tm Data forms

Figure[I|provides a visual overview of the qdap functions used to convert between data structures.
Many of these conversion could be achieved via the tm package as well.

as.Corpus

” data.frame >
e Corpus
=
3 sentSplit as.data.frame
1
|
1
as.wim :
I
|
¥ as.tdm

TermDocumentMatrix

-~
as, dq t -
< as.wim DocumentTermMatrix

Word/Term Frequencies

*Note: as.tdm & as.dtm are short hand for as.TermDocumentMatrix & as.DocumentTermMatrix

Figure 1: Converting Data between qdap and tm



One of the most visible differences between qdap-tm data forms is that qdap enables the user
to readily view the data while the tm utilizes a print method that provides a summary of the data.
The tm: : inspect function enables the user to view tm data forms. The qdap package provides
qdap: :qview and qdap: :htruncdf functions to view more digestible amounts of the data. Let’s
have a look at the different data types. We’ll start by loading both packages:

library(qdap); library(tm)

Now let us have a look at the raw text storage of both packages.

1.1 Raw Text

1.1.1 qdap’s Raw Text

DATA

qview(DATA)

htruncdf (DATA)

## > DATA

##

## person sex adult state code
## 1 sam m 0 Computer is fun. Not too fun. K1
## 2 greg m 0 No it's not, it's dumb. K2
## .

## .

## .

## 9 sally £ 0 What are you talking about? K9
## 10 researcher f 1 Shall we move on? Good then. K10
## 11 greg m O I'm hungry. Let's eat. You already? K11

## > qview(DATA)

##

##

## nrow = 11 ncol = 5 DATA
##

## person sex adult state code



## 1 sam m 0 Computer i K1

## 2 greg m 0 No it's no K2
## .
## .
## .
## 8 sam m 0 I distrust K8
## 9 sally £ 0 What are y K9
## 10 researcher f 1 Shall we m K10

## > htruncdf (DATA)

##

#i# person sex adult state code
## 1 sam m 0 Computer i K1
## 2 greg m 0 No it's no K2
## .

# .

# .

## 8 sam m 0 I distrust K8
## 9 sally f 0 What are y K9
## 10 researcher f 1 Shall we m K10

1.1.2 tm’s Raw Text

data("crude")
crude

inspect (crude)

## > crude

## A corpus with 20 text documents

##

## > crude[[1]]

## Diamond Shamrock Corp said that

## effective today it had cut its contract prices for crude oil by
## 1.50 dlrs a barrel.

#i#t The reduction brings its posted price for West Texas



## Intermediate to 16.00 dlrs a barrel, the copany said.

#Hit "The price reduction today was made in the light of falling
#H .

## .

## .

Hit Diamond is the latest in a line of U.S. oil companies that

## have cut its contract, or posted, prices over the last two days
## citing weak oil markets.

## Reuter

1.2 Word/Term Frequency Counts

Now we’ll look at how the two packages handle word frequency counts. We'll start by setting

up the raw text forms the two packages expect.

tm_dat <- qdap_dat <- DATA[1:4, c(1, 4)]
rownames (tm_dat) <- paste("docs", 1l:nrow(tm_dat))
tm_dat <- Corpus(DataframeSource(tm_dat[, 2, drop=FALSE]))

Both qdap_dat and tm_dat are storing this basic information:

H# person state
## 1 sam Computer is fun. Not too fun.
## 2 greg No it's not, it's dumb.
## 3 teacher What should we do?
## 4 sam You liar, it stinks!



1.2.1 qdap’s Frequency Counts

with(qdap_dat, wfm(state, person))

#i# greg sam teacher
## computer 0 1 0
## do 0 0 1
## dumb 1 0 0
## fun 0 2 0
## greg 1 0 0
## is 0 1 0
## it 0 1 0
## it's 2 0 0
## liar 0 1 0
## no 1 0 0
## not 1 1 0
## sam 0 1 0
## should 0 0 1
## stinks 0 1 0
## teacher 0 0 1
## too 0 1 0
## we 0 0 1
## what 0 0 1
## you 0o 1 0

1.2.2 tm’s Frequency Counts

TermDocumentMatrix(tm_dat,
control = list(
removePunctuation = TRUE,

wordLengths=c(0, Inf)



## <<TermDocumentMatrix (terms: 16, documents: 4)>>
## Non-/sparse entries: 17/47

## Sparsity : 73%

## Maximal term length: 8

## Weighting : term frequency (tf)

Now we’ll Look at the tm output using inspect.

inspect (TermDocumentMatrix (tm_dat,
control = list(
removePunctuation = TRUE,

wordLengths=c(0, Inf)

)

))

#i# Docs

## Terms 1234
##  computer 1 0 0 O
## do 0010
## dumb 0100
#i fun 2000
## is 1000
# it 0001
## its 0200
##  liar 0001
# no 0100
##  not 1100
## should 0010
## stinks 0001
## too 1000
## we 0010
##  what 0010
##  you 0001

The two matrices are essentially the same, with the exception of column order and names.
Notice that by default tm removes words with fewer characters (word length) and does not dis-
card punctuation (we made the matrices equal by specifying removePunctuation = TRUE and



wordLengths=c (0, Inf) for tm’s control argument). qdap takes the opposite approach, re-
moving punctuation and utilizing all words, by default. Likewise, the tm package stores de-
mographic information as meta data within the Corpus, whereas, qdap incorporates the demo-
graphics with the text into a single data.frame structure. These differences arise out of the in-
tended uses, audiences, and philosophies of the package authors. Each has strengths in particular
situations. The qdap output is an ordinary matrix whereas the tm output is a more compact
simple_triplet_matrix. While the storage is different, both packages can be made to mimic the
default of the other.

Also note that the qdap summary method for wfm provides the user with information similar to
the TermDocumentMatrix/DocumentTermMatrix functions’ default print method.

summary(with(qdap_dat, wfm(state, person)))

## <<A word-frequency matrix (19 terms, 3 groups)>>

#i#

## Non-/sparse entries 1 20/37
## Sparsity : 65%

## Maximal term length : 8

## Less than four characters : 53

## Hapax legomenon 1 16(84%)
## Dis legomenon 1 3(16%)

## Shannon's diversity index : 2.9

Now we’ll look at some qdap functions that enable the user to move between packages, gaining
the flexibility and benefits of both packages.

2 Converting Data Forms
We'll again use the following preset data:

tm_dat <- qdap_dat <- DATA[1:4, c (1, 4) ]
rownames (tm_dat) <- paste ("docs", 1: nrow (tm_dat))

tm_dat <- Corpus(DataframeSource (tm_dat[, 2, drop=FALSE]))

qdap_wfm <- with (qdap_dat, wfm (state, person))
tm_tdm <- TermDocumentMatrix (tm_dat,

control = list (



removePunctuation = TRUE,

wordLengths= ¢ (0, Inf)

1. gdap_dat —is a qdap raw text form
2. tm_dat —is a tm raw text format

3. qdap_wfm—is a qdap word frequencies count

4. tm_tdm —is a tm word frequencies count

The reader is encouraged to view each of the data formats:

qdap_dat; qview(qdap_dat)
tm_dat; inspect(tm_dat)
qdap_wfm; summary(qdap_wfm)
tm_tdm; inspect(tm_tdm)

2.1 Corpus to data.frame

To move from a Corpus to a data.frame the as.data.frame function is used as follows:

as.data.frame(tm_dat)

Hit docs text
## 1 doc 1 Computer is fun. Not too fun.

## 2 doc 2 No it's not, it's dumb.
## 3 doc 3 What should we do?
## 4 doc 4 You liar, it stinks!

2.2 data.frame to Corpus

To move from a data.frame to a Corpus the as.Corpus function is used as follows:



with(qdap_dat, as.Corpus(state, person))

## <<VCorpus>>
## Metadata: corpus specific: O, document level (indexed): 3

## Content: documents: 3

*Note the 3 text documents; one for each grouping variable. To get one for each row use:

with(qdap_dat, as.Corpus(state, id(person)))

2.3 TermDocumentMatrix/DocumentTermMatrix to wfm

To move from a TermDocumentMatrix to a wfm the as.wfm function is used as follows:

as.wfm(tm_tdm)

#it 1234
## computer 1 0 0 O
## do 0010
## dumb 0100
## fun 2000
## is 1000
## it 0001
## its 0200
## liar 0001
## no 0100
## not 1100
## should 0010
## stinks 0001
## too 1000
## we 0010
## what 0010
## you 0001

24 wifm to TermDocumentMatrix/DocumentTermMatrix

To move from a wfm to a TermDocumentMatrix or DocumentTermMatrix the as.tdm and as.dtm

functions can be used as follows:

10



as.tdm(qdap_wfm)
as.dtm(qdap_wfm)

## <<TermDocumentMatrix (terms: 19, documents: 3)>>
## Non-/sparse entries: 20/37

## Sparsity : 65%

## Maximal term length: 8

## Weighting : term frequency (tf)

## <<DocumentTermMatrix (documents: 3, terms: 19)>>
## Non-/sparse entries: 20/37

## Sparsity 1 65%

## Maximal term length: 8

## Weighting : term frequency (tf)

2.5 Corpus to wfm

One can also move directly from a tm Corpus to a qdap wfm with the as.wfm function.

as.wfm(tm_dat)

## doc 1 doc 2 doc 3 doc 4
## computer 1 0 0
## do

## doc

## dumb
## fun

## is

## it

## it's
## liar
## no

## not

## should
## stinks

O Ok O O O O~ N O » O
O O B Bk O NN O O O +» +—» O
O B O O O O © © © O K &
P O O O »r O Fr O O O r O O

11



## too 1 0 0 0
## we 0 0 1 0
## what 0 0 1 0
## you 0 0 0 1

3 Stemming, Stopwords, and Choosing n-Character Words/Terms

from a wfm

Many of the qdap and tm functions have means of stemming, removing stopwords, and bound-
ing, that is filtering rows (greater than, equal to or less than) meeting min/max criteria. gdap also
offers two external functions to address these issues directly.

3.1 stemming

qdap takes the approach that the user stems the dataframe upon creation (using sentSplit(. ..,
stem = TRUE)) or after (using the stem2df function), maintaining a column of stemmed and un-

stemmed text for various analyses.

sentSplit(qdap_dat, "state", stem = TRUE)

#i# person tot state stem.text
## 1 sam 1.1 Computer is fun. Comput is fun.
## 2 sam 1.2 Not too fun. Not too fun.

## 3 greg 2.1 No it's not, it's dumb. No it not it dumb.
## 4 teacher 3.1 What should we do? What should we do?

## 5 sam 4.1 You liar, it stinks! You liar it stink!

3.2 Filtering: Stopwords and Bounding

qdap’s Filter function allows the user to remove stopwords and bound a Word Frequency
Matrix (wfm). First we'll construct a minimal Word Frequency Matrix:

qdap_wfm <- with(qdap_dat, wfm(state, person))

12



## greg sam teacher

## computer o 1 0
## do 0 0 1
## dumb 1 0 0
## fun 0 2 0
## greg 1 0 0
## is 0 1 0
## it 0 1 0
## it's 2 0 0
## liar 0 1 0
## no 1 0 0
## not 1 1 0
## sam 0 1 0
## should 0 0 1
## stinks 0 1 0
## teacher 0 0 1
## too 0 1 0
## we 0 0 1
## what 0 0 1
## you 0 1 0

Now we’ll move through a series of examples demonstrating the usage of Filter on a wfm
object.

Filter(qdap_wfm, min = 5)

i greg sam teacher
## computer 0o 1 0
## should 0 O 1
## stinks 0 1 0
## teacher 0 O 1

Filter(qdap_wfm, min = 5, max = 7)

13



## greg sam teacher

## should 0 0 1
## stinks 0 1 0
## teacher 0 0 1

Filter(qdap_wfm, 4, 4)

## greg sam teacher
## dumb 1 0 0
## greg 1 0 0
## it's 2 0 0
## liar 0 1 0
## what 0 0 1

Filter(qdap_wfm, 4, 4, count.apostrophe = FALSE)

#i# greg sam teacher
## dumb 1 0 0
## greg 1 0 0
## liar 0o 1 0
## what 0 0 1

Filter(qdap_wfm, 3, 4)

## greg sam teacher
## dumb 1 0
## fun
## greg
## it's
## liar
## not
## sam
## too
## what

O O O © »r O N +» O
=, O B B B, B, O O N
O Bk O O O O O O o o

## you

14



Filter(qdap_wfm, 3, 4, stopwords = Top200Words)

#i# greg sam teacher
## dumb 1 0 0
## fun 0o 2 0
## greg 1 0 0
## it's 2 0 0
## liar 0 1 0
## sam 0 1 0

4 Apply Functions Intended for TermDocumentMatrix to wfm
Object

At times it is convenient to apply a function intended for a tm TermDocumentMatrix or DocumentTermMatrix
directly to a qdap wfm object. qdap’s apply_as_tm function enables these functions to be used di-

rectly on a wfm.

41 A Minimal wfm Object

Let us begin with a slightly larger wfm minimal example:

a <- with(DATA, wfm(state, list(sex, adult)))

## <<A word-frequency matrix (43 terms, 4 groups)>>

##

## Non-/sparse entries : 49/123
## Sparsity 2 72%

## Maximal term length : 8

## Less than four characters : 51

## Hapax legomenon 1 32(74%)
## Dis legomenon 1 9(21%)

## Shannon's diversity index : 3.67

15



4.2 A Small Demonstration

Here we will use the tm package’s removeSparseTerms to remove sparse terms from a wfm
object and return a Word Frequency Matrix object (wfm class).

out <- apply_as_tm(a, tm::removeSparseTerms, sparse=0.6)

summary (out)

## <<A word-frequency matrix (3 terms, 4 groups)>>

#Ht

## Non-/sparse entries 1 7/5
## Sparsity 1 427
## Maximal term length : 4

## Less than four characters : 67
## Hapax legomenon : 0(0%)
## Dis legomenon 1 1(33%)

## Shannon's diversity index : 1.06

class(out)

## [1] "wfm" "true.matrix" "matrix"

4.3 Further Examples to Try

Here are some further examples to try:

apply_as_tm(a, tm::findAssocs, "computer", .8)

apply_as_tm(a, tm::findFreqTerms, 2, 3)

apply_as_tm(a, tm::Zipf_plot)

apply_as_tm(a, tm::Heaps_plot)

apply_as_tm(a, tm:::plot.TermDocumentMatrix, corThreshold = 0.4)

library(proxy)
apply_as_tm(a, tm::weightBin)

16



apply_as_tm(a, tm::weightBin, to.qdap = FALSE)
apply_as_tm(a, tm::weightSMART)
apply_as_tm(a, tm::weightTfIdf)

5 Apply Functions Intended for qdap Dataframes to tm Corpus

While the tm package (and other packages used on tm objects) tends to conduct analysis by
feeding functions a TermDocumentMatrix or DocumentTermMatrix qdap generally feeds functions
raw text directly. There are advantages to both approaches (e.g., the matrix is a mathematical
structure while raw text maintains word order). Many qdap functions can be used on the Corpus

structure via the apply_as_df function.

5.1 A Small Demonstration

Here we will use the qdap package’s trans_cloud function, on our minimal tm Corpus, to
produce a word cloud with particular words highlighted:

matches <- list(
good = "fun",

bad = c("dumb", "stinks", "liar")

apply_as_df (tm_dat, trans_cloud, grouping.var=NULL,

target.words=matches, cloud.colors = c("red", "blue", "grey75"))

17



all

stinks
liar
fun

dumb

5.2 Further Examples to Try
Here are some further examples to try:

library(tm)
reut21578 <- system.file("texts", "crude", package = "tm")

reuters <- Corpus(DirSource(reut21578),

readerControl = list(reader = readReut21578XML))

apply_as_df (reuters, word_stats)
apply_as_df (reuters, formality)
apply_as_df (reuters, word_list)
apply_as_df (reuters, polarity)
apply_as_df (reuters, Dissimilarity)
apply_as_df (reuters, diversity)
apply_as_df (tm_dat, pos_by)

18



apply_as_df (reuters, flesch_kincaid)
apply_as_df (tm_dat, trans_venn)
apply_as_df (reuters, gantt_plot)
apply_as_df (reuters, rank_freq_mplot)
apply_as_df (reuters, character_table)

apply_as_df (reuters, trans_cloud)

matches2 <- list(
0il = gcv(oil, crude),

money = c("economic", "money")

(termco_out <- apply_as_df (reuters, termco, match.list = matches2))

plot(termco_out, values = TRUE, high="red")

(wordcor_out <- apply_as_df (reuters, word_cor, word = unlist(matches2)))

plot(wordcor_out)

(f_terms <- apply_as_df(reuters, freq_terms, at.least = 3))
plot(f_terms)

finds <- apply_as_df (reuters, freq terms, at.least = 5,
top = 5, stopwords = ToplOOWords)

apply_as_df (reuters, dispersion_plot, match.terms = finds[, 1],
total.color = NULL)

6 Conclusion

This vignette described the various data formats for the qdap and tm packages. It also demon-
strated some of the basic functionality of the qdap functions designed to navigate between the two
packages. For more information on the tm package (Feinerer ef al2008) use:

browseVignettes(package = "tm")

Likewise, the user may view additional information about the qdap package 2013):

19



browseVignettes(package = "qdap")

Acknowledgments

qdap relies heavily on the tm package. The tm package has extended text analysis to the R plat-
form. Thank you to Ingo Feinerer and Kurt Hornik for their work on this and many other R
packages.

This document was produced with knitr (Xie, 2013). Thank you to Yihui Xie for the knitr package
and his many other contributions to the R community.

References

Feinerer I, Hornik K (2014). tm: Text Mining Package. Version 0.5-10, URL http://CRAN.
R-project.org/package=tm.

Feinerer 1, Hornik K, Meyer D (2008). “Text Mining Infrastructure in R.” Journal of Statistical
Software, 25(5), 1 — 54. URL http://www. jstatsoft.org/v25/105/.

R Core Team (2013). R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Rinker TW (2013). gdap: Quantitative Discourse Analysis Package. University at Buffalo/SUNY,
Buffalo, New York. Version 2.1.0, URL http://github.com/trinker/qdap.

Xie Y (2013). knitr: A general-purpose package for dynamic report generation in R. R package version
1.1, URL http://yihui.name/knitr/.

20


http://CRAN.R-project.org/package=tm
http://CRAN.R-project.org/package=tm
http://www.jstatsoft.org/v25/i05/
http://www.R-project.org/
http://github.com/trinker/qdap
http://yihui.name/knitr/

	Data Formats
	Raw Text
	qdap's Raw Text
	tm's Raw Text

	Word/Term Frequency Counts
	qdap's Frequency Counts
	tm's Frequency Counts


	Converting Data Forms
	Corpus to data.frame
	data.frame to Corpus
	TermDocumentMatrix/DocumentTermMatrix to wfm
	wfm to TermDocumentMatrix/DocumentTermMatrix
	Corpus to wfm

	Stemming, Stopwords, and Choosing n-Character Words/Terms from a wfm
	stemming
	Filtering: Stopwords and Bounding

	Apply Functions Intended for TermDocumentMatrix to wfm Object
	A Minimal wfm Object
	A Small Demonstration
	Further Examples to Try

	Apply Functions Intended for qdap Dataframes to tm Corpus
	A Small Demonstration
	Further Examples to Try

	Conclusion

