Quality Assurance Toolkit

Documentation

Documentation of the R-Package qat
Version 0.71 (March 30, 2013)

André Diisterhus (andue@uni-bonn.de)

Contents

1 Introduction

1.1 What’s it all about?
1.2 Backgroundo
1.3 Version-Overview
2 Basic structure
2.1 Buildup
2.2 Vertical structure
2.2.1 Level 1: Moderator level
2.2.2 Level 2: Workflow level
2.2.3 Level 3: Calling level oL
2.24 Level 4: Working level 0L
3 Control Categories
3.1 Categorie 0: Manipulation functions
3.1.1 Idea o
3.1.2 Functionality
3.1.3 Set NaN
3.14 Setaddup
3.1.5 Setmean
3.2 Categorie 1: LIM, NOC & ROC
321 Idea o
3.2.2 Functionality
323 LIM-Rule
324 ROC-Rule
325 NOC-Rule
3.3 Categorie 2: Distribution
3.3.1 Idea
3.3.2 Functionality
3.3.3 Distribution

ITI

3.3.4
3.3.5
3.3.6
3.3.7
3.3.8

Block-Distribution oo
Slide-Distribution
Trimmed-Distribution
Boot-Distribution

Histogram test

4 Additional Functions

4.1 Reading functions
4.1.1 Readindata
4.1.2 Number of Variables
4.1.3 Names of Variables
4.1.4 Content of Variables

4.2 Workflowmanagement Lo
4.2.1 Readin workflow,
4.2.2 Write result/workflow o oo
4.2.3 Writeresult tonetCDF
4.2.4 Run a workflow of checks,
4.2.5 Run a workflow of plots
4.2.6 Run aworkflowtosave
4.2.7 Add a comment to a workflowlist
4.2.8 Add a description to a workflowlist
4.2.9 Add a algorithm to a workflowlist
4.2.10 Add all descriptions to a workflowlist
4.2.11 Add all algorithms to a workflowlist

5 File Formats

5.1 Workflow-XML
5.1.1 Idea
5.1.2 Usage e
5.1.3 Description
5.1.4 Example

5.2 Plotstyle- XML
52,1 Idea
0.22 Usage e
5.2.3 Description
5.24 Exampleo

List of Figures

31
31
31
31
31
32
32
32
32
32
33
33
33
33
34
34
34
34

37
37
37
37
38
39
42
42
42
42
43

45

Bibliography

49

1 Infroduction

1.1 What’s it all about?

This R package is designed to help a user to perform a quality check on data. It is
constructed for the analysis of netCDF-data. Therefore, it deliver several methods to
check them. The primary focus for these tests are meteorological and climatological
datasets. In the actual available form the package is constructed to work with one and

two dimensional data, like time series or vertical profiles.

1.2 Background

The developement of this package is part of the Deutsche Forschungsgesellschaft (DFG /Ger-
man Science Foundation)-funded project "Publikation Umweltdaten" (Publication of En-
vironmental Data). Its main purpose is to deliver an environment to publish meteoro-
logical observational data. In this process this package delivers its part in controlling the

data basis. Besides performing tests it is also capable to document them and their results.

1.3 Version-Overview

Version 0.1 (September 2010): First checks and a basic structure are available.

Version 0.5 (28th April 2011): Saving structures are implemented. Publication on CRAN.
Version 0.51 (18th November 2011): Corrections for Version R 2.14.

Version 0.52 (13th February 2012): Vignette inclusion for qatdoku.

Version 0.53 (14th February 2012): Correct problems with recreation of vignettes at
CRAN.

Version 0.60 (19th December 2012): Enhancement for 2d vectors.

Version 0.70 (29th March 2013): Inclusion of histogram test.

Version 0.71 (29th March 2013): Minor corrections.

2 Basic structure

2.1 Build up

The package consists of several parts on four different levels. The upper level is the
moderator level and consists of only one function. With this it is possible to perform a
complete quality check on a data vector. On the second level the processing of workflows
take place. The third level is the calling level. This level calls the 4th level functions
with a common interface. The 4th and last level is the working level. Here data will be
analysed, plotted or transformed. Outside of this structures some additional functions are
placed, which got supporting functionality. It is possible to access all functions on every

level by themselves, which guarantees a highly flexible usage of this package.

Moderator

Reading | Workflow @ Workflow
Object analyse plot

Workflow l Writing
save

Call
analyse

Function
save

Function @ Function
analyse plot

Figure 2.1: Actual structure of the qat-package. Coloured are the elements, which are ac-
tually part of the package, grey are the elements, which might be implemented
in the future.

2.2 Vertical structure

2.2.1 Level 1: Moderator level

Actually this level is not implemented and the exact specifications are not determined.
So the user of this package have to write this level for himself. It should include a reading

of the data, callings of the workflow level and eventually a call of a saving routine.

2.2.2 Level 2: Workflow level

At the workflow level three functions are implemented. One controls the analysing of
data (qat_run_workflow check), one plots the results (qat run_workflow plot) and
the third prepare the data for saving, e.g. in netCDF format (qat_run_workflow save).
The first function is driven by a workflowlist. This consists of names of tests and includes
the parameters, which are used by them. To produce such a workflowlist from a XML-
source, the reading workflow function is implemented (qat config read workflow). The
result of the analysis will be given back as a resultlist. The first element consists of the
measurement vector, which was analysed and other vectors, which may be used, when
the test were performed. The other elements consists of the name of the check, a counter
element and the result of the check.

This resultlist is necessary for the plotting workflow. This workflow generates one or more
plots for every test into a specified path.

The third workflow generates a savelist from a resultlist. This is necessary, when the
results of the tests should be stored in a format like netCDF. This may be done by
the function qat save result ncdf. If only the workflow itself is of interest, this can
be stored as XML with the function qat config write workflow, which needs only the
workflowlist. All three functions work internally with the xml-file "qat basetools.xml",
which lay in the installation path of the package. This lists the implemented methods and
define the functions, of the calling level, which belongs to every test. It also got the infor-
mation on description and algorithm, which may be used by qat _add all descriptions

and qat _add all algorithms.

2.2.3 Level 3: Cadlling level

The calling level is used to call the checking, plotting and saving functions with a com-
mon interface for every check. This interface consists for the checking function of the

measurement vector, a part of a workflowlist, an element number, vector for potentional

coordinates (height, time, latitude, longitude), four potential additional vectors, a re-
sultlist with other results and a counter for the latter.

Plotting-calling functions are called with a part of a resultlist, the measurement vector,
vector for potentional coordinates (height, time, latitude, longitude), a name for the mea-
surement, name of the directory, where the plot might be stored, a basic name for the
file, which will get extended by the calling function, and a potential plotstyle element.
Saving-calling functions are called with a resultlist and a basic unit, which will be modified
and stored in the resulting list. As a result the checking function delivers a resultlist, the
plotting function produces plots at the given location and the saving functions delivers a
savelist.

2.2.4 Level 4: Working level

On the working level the tests will be performed, the plots will be produced and the
resultlist transformed to a savelist. For every check exists one checking, one plotting and
one saving function, which got each a set of parameters of its own needs. The result of the
checking function is a resultlist, which is not only filled with the result of the check, but
also with the parameters, which are used to perform it. The same is true for the saving

functions, which will deliver instead a savelist element.

Workflow § Workflow @ Workflow
analyse plot save

Reading

Writing
Object

Y—
<
(%]
<

Object

ncdf

= Call
X analyse

XML

Function § Function | Function
analyse plot save

Figure 2.2: Structure of the qat-package. The file formats are shown as yellow arrows at
their point of input respectively output.

3 Control Categories

3.1 Categorie 0: Manipulation functions

3.1.1 Idea

The idea behind manipulation functions are, that the incoming data vector will be ma-
nipulated. With the result of these functions the upcoming checks will be performed. For

this, once changed data vectors are not reversible.

3.1.2 Functionality

Actually three different manipulation functions are implemented.

3.1.3 Set NaN

The set NaN function ensures, that all elements of a vector, which are equal to a given
value will be set to Not a Number (NaN). This may help in further checks to get useful

results there.

Calling function

qat_call set nans

Calling plot function

Does not exist.

Plotting function

Does not exist.

Calling save function

qat_call save set nans

Savingfunction

qat save set nans 1d
qat _save set nans above 1d
qat_save set nans below 1d

Control function

qat_analyse set nans 1d
gat_analyse set nans above 1d
gat_analyse set nans below 1d
gat analyse set nans 2d
qat analyse set nans above 2d

gat_analyse set nans below 2d

3.1.4 Set addup

The set addup function is used to add up successive elements of a vector. The number of
elements, which forms a new one in the resulting vector is defined by the parameter block
size. The length of the resulting vector is given by the rounded down quotient of the size

of the incoming vector and the block size.

Calling function

qat_call set addup

Calling plot function

Does not exist.

Plotting function

Does not exist.

Calling save function

qat_call save set addup

Savingfunction

qat_save set addup 1d

Control function

qat__analyse set addup 1d
qat _analyse set addup 2d

3.1.5 Set mean

The set mean function is used to build a mean of successive elenets of a vector. The
number of elements, which forms a new one in the resulting vector is defined by the
parameter block size. The size of the resulting vector is given by the rounded down

quotient of the size of the incoming vector and the block size.

Calling function

qat call set mean

Calling plot function

Does not exist.

Plotting function

Does not exist.

Calling save function

qat call save set mean

Savingfunction

qat_save set mean 1d

Control function

qat_analyse set mean 1d

qat_analyse set mean 2d

3.2 Categorie 1: LIM, NOC & ROC

3.2.1 Idea

These tests try to find outliners or other errors in the data by using simple tests, which
are driven by user specified parameters. The basic idea of these tests are developed by
Meek und Hatfield [1994].

3.2.2 Functionality

There are three classes of checks in this category, which give as a main result a flagvector.
This flagvector tells the user, if there is a violation of the test rules, which are formed by

the given parameters.

3.2.3 LIM-Rule

The LIM-Rule checks, if there is a violation of a determined threshold. This threshold
could be static, so that a given minumum and/or maximum value is given. Another static
threshold is given by the sigma-version of this check. Here the mean and the standard
deviation of the data is calculated and the threshold-values are given by the mean plus
and minus the standard deviation. The third version of this tests consists of dynamic
threshold. Here every element of the data vector got its counter part of a vector with

minumum and a vector with maximum values.

Calling function

qat_call lim rule

Calling plot function

qat_call plot lim rule

Plotting function

qat_plot lim rule static 1d
gat_plot lim rule sigma 1d
gat_plot lim rule dynamic 1d
qat _plot lim rule static 2d
qat_plot lim rule sigma 2d
qgat_plot _lim rule dynamic_ 2d

Calling save function

qat _call save lim rule

Saving function

qat_save lim rule static 1d
qat_save lim rule sigma 1d
qat_save lim rule dynamic 1d
qat_save lim rule static_2d
qat_save lim rule sigma 2d

qat_save lim rule dynamic_ 2d

Control function

gat _analyse lim rule static 1d
qat_analyse lim rule sigma 1d
qat_analyse lim rule dynamic 1d
qat _analyse lim rule static 2d
qat _analyse lim rule sigma 2d

gat _analyse lim rule dynamic 2d

Example plots

LIM-Rule static LIM-Rule dynamic

Data: Testresult Data: Testresult
Minimum value: -2 Maximum value: 2 Minimum veetor: minimum vector Maximum vector: maximum vector
Minimum errors: 27 Maximum errors: 19 Minimum errors: 84 Maximum errors: 71

o
o

o
a

o -

LIM-Rule sigma

Data: Testresult
Sigma factor: 2 Mean of vector: -0.0103893143992127 SD of vector: 0.998704763229328
Minimum errors: 19 Maximum errors: 20

0 200 400 600 800 1000

Figure 3.1: The three LIM-checks on a normal distribution. Upper left figure shows the
LIM-static check, the upper right figure the LIM-dynamic check and the lower
figure the LIM-sigma check.

3.2.4 ROC-Rule

The ROC-Rule checks, if a change between two successive datapoints exceeds a given
threshold. This threshold could be static, so that a given maximum upward and/or
downward change is fixed by given parameters. In the dynamic implementation of this
check every element of the data vector got its counter part of a vector with upward and

and a vector with downward values.

Calling function

qat_call roc_rule

Calling plot function

qat_call plot roc rule

Plotting function

qat_plot roc rule static 1d
qgat_plot roc rule dynamic 1d
qat_plot _roc rule static_2d

qat_plot roc rule dynamic 2d

Calling save function

qat call save roc rule

Saving function

qat_save roc_rule static 1d
qat_save roc rule dynamic 1d
qat_save roc_rule static_2d

qat_save roc_rule dynamic 2d

Control function

gat _analyse roc rule static 1d
qat_analyse roc rule dynamic 1d
qat_analyse roc_ rule static 2d

qat_analyse roc_rule dynamic 2d

Example plots

ROC-Rule static

Data: Testresult
Maximum upward value: 2 Maximum downward value: 2
Upward errors: 8 Downward errors: 8

§ T — 7]
o - . L
_ | AN _ |
7 N S T ! 1YV ER!
- N | =+
-t [- * B - _. . . *
7 . + 7 o i L
- - - o . .
- o St © j! . * . - .
o +* . * .
o * . »* . . o ¢ - o
ot o* ‘e . * e T % -
i LR . . s .- .) -
- e . * . []
0+_. I . _ " . -.- _+ } - 1. i
o + . | -
+ wd - B " | 9 | &
- - -1 - 1i--——-——-T1T - v 71
0 20 40 €0 80 100

ROC-Rule dynamic

Data: Testresult
Maximum upward vector: upward vector Maximum downward vector: downward vector
Upward errors: 23 Downward errors: 22

+ L
L I : I
18 R H 4 8L i R
s 24) d & |
- —+ -® _ L
e d ; i + o _
1 + .-_’— +'O . L o % . HERL T
L D * e T % - ot .
o - - -- + LA L * . ¥ . *
. . Te - . N . g
+,’ .. i _ +7+_ o .
NI B . e ++o,+_'_’ ++. .«
T e ot iIE1ILE EB i
HH'1 ! "Ny L
Rl - - 1 i +
L. L
+
T T T T T T
0 20 40 60 80 100

Figure 3.2: Both ROC-checks on a normal distribution. Upper figure shows the ROC-
static check, lower figure the ROC-dynamic check.

3.2.5 NOC-Rule

The NOC-Rule checks, if data is variable enough. It shows if succesive data values haven’t

change for a given number of elements. There is no consideration of NaN-values.

Calling function

qat_call noc rule

Calling plot function

qat_call plot noc rule

Plotting function

qat_plot _noc_ rule 1d
qgat_plot _noc_ rule 2d

Calling save function

qat_call save noc_rule

Saving function

qat_save noc_rule 1d

qat_save noc_rule 2d

Control function

gat analyse noc rule 1d

qat analyse noc rule 2d

Example plots

NOC-Rule

Data: Testresult
max. number of returning elements: 1
Repetition errors: 3

_ N +

Figure 3.3: The NOC check on a simple dataset.

3.3 Categorie 2: Distribution

3.3.1 Idea

These tests look at the distribution of the whole or parts of the dataset and deliver some

statistical parameters.

3.3.2 Functionality

Actually there are five different versions of distribution tests, which are implemented. All
give back the same twelve statstical parameters, when they are usefull: first to fourth
moment, standard deviation, skewness, kurtosis, median and the 5%, 25%, 75% and 95%

quantile.

3.3.3 Distribution

The distribution-check simply give back a histogram of the dataset. This can be plotted

with the plotfunction and also the statistical parameters mentioned above are calculated.

Calling function

qat_call distribution

Calling plot function

qgat call plot distribution

Plotting function

qat_plot_distribution 1d

Calling save function

qat call save distribution

Saving function

qat_save distribution 1d

Control function

gat_analyse distribution 1d

Example plots

Histogram of Result of Check

Statistical Moments
lst moment: -0.037
2nd moment: 1.049

o 3rd moment: 0.007
E 4th moment: 3.101
std. Dev.: 1.024
Skewness: 0,006
E‘ o Kurtosis: 2,82
] S 5p duant.: -1.757
4 25p guant.: -0.731
E Median: -0.045
75p guant.: 0.675
3 4 95p guant.: 1.671
NumofBars: 15

Data

Figure 3.4: The Distribution ckeck on a normal distributed measurement vector with 1000
elements.

3.3.4 Block-Distribution

The block-distribution-check divide the dataset into blocks with the length of the given
blocksize parameter and calculate for each block the statistical parameters. The plot
function create three plots, which all consists of four timeseries plots of the statistical

parameters.

Calling function

qat_call block distribution

Calling plot function

qat_call plot block distribution

Plotting function

qgat plot block distribution 1d
qat plot block distribution 2d
Calling save function

qat_call save block distribution

Saving function
qat_save block distribution 1d
qat_save block distribution 2d

Control function

gat _analyse block distribution 1d
gat _analyse block distribution 2d

Example plots

Distribution of a blockwise shift (1)
Blocksize: 50
Data: Result of Check

1st moment 2nd moment
i} ©Q
o ¥ - ¥
n . 4
= 1. + o +
=3 + . 4+ - + ++
- +
+ + ++ + + Tt + =+ Su—
5 + o | I T
+ + + e L4
T T T T I T T T
5 10 15 20 5 10 15 20
3rd moment 4th moment
<
S T L @ -
=] ’ 4 + T f +t+4 o —
=] T+ L
- + — + o+
< | <+ -
< | | | + *
n — f—t
o | L PO PR P
< T T T T 1 T T T
5 10 15 20 5 10 15 20
Distribution of a blockwise shift (2)
Blocksize: 50
Data: Result of Check
standard deviation skewness
¥ . N . L
g 45 + + * + * L+ ++
- + +
- 1+ ++ - +
+ 5
+ + e @ N +
o | + + 4+ o+ e |
b Lt - N
i T T T T T T T
5 10 15 20 5 10 15 20
kurtosis median
+ L +
. + o T
+ 7 ++
w3
= + e + +
. , +, 4+ o N
I+ 1 st ;
+ 7 7 + +
v 4 + = | + + + tt
Mo + + ® + + *
T T T T T T T T
5 10 15 20 5 10 15 20
Distribution of a blockwise shift (3)
Blocksize: 50
Data: Result of Check
5% percentile 95% percentile
-
E ¥ ~ ¥
o n
= * S+
1o+ + +++ N+ +
I e - * @ | PR o
- . + Ty - R + T4+
] + o | o+ F
g L o4 * = 4 + -
b T T T T T T T T
5 10 15 20 5 10 15 20
25% percentile 75% percentile
F B ¥
. + @ |+ + +
3 + s
- B +
2 | + + +, o | ++ + ; +
?] Tt + ° + o+ + ++F
w | T+ + ++ 4 + +
e + +4 L +
T T T I o T T T T
5 10 15 20 5 10 15 20

Figure 3.5: The Block-Distribution check on

elements.

a normal distributed vector with

1000

3.3.5 Slide-Distribution

The slide-distribution-check use a block with the length of the given parameter blocksize
and slide it through the dataset and calculate for each step the statistical parameters.
The plot function create three plots, which are all consists of four timeseries plots of the

statistical parameters.

Calling function

qat_call slide distribution

Calling plot function

qat_call plot_slide distribution

Plotting function

qgat plot slide distribution 1d
qat plot slide distribution 2d
Calling save function

qat_call save slide distribution

Saving function
qat_save slide distribution 1d

qat_save_slide distribution 2d

Control function

qat_analyse slide distribution 1d
gat_analyse slide distribution 2d

Example plots

Distribution of a sliding shift (1)

Blocksize: 10
Data: Result of Check
1st moment 2nd moment
N % &
g ! + % +] I
+ At £+
| il + n | e i
™ -t e “'ﬁ‘fr r*—tﬁ# - H + kL +'_*i?_
¢ 1+ ety FF T ™ — i
g | E + #Jr F A T e hF kS
2 F w | 4
7 T T %\4’ T T © \-ﬁ +\ : rt ! T |t
0 20 a0 80 80 0 20 40 60 80
3rd moment 4th moment
| R E
T+ i
a | 4+ © NG
- T&#T" o ¥
s | to ++ + W .
=) _% ¥ T tmj» 4
4 + s
s | f _fﬂ*ﬂ#- ™ ﬁwﬂ + by -Hfﬂ;*
T4 T - T T ° \#‘— T + T il -tl T
0 20 a0 80 80 0 20 40 60 80
Distribution of a sliding shift (2)
Blocksize: 10
Data: Result of Check
standard deviation skewness
L]
~ fﬁ- Eid
I + 4 T T L
o - s o | T R T
=4 b4t T 3 L e
4 h—l‘*‘" e 5 B # 4+ +*“'ﬁﬁ*
g j #-v- +;’h—+ -h% 2 N %
o + + -
|#+ T \+ T \tﬁh ‘ T r T ia T T
0 20 40 60 80 0 20 40 60 80
kurtosis median
-
w - @ il
+ ° H oty
T -
e+ A
Sl Ty T4y M e et T
+ g _@W Hge + +A\L = T e + Ht
& ﬁ_ﬁh{ H it
T T T T mﬂw S‘ - T T T T #1: T
0 20 40 80 80 0 20 40 §0 80
Distribution of a sliding shift (3)
Blocksize: 10
Data: Result of Check
5% percentile 95% percentile
E - 4 * +—m+ + +
L too+ A 7
e - - i o =+
‘ L ity H
< + i + + +
DY TS H# el H
pig T T
T T Al T T T T = T T
0 20 40 80 80 0 20 40 60 80
25% percentile 75% percentile
p T,
- T
B o ++ = M iy
du+ + + e + + " R +
x Hi * A, e w ,M
e T i < -
et g+ ¥
4 +
e -y - o | Pt T Tl
o 4 =]
= 1 -4 +

Figure 3.6: Slide-Distribution check on a normal distributed vector with 1000 elements.

3.3.6 Trimmed-Distribution

The trimmed-distribution-check trim in each step the dataset of 1% on both sides of
the ordered dataset. For each of this sets the seven statsistical parameters, which are not
base on quantiles are calculated. The plot function create a plot, with the mean, standard

deviation, skewness and kurtosis for each step.

Calling function

qat_call trimmed distribution

Calling plot function

qgat_call plot trimmed distribution

Plotting function

qgat plot trimmed distribution 1d
qat plot trimmed distribution 2d

Calling save function

qat_call save trimmed distribution

Saving function
qat_save trimmed distribution 1d

qat_save trimmed distribution 2d

Control function

gat_analyse trimmed distribution 1d

gat_analyse trimmed distribution 2d

Example plots

Trimmed Moments
Data: Result of Check

mean standard deviation

0.000
|
+
04 0.8
(-

-0.010
| 1
?
i
+ o+
0.0
L 1 1

0 10 20 20 a0 50 0 10 20 30 a0 50
skewness Kurtosis
T

RSN Ch
- + 4
> +
s + A

_ o "
™ +
e 7 o |

+ o

w B + =+
S T T T T T + T T T T T +

0 10 20 30 a0 50 0 10 20 30 ap 50

Figure 3.7: Trimmed distribution check on a normal distributed vector with 1000 elements.

3.3.7 Boot-Distribution

The boot-distribution-check bootstrap the dataset for so many times, like it is given by the
given parameter bootruns. For each of this sets the statistical parameters are calculated.
The plot function create a plot, which consists of twelve boxplots, one for each of the

parameters.

Calling function

qat_call boot distribution

Calling plot function

qat_call plot boot distribution

Plotting function

qat _plot boot distribution 1d
qat _plot boot distribution 2d
Calling save function

qat_call _save boot distribution

Saving function
gat_save boot distribution 1d

qat_save boot distribution 2d

Control function

qat_analyse boot distribution 1d
gat_analyse boot distribution 2d

Example plots

Booted Moments
Number of bootruns: 1000
Data: Result of Check

mean 2nd moment 3rd moment 4th moment std. dev. skewness
w Ll

=} L =7 - o] " " - aq 1
= S . 4 1
s =] 7 1 2 =17 w | T

i -7 ! o 1 ' ! (=T | I
w | ! s 7 ' T T H !
24 |
= ? 4 = ! o i % 1 0 = !
g £ 2 B a2) E E B
= I - (=2 o o [l

| w i H & 4 ' |
3 | 27 ! = | ! = | =4

B | 5 4 w |

R o ;]+ o T Lt

1 21 =+ 24 L % 1 o+ o

kurtosis median 5% quantile 25% quantile 75% quantile 95% quantile
w
- I Ba— @ A

3 ! T 11 = T
o T e ! (=] = 1 I

! R L R =71 1
24 4 o " e !

| | @ | =} |
® £ B e | B g - B
- = < | = T
L -~ g ! B & 4 i 2400
a | | = | i s i = : |
™ + s T @ | ' S 2 ' wn -

] T - L T = < -

Figure 3.8: Bootstrap distribution test on a normal distributed vector with 1000 elements.

3.3.8 Histogram test

The histogram test divides the dataset into blocks. Afterwards, it calculates of each block
the histogram and compares them by calculating the difference with a given metric. As
a result a matrix is generated, which includes the results of every comparison.

Calling function

qat_call histogram test

Calling plot function

qat_call plot histogram test

Plotting function

qgat_plot histogram test

Calling save function

qat_call save histogram test

Saving function

qat_save histogram test

Control function

gat_analyse histogram test kld 1d
gat analyse histogram test jsd 1d
qat analyse histogram test rms 1d
gat_analyse histogram test ms 1d
gat_analyse histogram test emd 1d
gat analyse histogram test kld 2d
qat_analyse histogram test jsd 2d
gat_analyse histogram test rms 2d
gat _analyse histogram test ms 2d

gat _analyse histogram test emd 2d

Example plots

Histogram test using the EMD
Blocksize: 50; Number of Bars: 65;
Data: Result of Check

0.00

Figure 3.9: Result of a histogram test with the EMD metric on a level shift with 1 standard
deviation.

4 Additional Functions

4.1 Reading functions

This package contains reading functions to read in the measurement data. Actually there

is only a functionality for netCDF files.

4.1.1 Read in data

Functionality

Read in a file at a given filename and produce a netcdf object.

Function

qat _data read ncdf

4.1.2 Number of Variables

Functionality

Look at a given netcdf object and deliver the number of variables.

Function

qat _data numofvars ncdf

4.1.3 Names of Variables

Functionality

Look at a given netcdf object and deliver the names of variables.

Function

qat _data nameofvars ncdf

31

4.1.4 Content of Variables

Functionality

Look at a given netedf object and deliver the content of the variable, which is specified

by the parameter numofvar.

Function

qat__data_varcontent ncdf

4.2 Workflowmanagement

The workflow based on XML files, which are specified by a dtd

4.2.1 Read in workflow

Functionality

Read a workflow of an configuration XML file and give back a workflowlist.

Function

qgat_config read workflow

4.2.2 Write result/workflow

Functionality

Write a workflow of an workflowlist to a XML file.

Function

qat_result write

4.2.3 Write result to netCDF

Functionality

Write a workflow of a savelist to a netCDF file.

Function

qat save result ncdf

4.2.4 Run a workflow of checks

Functionality

Run the checks of a workflow and give back a resultlist.

Function

qat_run_workflow check

4.2.5 Run a workflow of plots

Functionality

Run the workflow, which is saved in a resultlist and produce the plots

Function

qat_run_workflow plot

4.2.6 Run a workflow to save

Functionality

Run the workflow, which is saved in a resultlist and produce a savelist, which may be

used to write a netCDF output of the results.

Function

qat _run workflow save

4.2.7 Add a comment to a workflowlist

Functionality

Adds a comment to a specified check at a workflowlist.

Function

gat _add comment

4.2.8 Add a description to a workflowlist

Functionality

Adds a description to a specified check at a workflowlist.

Function

qat _add description

4.2.9 Add a algorithm to a workflowlist

Functionality

Adds a algorithm to a specified check at a workflowlist.

Function

qat _add_algorithm

4.2.10 Add all descriptions to a workflowlist

Functionality

Adds the description-information, which are stored in the package to all known checks in
a workflowlist.

Function

qgat _add all descriptions

4.2.11 Add all algorithms to a workflowlist

Functionality

Adds the algorithm-information, which are stored in the package to all known checks in

a workflowlist.

Function

qat _add all algorithms

5 File Formats

5.1 Workflow-XML

5.1.1 Idea

The workflow-XML-format should enable the user to use and control the workflow-level.
This format describes the checks, which should be performed by the package and its
parameters. It also got the possibility to store more details on the checks. Like comments
for a result or informations of the test, like a description and algorithm, itself. For all this

service functions are available in the package.

5.1.2 Usage

The most important function in this context is the reading function. This functions read

in the workflow and the user can now make use of it.

filename <- "myworkflow.xml"

workflowlist <- gat_config read_workflow(filename)
For example it is possible to test a vector with normal distributed values:

testvector <- rnorm(100)

rlist <- gat_run_workflow_check(testvector,workflowlist)
This will deliver a resultlist, which now can be plotted:
qat_run_workflow_plot(rlist, measurement_name="Test", basename="test")

With this the plots will be produrced in the same directory. Perhaps some additional

details should be included here, for example the descriptions and algorithms for the tests:

workflowlist <- gat_add_all_descriptions(workflowlist)
workflowlist <- gat_add_all_algorithms(workflowlist)

Also a comment for a result of a test may be a good idea, here a "everything is ok" for
the first test in the list:

37

workflowlist <- gat_add_comment (workflowlist, 1, "No problems")

At last, the edited workflowlist should be written in a file again. For this there are two

possible options. First to write simply the workflow and its additions made to this in a
XML file:

filename2 <- "myworkflow_result.xml"

qat_config write_workflow(workflowlist, output_filename=filename?2)

The other option is to write not only the workflow, but also the results into a netCDF

file. For this first a savelist have to be constructed:
slist <- qat_run_workflow_save(rlist)

Now this savelist can be written together with the measurement vector, which is also

stored in the resultlist, and a filename into a new netCDF file:

filename3 <- "myworkflow_result.nc"
newtestvector <- rlist[[1]]9$measurement_vector

qat_save_result_ncdf (newtestvector, slist, filename3, workflowlist)

5.1.3 Description

The data format is a XML-formate. The dtd-file of this looks as follows:

<!ELEMENT qgatfile (header, workflow)>

<!ELEMENT header (name, type, description, author, date,
(tag) *,version,numofchecks, (config_header)?)>
<!ELEMENT name (#PCDATA)>

<!ELEMENT type (#PCDATA)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT date (#PCDATA)>

<VELEMENT tag (#PCDATA)>

<!ELEMENT version (#PCDATA)>

<!ELEMENT numofchecks (#PCDATA)>

<!ELEMENT config_header (name, type, description, author, date,

(tag)*, version, numofchecks)>

<!ELEMENT workflow (procedure, check)>

<IELEMENT procedure (method_name, (parameter)*,
(result)?, (description)?, (algorithm)?)>

<!ELEMENT method_name (#PCDATA)>

<IELEMENT parameter (parameter_name, parameter_value)>
<VELEMENT parameter_name (#PCDATA)>

<!ELEMENT parameter_value (#PCDATA)>

<IELEMENT result ((comment_on_result)?, (result_file)*)>
<!ELEMENT comment_on_result (#PCDATA)>

<!ELEMENT result_file (#PCDATA)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT algorithm (#PCDATA)>

<VELEMENT check (method_name, (parameter)*, (result)?,
(description)?, (algorithm)?)>

Basically this format consists of two parts: a header and a workflow. The header stores
information about the file, like the author, date or version informations. In the section of
the workflow checks can be defined, with the needed parameters. These can also include

description, algorithm or result informations.

5.1.4 Example

This example is a simple configuration file, which can be used to test a normal distributed

vector.

<gatfile>

<header>
<name>Testconfiguration</name>
<type>configuration</type>
<description>This workflow tests normal distributed vectors</description>
<author>N. N.</author>
<date>2010-08-02</date>
<tag>normal</tag>
<tag>testconfig</tag>
<version>0.1</version>
<numofchecks>10</numofchecks>
</header>

<workflow>

<check>

<method_name>lim</method_name>

<parameter>
<parameter_name>minimum_value</parameter_name>
<parameter_value>-2</parameter_value>
</parameter>

<parameter>
<parameter_name>maximum_value</parameter_name>
<parameter_value>2</parameter_value>
</parameter>

<parameter>
<parameter_name>sigma_factor</parameter_name>
<parameter_value>2.3</parameter_value>
</parameter>

</check>

<check>

<method_name>roc</method_name>

<parameter>
<parameter_name>downward_value</parameter_name>
<parameter_value>1.5</parameter_value>
</parameter>

<parameter>
<parameter_name>upward_value</parameter_name>
<parameter_value>2</parameter_value>
</parameter>

<parameter>
<parameter_name>upward_vector</parameter_name>
<parameter_value>vec3</parameter_value>
</parameter>

<parameter>
<parameter_name>downward_vector</parameter_name>
<parameter_value>vec4</parameter_value>
</parameter>

<parameter>
<parameter_name>upward_vector_name</parameter_name>
<parameter_value>lin vec 1 to 3</parameter_value>

</parameter>

<parameter>
<parameter_name>downward_vector_name</parameter_name>
<parameter_value>lin vec 3 to 1</parameter_value>
</parameter>

</check>

<check>

<method_name>noc</method_name>

<parameter>
<parameter_name>max_return_elements</parameter_name>
<parameter_value>1</parameter_value>
</parameter>

</check>

<check>

<method_name>dist</method_name>
<parameter>
<parameter_name>numofbars</parameter_name>
<parameter_value>10</parameter_value>
</parameter>

</check>

<check>
<method_name>blockdist</method_name>
<parameter>
<parameter_name>blocksize</parameter_name>
<parameter_value>50</parameter_value>
</parameter>

</check>

<check>
<method_name>slidedist</method_name>
<parameter>
<parameter_name>blocksize</parameter_name>
<parameter_value>100</parameter_value>
</parameter>

</check>

<check>
<method_name>trimmeddist</method_name>
</check>

<check>

<method_name>bootdist</method_name>
<parameter>
<parameter_name>bootruns</parameter_name>
<parameter_value>100</parameter_value>
</parameter>

</check>

</workflow>

</qatfile>

5.2 Plotstyle-XML

5.2.1 Idea

To change the general look of the graphs it is possible to change their style. To do it for
all functions with the same mechanism the plotstyle element was included. To create this
list it is possible to read in the here described plotstyle-XML

5.2.2 Usage

This is controled by the function qat style plot. The returned list of this function is a
so called plotstyle element. It is possible to read a plotstyle-XML in with the following

call:

filename <- "myplotstyle.xml"
plotstyle <- gat_style_plot(filename)

The list plotstyle got now the information of the style, which is stored in myplotstyle.xml.
If the standard style should be used, it is either possible to call the function without a
plotstyle or let the plotting functions in the qat package do it for you.

plotstyle <- gat_style_plot()

The latter is the standard in all functions.

5.2.3 Description

The data format is a XML-formate. The dtd-file of this looks as follows:

<IELEMENT qat_plotstyle (parameterx*)>

<IELEMENT parameter (parameter_name, parameter_value)>
<!ELEMENT parameter_name (#PCDATA)>
<VELEMENT parameter_value (#PCDATA)>

5.2.4 Example

The following XML-Sheme shows the standard settings:

<gat_plotstyle>

<parameter>
<parameter_name>basecolor</parameter_name>
<parameter_value>white</parameter_value>
</parameter>

<parameter>
<parameter_name>frontcolor</parameter_name>
<parameter_value>black</parameter_value>
</parameter>

<parameter>
<parameter_name>plotcolormain</parameter_name>
<parameter_value>red</parameter_value>
</parameter>

<parameter>
<parameter_name>plotcolorminor</parameter_name>
<parameter_value>black</parameter_value>
</parameter>

<parameter>
<parameter_name>plotcolorbackground</parameter_name>
<parameter_value>lightgrey</parameter_value>
</parameter>

<parameter>
<parameter_name>fontcolor</parameter_name>
<parameter_value>black</parameter_value>
</parameter>

<parameter>
<parameter_name>plotpointminor</parameter_name>
<parameter_value>20</parameter_value>
</parameter>

<parameter>

<parameter_name>plotpointmain</parameter_name>
<parameter_value>3</parameter_value>
</parameter>

</qat_plotstyle>

Acknowledgement

This work was funded by the Deutsche Forschungsgemeinschaft (DFG) within the Projekt
"Publikation Umweltdaten" (Publication of Environmental Data).

I would like to thank Duncan Temple Lang for his help concerning the XML integration.

45

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4

3.5

3.6
3.7

3.8
3.9

Actual structure of the qat-package. 3
Actual structure of the qat-package. L. 5
The three LIM-checks on a normal distribution. 12
Both ROC-checks on a normal distribution. 15
The NOC check on a simple dataset. 17
The Distribution ckeck on a normal distributed measurement vector with

1000 elements. 19
The Block-Distribution check on a normal distributed vector with 1000

elements. L 21

Slide-Distribution check on a normal distributed vector with 1000 elements. 23
Trimmed distribution check on a normal distributed vector with 1000 ele-
MeNtS. e e 25
Bootstrap distribution test on a normal distributed vector with 1000 elements. 27
Result of a histogram test with the EMD metric on a level shift with 1

standard deviation. L 29

47

Bibliography

[Meek und Hatfield 1994] MEEK, D. W. ; HATFIELD, J. L.: Data Quality Checking for
Single Station Meteorological Databases. In: Agricultural and Forest Meteorology 69
(1994), Jun, Nr. 1-2, S. 85-109. — ISSN 0168-1923

49

