
ADVANCED TOPICS IN POMP

AARON A. KING

Contents

1. Accelerating your codes: vectorizing rprocess and using native codes 1

2. Accumulator variables 8

3. The low-level interface 9

4. Other examples 10

5. Pomp Builder 10

This document discusses accelerating pomp by vectorizing your codes and/or using native (C or FOR-
TRAN) codes. It also introduces pomp’s low-level interface for code developers.

1. Accelerating your codes: vectorizing rprocess and using native codes

In the“Introduction to pomp”vignette, we used plug-ins provided by the package to specify the rprocess
component of partially-observed Markov process models. The rprocess plug-ins require you to write a
simulator for a single realization of the process, for a single set of parameters, from one time to another.
pomp then calls this code many times—using potentially many different parameter values, states, and
times—whenever it simulates the process, computes likelihood via Monte Carlo integration, etc. The
inference methods implemented in pomp are quite computationally intensive, which puts a premium on
the speed of your codes. Sometimes, you can realize substantial speed-up of your code by vectorizing
it. This necessitates foregoing the relative simplicity of the plug-in-based implementation and writing
rprocess “from scratch”. Here, we’ll develop a vectorized version of rprocess in R code, then we’ll see
what the same thing looks like coded in C. We’ll compare these different versions in terms of their speed
at simulation.

We’ll use a discrete-time bivariate AR(1) process with normal measurement error as our example. In
this model, the state process Xt ∈ R

2 satisfies

Xt = αXt−1 + σ εt. (1)

The measurement process is

Yt = β Xt + τ ξt. (2)

In these equations, α and and β are 2 × 2 constant matrices. ξt and εt are mutually-independent
families of i.i.d. bivariate standard normal random variables. σ is a lower-triangular matrix such that
σσT is the variance-covariance matrix of Xt+1|Xt. We’ll assume that each component of X is measured
independently and with the same error, τ , so that the variance-covariance matrix of Yt|Xt has τ

2 on the
diagonal and zeros elsewhere.

Date: April 30, 2012, pomp version 0.42-1.

1

2 A. A. KING

An implementation of this model is included in the package as a pomp object; load it by executing
data(ou2).

An unvectorized implementation using R code only. Before we set about vectorizing the codes,
let’s have a look at what a plug-in based implementation written entirely in R might look like.

data(ou2)

ou2.dat <- as.data.frame(ou2)

pomp(

data=ou2.dat[c("time","y1","y2")],

times="time",

t0=0,

rprocess=discrete.time.sim(

step.fun=function (x, t, params, ...) {

eps <- rnorm(n=2,mean=0,sd=1) # noise terms

xnew <- c(

x1=params["alpha.1"]*x["x1"]+params["alpha.3"]*x["x2"]+

params["sigma.1"]*eps[1],

x2=params["alpha.2"]*x["x1"]+params["alpha.4"]*x["x2"]+

params["sigma.2"]*eps[1]+params["sigma.3"]*eps[2]

)

names(xnew) <- c("x1","x2")

xnew

}

)

) -> ou2.Rplug

Notice how we specify the process model simulator using the rprocess plug-in discrete.time.sim.
The latter function’s step.fun argument is itself a function that simulates one realization of the process
for one timestep and one set of parameters. When we vectorize the code, we’ll do many realizations at
once.

Vectorizing the process simulator using R code only. Now, to write a vectorized rprocess in
R, we must write a function that simulates nrep realizations of the unobserved process. Each of these
realizations may start at a different point in state space and each may have a different set of parameters.
Moreover, this function must be capable of simulating the process over an arbitrary time interval and
must be capable of reporting the unobserved states at arbitrary times in that interval. We’ll accomplish
this by writing an R function with arguments xstart, params, and times. About these inputs, we must
assume:

(1) xstart will be a matrix, each column of which is a vector of initial values of the state process.
Each state variable (matrix row) will be named.

(2) params will be a matrix, the columns of which are parameter vectors. The parameter names will
be in the matrix column-names.

(3) times will be a vector of times at which realizations of the state process are required. We will
have times[k] ≤ times[k+1] for all indices k, but we cannot assume that the entries of times
will be unique.

(4) The initial states xstart are assumed to obtain at time times[1].

This function must return a rank-3 array, which has the realized values of the state process at the
requested times. This array must have rownames. Here is one implementation of such a simulator.

ADVANCED TOPICS IN POMP 3

ou2.Rvect.rprocess <- function (xstart, times, params, ...) {

nrep <- ncol(xstart) # number of realizations

ntimes <- length(times) # number of timepoints

unpack the parameters (for legibility only)

alpha.1 <- params["alpha.1",]

alpha.2 <- params["alpha.2",]

alpha.3 <- params["alpha.3",]

alpha.4 <- params["alpha.4",]

sigma.1 <- params["sigma.1",]

sigma.2 <- params["sigma.2",]

sigma.3 <- params["sigma.3",]

x is the array of states to be returned: it must have rownames

x <- array(0,dim=c(2,nrep,ntimes))

rownames(x) <- rownames(xstart)

xnow holds the current state values

x[,,1] <- xnow <- xstart

tnow <- times[1]

for (k in seq.int(from=2,to=ntimes,by=1)) {

tgoal <- times[k]

while (tnow < tgoal) { # take one step at a time

eps <- array(rnorm(n=2*nrep,mean=0,sd=1),dim=c(2,nrep))

tmp <- alpha.1*xnow['x1',]+alpha.3*xnow['x2',]+

sigma.1*eps[1,]

xnow['x2',] <- alpha.2*xnow['x1',]+alpha.4*xnow['x2',]+

sigma.2*eps[1,]+sigma.3*eps[2,]

xnow['x1',] <- tmp

tnow <- tnow+1

}

x[,,k] <- xnow

}

x

}

We can put this into a pomp object that is the same as ou2.Rplug in every way except in its rprocess
slot by doing

ou2.Rvect <- pomp(ou2.Rplug,rprocess=ou2.Rvect.rprocess)

Let’s pick some parameters and simulate some data to see how long it takes this code to run.

theta <- c(

x1.0=-3, x2.0=4,

tau=1,

alpha.1=0.8, alpha.2=-0.5, alpha.3=0.3, alpha.4=0.9,

sigma.1=3, sigma.2=-0.5, sigma.3=2

)

tic <- Sys.time()

simdat.Rvect <- simulate(ou2.Rvect,params=theta,states=T,nsim=1000)

toc <- Sys.time()

etime.Rvect <- toc-tic

Doing 1000 simulations of ou2.Rvect took 0.1 secs. Compared to the 2.36 secs it took to run 1000
simulations of ou2.Rplug, this is a 23-fold speed-up.

4 A. A. KING

Using R’s byte compiler. From version 2.13, R has provided byte-compilation facilities, in the base
package compiler. Let’s see to what extent we can speed up our codes by byte-compiling the components
of our pomp object.

require(compiler)

pomp(

ou2.Rplug,

rprocess=discrete.time.sim(

step.fun=cmpfun(

function (x, t, params, ...) {

eps <- rnorm(n=2,mean=0,sd=1) # noise terms

xnew <- c(

x1=params["alpha.1"]*x["x1"]+params["alpha.3"]*x["x2"]+

params["sigma.1"]*eps[1],

x2=params["alpha.2"]*x["x1"]+params["alpha.4"]*x["x2"]+

params["sigma.2"]*eps[1]+params["sigma.3"]*eps[2]

)

names(xnew) <- c("x1","x2")

xnew

},

options=list(optimize=3)

)

)

) -> ou2.Bplug

Doing these 1000 simulations of ou2.Bplug took 1.84 secs. This is a 1.3-fold speed-up relative to the
plug-in code written in R.

We can byte-compile the vectorized R code, too, and compare its performance:

ou2.Bvect <- pomp(ou2.Rplug,rprocess=cmpfun(ou2.Rvect.rprocess,options=list(optimize=3)))

tic <- Sys.time()

simdat.Bvect <- simulate(ou2.Bvect,params=theta,states=T,nsim=1000)

toc <- Sys.time()

etime.Bvect <- toc-tic

This code shows a 28-fold speed-up relative to the plug-in code written in R.

Accelerating the code using C: a plug-in based implementation. As we’ve seen, we can usually
acheive big accelerations using compiled native code. A one-step simulator written in C for use with the
discrete.time.sim plug-in is included with the package and can be viewed by doing

file.show(file=system.file("examples/ou2.c",package="pomp"))

The one-step simulator is in function ou2_step. Prototypes for the one-step simulator and other func-
tions are in the pomp.h header file; view it by doing

file.show(file=system.file("include/pomp.h",package="pomp"))

We can put the one-step simulator into the pomp object and simulate as before by doing

ou2.Cplug <- pomp(

ou2.Rplug,

rprocess=discrete.time.sim("ou2_step"),

ADVANCED TOPICS IN POMP 5

paramnames=c(

"alpha.1","alpha.2","alpha.3","alpha.4",

"sigma.1","sigma.2","sigma.3",

"tau"

),

statenames=c("x1","x2"),

obsnames=c("y1","y2")

)

tic <- Sys.time()

simdat.Cplug <- simulate(ou2.Cplug,params=theta,states=T,nsim=100000)

toc <- Sys.time()

etime.Cplug <- toc-tic

Note that ou2_step is written in such a way that we must specify paramnames, statenames, and
obsnames. These 100000 simulations of ou2.Cplug took 1.91 secs. This is a 123-fold speed-up relative
to ou2.Rplug.

A vectorized C implementation. The function ou2_adv is a fully vectorized version of the simulator
written in C. View this code by doing

file.show(file=system.file("examples/ou2.c",package="pomp"))

This function is called in the following rprocess function. Notice that the call to ou2_adv uses the .C

convention.

ou2.Cvect.rprocess <- function (xstart, times, params, ...) {

nvar <- nrow(xstart)

npar <- nrow(params)

nrep <- ncol(xstart)

ntimes <- length(times)

array(

.C("ou2_adv",

X = double(nvar*nrep*ntimes),

xstart = as.double(xstart),

par = as.double(params),

times = as.double(times),

n = as.integer(c(nvar,npar,nrep,ntimes))

)$X,

dim=c(nvar,nrep,ntimes),

dimnames=list(rownames(xstart),NULL,NULL)

)

}

The call that constructs the pomp object is:

ou2.Cvect <- pomp(

ou2.Rplug,

rprocess=ou2.Cvect.rprocess

)

tic <- Sys.time()

paramnames <- c(

"alpha.1","alpha.2","alpha.3","alpha.4",

6 A. A. KING

"sigma.1","sigma.2","sigma.3",

"tau",

"x1.0","x2.0"

)

simdat.Cvect <- simulate(ou2.Cvect,params=theta[paramnames],nsim=100000,states=T)

toc <- Sys.time()

etime.Cvect <- toc-tic

Note that we’ve had to rearrange the order of parameters here to ensure that they arrive at the native
codes in the right order. Doing 100000 simulations of ou2.Cvect took 2.23 secs, a 106-fold speed-up
relative to ou2.Rplug.

More on native codes and plug-ins. It’s possible to use native codes for dprocess and for the
measurement model portions of the pomp as well. In the “Introduction to pomp” vignette, we looked at
the SIR model, which we implemented using an Euler-multinomial approximation to the continuous-time
Markov process. Here is the same model implemented using native C codes:

pomp(

data=data.frame(

time=seq(from=1/52,to=4,by=1/52),

reports=NA

),

times="time",

t0=0,

native routine for the process simulator:

rprocess=euler.sim(

step.fun="_sir_euler_simulator",

delta.t=1/52/20,

PACKAGE="pomp"

),

native routine for the skeleton:

skeleton.type="vectorfield",

skeleton="_sir_ODE",

native measurement-model routines:

rmeasure="_sir_binom_rmeasure",

dmeasure="_sir_binom_dmeasure",

name of the shared-object library containing the

PACKAGE="pomp",

the order of the observable assumed in the native routines:

obsnames = c("reports"),

the order of the state variables assumed in the native routines:

statenames=c("S","I","R","cases","W"),

the order of the parameters assumed in the native routines:

paramnames=c(

"gamma","mu","iota",

"beta1","beta.sd","pop","rho",

"S.0","I.0","R.0"

),

nbasis=3L, # three seasonal basis functions

degree=3L, # use cubic B-splines

period=1.0, # seasonality has period 1yr

designate 'cases' as an accumulator variable

i.e., set it to zero after each observation

ADVANCED TOPICS IN POMP 7

zeronames=c("cases"),

parameter transformations in native routines:

parameter.transform="_sir_par_trans",

parameter.inv.transform="_sir_par_untrans",

some variables to be used in the initializer

comp.names=c("S","I","R"),

ic.names=c("S.0","I.0","R.0"),

parameterization of the initial conditions:

initializer=function(params, t0, comp.names, ic.names, ...) {

snames <- c("S","I","R","cases","W")

fracs <- params[ic.names]

x0 <- numeric(length(snames))

names(x0) <- snames

x0[comp.names] <- round(params['pop']*fracs/sum(fracs))

x0

}

) -> sir

The source code for the native routines _sir_euler_simulator, _sir_ODE, _sir_binom_rmeasure, and
_sir_binom_dmeasure is provided with the package (in the examples directory). To see the source code,
do

file.show(file=system.file("examples/sir.c",package="pomp"))

In the demo directory is an R script that shows how to compile sir.c into a shared-object library and
link it with R. Do demo(sir) to run and view this script. Note that the native routines for this model
are included in the package, which is why we give the PACKAGE="pomp" argument to pomp. When you
write your own model using native routines, you’ll compile them into a dynamically-loadable library. In
this case, you’ll want to specify the name of that library using the PACKAGE argument. Again, refer to
the SIR example included in the examples directory to see how this is done.

You can also use the R package inline to put C or FORTRAN codes directly into your R functions.

There is an important issue that arises when using native codes. This has to do with the order in which
parameters, states, and observables are passed to these codes. pomp relies on the names (also row-
names and column-names) attributes to identify variables in vectors and arrays. When you write a C or
FORTRAN version of rprocess or dmeasure for example, you write a routine that takes parameters,
state variables, and/or observables in the form of a vector. However, you have no control over the
order in which these are given to you. Without some means of knowing which element of each vector
corresponds to which variable, you cannot write the codes correctly. This is where the paramnames,
statenames, covarnames, and obsnames arguments to pomp come in: use these arguments to specify the
order in which your C code expects to see the parameters, state variables, covariates, and observables
(data variables). pomp will match these names against the corresponding names attributes of vectors. It
will then pass to your native routines index vectors you can use to locate the correct variables. See the
source code to see how this is done.

Let’s specify some parameters, simulate, and compute a deterministic trajectory:

params <- c(

gamma=26,mu=0.02,iota=0.01,

beta1=400,beta2=480,beta3=320,

beta.sd=1e-3,

pop=2.1e6,

rho=0.6,

8 A. A. KING

S.0=26/400,I.0=0.001,R.0=1-0.001-26/400

)

sir <- simulate(sir,params=c(params,nbasis=3,degree=3,period=1),seed=3493885L)

sims <- simulate(sir,nsim=10,obs=T)

traj <- trajectory(sir,hmax=1/52)

2. Accumulator variables

Recall the SIR example discussed in the “Introduction to pomp” vignette. In this example, the data
consist of reported cases, which are modeled as binomial draws from the true number of recoveries
having occurred since the last observation. In particular, suppose the zero time for the process is t0 and
let t1, t2, . . . , tn be the times at which the data y1, y2, . . . , yn are recorded. Then the k-th observation
yk = C(tk−1, tk) is the observed number of cases in time interval [tk−1, tk). If ∆I→R(tk−1, tk) is the
accumulated number of recoveries (I to R transitions) in the same interval, then the model assumes

yk = C(tk−1, tk) ∼ binomial(∆I→R(tk−1, tk), ρ)

where ρ is the probability a given case is actually recorded.

Now, it is easy to keep track of the cumulative number of recoveries when simulating the continuous-time
SIR state process; one simply has to add each recovery to an accumulator variable when it occurs. The
SIR simulator codes in the “Introduction to pomp” vignette do this, storing the cumulative number of
recoveries in a state variable cases, so that at any time t,

cases(t) = cumulative number of recoveries having occurred in the interval [t0, t).

It follows that ∆I→R(tk−1, tk) = cases(tk)−cases(tk−1). Does this not violate the Markov assumption
upon which all the algorithms in pomp are based? Not really. Straightforwardly, one could augment the
state process, adding cases(tk−1) to the state vector at time tk. The state process would then become
a hybrid process, with one component (the S, I, R, and cases variables) evolving in continuous time,
while the retarded cases variable would update discretely.

It would, of course, be relatively easy to code up the model in this way, but because the need for
accumulator variables is so common, pomp provides an easier work-around. Specifically, in the pomp-
object constructing call to pomp, any variables named in the zeronames argument are assumed to be
accumulator variables. At present, however, only the rprocess plug-ins and the deterministic-skeleton
trajectory codes take this into account; setting zeronames will have no effect on custom rprocess codes.

ADVANCED TOPICS IN POMP 9

3. The low-level interface

There is a low-level interface to pomp objects, primarily designed for package developers. Ordinary users
should have little reason to use this interface. In this section, each of the methods that make up this
interface will be introduced.

Getting initial states. The init.state method is called to initialize the state (unobserved) process.
It takes a vector or matrix of parameters and returns a matrix of initial states.

data(ou2)

true.p <- coef(ou2)

x0 <- init.state(ou2)

x0

[,1]

x1 -3

x2 4

new.p <- cbind(true.p,true.p,true.p)

new.p["x1.0",] <- 1:3

init.state(ou2,params=new.p)

[,1] [,2] [,3]

x1 1 2 3

x2 4 4 4

Simulating the process model. The rprocess method gives access to the process model simulator.
It takes initial conditions (which need not correspond to the zero-time t0 specified when the pomp object
was constructed), a set of times, and a set of parameters. The initial states and parameters must be
matrices, and they are checked for commensurability. The method returns a rank-3 array containing
simulated state trajectories, sampled at the times specified.

x <- rprocess(ou2,xstart=x0,times=time(ou2,t0=T),params=true.p)

dim(x)

[1] 2 1 101

x[,,1:5]

[,1] [,2] [,3] [,4] [,5]

x1 -3 -1.316361 6.512729 7.439683 6.3573871

x2 4 6.988944 9.489474 5.907648 0.8231262

Note that the dimensions of x are nvars x nreps x ntimes, where nvars is the number of state vari-
ables, nreps is the number of simulated trajectories (which is the number of columns in the params and
xstart matrices), and ntimes is the length of the times argument. Note also that x[,,1] is identical
to xstart.

Simulating the measurement model. The rmeasure method gives access to the measurement model
simulator:

x <- x[,,-1,drop=F]

y <- rmeasure(ou2,x=x,times=time(ou2),params=true.p)

dim(y)

10 A. A. KING

[1] 2 1 100

y[,,1:5]

[,1] [,2] [,3] [,4] [,5]

y1 1.019946 5.795035 7.553984 6.301990 3.50659

y2 7.859654 9.494612 6.605897 1.736691 -2.31352

Process and measurement model densities. The dmeasure and dprocess methods give access to
the measurement and process model densities, respectively.

fp <- dprocess(ou2,x=x,times=time(ou2),params=true.p)

dim(fp)

[1] 1 99

fp[,36:40]

[1] 0.014487935 0.016422529 0.009967734 0.003410962

[5] 0.022336333

fm <- dmeasure(ou2,y=y[,1,],x=x,times=time(ou2),params=true.p)

dim(fm)

[1] 1 100

fm[,36:40]

[1] 0.14423968 0.08458639 0.13313378 0.01413381 0.07670054

All of these are to be preferred to direct access to the slots of the pomp object, because they do error
checking on the inputs and outputs.

4. Other examples

There are a number of example pomp objects included with the package. These can be found by running

data(package="pomp")

The R scripts that generated these are included in the data-R directory of the installed package. The
majority of these use compiled code, which can be found in the package source.

5. Pomp Builder

rmeas <- "

double size = 1.0/sigma/sigma;

double prob = 1.0/(1.0+rho*cases/size);

reports = rnbinom(size,prob);

"

dmeas <- "

double size = 1.0/sigma/sigma;

double prob = 1.0/(1.0+rho*cases/size);

lik = dnbinom(reports,size,prob,give_log);

"

ADVANCED TOPICS IN POMP 11

stepfn <- "

int nrate = 6;

int nbasis = 3;

int degree = 3;

double period = 1.0;

double rate[nrate]; // transition rates

double trans[nrate]; // transition numbers

double dW;

double seasonality[nbasis];

double beta;

int k;

dW = rgammawn(beta_sd,dt); // gamma noise, mean=dt, variance=(beta_sd^2 dt)

periodic_bspline_basis_eval(t,period,degree,nbasis,seasonality);

beta = beta1*seasonality[0]+beta2*seasonality[1]+beta3*seasonality[2];

// compute the transition rates

rate[0] = mu*popsize; // birth into susceptible class

rate[1] = (iota+beta*I*dW/dt)/popsize; // force of infection

rate[2] = mu; // death from susceptible class

rate[3] = gamma; // recovery

rate[4] = mu; // death from infectious class

rate[5] = mu; // death from recovered class

// compute the transition numbers

trans[0] = rpois(rate[0]*dt); // births are Poisson

reulermultinom(2,S,&rate[1],dt,&trans[1]);

reulermultinom(2,I,&rate[3],dt,&trans[3]);

reulermultinom(1,R,&rate[5],dt,&trans[5]);

// balance the equations

S += trans[0]-trans[1]-trans[2];

I += trans[1]-trans[3]-trans[4];

R += trans[3]-trans[5];

cases += trans[3]; // cases are cumulative recoveries

if (beta_sd > 0.0) W += (dW-dt)/beta_sd; // mean = 0, variance = dt

"

skel <- "

int nrate = 6;

int nbasis = 3;

int degree = 3; // degree of seasonal basis functions

double period = 1.0;

double rate[nrate]; // transition rates

double term[nrate]; // terms in the equations

double beta;

double seasonality[nbasis];

// compute transmission rate from seasonality

periodic_bspline_basis_eval(t,period,degree,nbasis,seasonality);

beta = exp(log(beta1)*seasonality[0]+log(beta2)*seasonality[1]+log(beta3)*seasonality[2]);

// compute the transition rates

12 A. A. KING

rate[0] = mu*popsize; // birth into susceptible class

rate[1] = (iota+beta*I)/popsize; // force of infection

rate[2] = mu; // death from susceptible class

rate[3] = gamma; // recovery

rate[4] = mu; // death from infectious class

rate[5] = mu; // death from recovered class

// compute the several terms

term[0] = rate[0];

term[1] = rate[1]*S;

term[2] = rate[2]*S;

term[3] = rate[3]*I;

term[4] = rate[4]*I;

term[5] = rate[5]*R;

// assemble the differential equations

DS = term[0]-term[1]-term[2];

DI = term[1]-term[3]-term[4];

DR = term[3]-term[5];

Dcases = term[3]; // accumulate the new I->R transitions

DW = 0;

"

pompBuilder(

data=data.frame(

reports=NA,

time=seq(0,10,by=1/52)

),

times="time",

t0=-1/52,

name="SIR",

step.fn.delta.t=1/52/20,

paramnames=c(

"beta1","beta2","beta3","gamma","mu",

"beta.sd","rho","popsize","iota","sigma"

),

statenames=c("S","I","R","W","cases"),

zeronames="cases",

rmeasure=rmeas,

dmeasure=dmeas,

step.fn=stepfn,

skeleton=skel,

skeleton.type="vectorfield"

) -> sir

simulate(

sir,

params=c(gamma=26,mu=0.05,beta.sd=0.1,

rho=0.6,sigma=0.1,popsize=1e5,iota=10,

beta1=100,beta2=120,beta3=80,

S.0=26000,I.0=0,R.0=74000,W.0=0,cases.0=0

)

) -> sir

ADVANCED TOPICS IN POMP 13

A. A. King, Departments of Ecology & Evolutionary Biology and Mathematics, University of Michigan, Ann

Arbor, Michigan 48109-1048 USA

E-mail address: kingaa at umich dot edu

URL: http:pomp.r-forge.r-project.org

