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1 Introduction

The R package polysat provides useful tools for working with microsatel-
lite data of any ploidy level, including populations of mixed ploidy. It can
convert genotype data between different formats, including Applied Biosys-
tems GeneMapper@®), binary presence/absence data, ATetra, Tetra/Tetrasat,
GenoDive, SPAGeDi, Structure, and POPDIST. It can also calculate pair-
wise genetic distances between samples, assist the user in estimating ploidy
based on allele number, and estimate allele frequencies and Fgr. Due to
the versatility of the R programming environment and the simplicity of how
genotypes are stored by polysat, the user may find many ways to interface
other R functions with this package, such as Principal Coordinate Analysis
or AMOVA.

This manual is written to be accessible to beginning users of R. If you
are a complete novice to R, it is recommended that you read through An
Introduction to R ( http://cran.r-project.org/manuals.html ) before
reading this manual or at least have both open at the same time. If you have
the console open while reading the manual you can also look at the help files
for base R functions (for example by typing ?save or ?%inj) and also get
more detailed information on polysat functions (e.g. ?read.GeneMapper).

The examples will be easiest to understand if you follow along with them
and think about the purpose of each line of code. A file called “polysattuto-
rial.LR” in the “doc” subdirectory of the package installation can be opened
with a text editor and contains all of the R input found in this manual.

2 Obtaining and installing polysat

The R console and base system can be obtained at http://www.r-project.
org/. Once installed, polysat can be installed and loaded by typing the


http://cran.r-project.org/manuals.html
http://www.r-project.org/
http://www.r-project.org/

following commands into the R console:

> install.packages("combinat")
> install.packages("polysat")
> library("polysat")

If you quit and restart R, you will not have to re-install the package but
you might need to load it again (using the library function as shown above).

3 Getting Started: A Tutorial

3.1 Creating a dataset

As with any genetic software, the first thing you want to do is import your
data. For this tutorial, go into the “doc” directory of the polysat package
installation, and find a file called “GeneMapperExample.txt”. Open this file
in a text editor and inspect its contents. This file contains simulated geno-
types of 300 diploid and tetraploid individuals at three loci. Move this text
file into the R working directory. The working directory can be changed with
the setwd function, or identified with the getwd function:

> getwd()
[1] "C:/Users/lvclark/Rpackages/polysat/inst/doc"

Then read the file using the read.GeneMapper function, and assign the
dataset a name of your choice (simgen in this example) by typing:

> simgen <- read.GeneMapper ("GeneMapperExample.txt")

The dataset now exists as an object in R. The following commands display,
respectively, some basic information about the dataset, the sample and locus
names, a subset of the genotypes, and a list of which genotypes are missing.

> summary (simgen)



Dataset with allele copy number ambiguity.
Insert dataset description here.
Number of missing genotypes: 5

300 samples, 3 loci.

1 populations.

Ploidies:

NA

Length(s) of microsatellite repeats: NA

> Samples (simgen)

[1]
(8]
[15]
[22]
[29]
[36]
[43]
[50]
[57]
[64]
[71]
[78]
[85]
[92]
[99]
[106]
[113]
[120]
[127]
[134]
[141]
[148]
[155]
[162]
[169]
[176]
[183]
[190]

llAl n

IIA8 n

"A15"
"A22"
"A29"
"A36"
"A43"
"A50"
"AST"
"AGA4"
"ATL
"AT8"
"A5"
"A92"
"A99"
llB6ll

"B13"
"B20"
"B27"
"B34"
"B41"
"B48"
"B55"
"B62"
"B69"
"B76"
"B83"
"BYO"

|IA2II
IIA9II
"A16"
"A23"
"A30"
"A3T"
"A44"
"AS1"
"AB8"
"AGS"
"AT2"
"AT9"
"A86"
"A93"
"A100"
|IB7II
"B14"
"B21"
"B28"
"B35"
"B42"
"B49"
"B56"
"B63"
"B70"
"B77"
"B84"
"BY1"

||A3Il

"A10"
"ALT"
"A24"
"A31"
"A38"
"A45"
"AB2"
"AB9"
"AGE"
"AT3"
"A80"
"AST"
"A94"
||B1 n

||B8|l

"B15"
"B22"
"B29"
"B36"
"B43"
"B5O"
"B57"
"B64"
"B71"
"B78"
"B85"
"BY2"

IIA4I|

"AL1"
"A18"
"A25"
"A32"
"A39"
"A46"
"AB3"
"AGO"
"AGT"
"ATA"
"A81"
"A88"
"A95"
I|B2 n

IIB9 n

"B16"
"B23"
"B30"
"B37"
"B44"
"B51"
"B58"
"B65"
"B72"
"B79"
"B86"
"BY3"

IIA5 n

"A12"
"A19"
"A26"
"A33"
"A40"
"A4T"
"AB4"
"AG1"
"AGS"
"ATS"
"AB2"
"A89"
"A96"
IIB3 n

"B10"
"B17"
"B24"
"B31"
"B3g"
"B45"
"B52"
"B59"
"B66"
"B73"
"B8O"
"B8T"
"BY4"

|IA6II

"A13"
"A20"
"A2T"
"A34"
"A41"
"A48"
"AB5"
"AG2"
"AGY"
"ATE"
"A83"
"A90"
"AQT"
|IB4II

"B11"
"B18"
"B25"
"B32"
"B39"
"B46"
"B53"
"B6O"
"B6T"
"B74"
"B81"
"B8g"
"BY5"

|IA7|I

"A14"
"A21"
"A28"
"A35"
"A42"
"A49"
"AS6"
"AG3"
"ATO"
"ATT"
"ABA4"
"A91"
"A98"
|IB5 "

"B12"
"B19"
"B26"
"B33"
"B40"
"B4T"
"B54"
"B61"
"B68"
"B75"
"B82"
"B8Y"
"BY6"



[197]
[204]
[211]
[218]
[225]
[232]
[239]
[246]
[253]
[260]
[267]
[274]
[281]
[288]
[295]

"BOT"
IIC4II

"C11"
"C18"
"C25"
"C32"
"C39"
"C46"
"C53"
"C60"
"CET"
"C74"
"C81"
"C88"
"C95"

"B98"
|lC5ll

"C12"
"C19"
"C26"
"C33"
"C40"
"C47"
"C54"
"C61"
"C68"
"C75"
"C82"
"C89"
"C96"

> Loci(simgen)

"B99"
n C6 n

"C13"
"C20"
"c2T"
"C34"
"C41"
"C48"
"C55"
"C62"
"C69"
"C76"
"C83"
"C90"
"CoT"

[1] "locil"™ "loc2" "loc3"

> viewGenotypes (simgen, samples = paste("A", 1

+

Sample
Al
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

"B100"
I|C7I|
"C14"
"c21"
"C28"
"C35"
"C42"
"C49"
"C56"
"C63"
"CT70"
"CTT"
"C84"
"Co1"
"Co8"

IIC1 n

IIC8I|

"C15"
"C22"
"C29"
"C36"
"C43"
"C50"
"C57"
"C64"
"CT1"
"C78"
"C85"
"C92"
"C99"

sep = ""), loci = "locl")
Locus Alleles
locl 110 112
locl 114 106
locl 114 102
locl 110 102
loci 106 112
locl 100 110
locl 112 108
locl 102 106
locl 112
locil 102 106
locil 114 100
locl 106 118
loc1l 110 112
locil 100 112
locil 100 112

|lC2ll
|IC9II
"C16"
"C23"
"C30"
"C37"
"C44"
"C51"
"C58"
"C65"
"CT2"
"CT9"
"C86"
"Co3"
"C100"

106
118
100
106

106

110
112

106
114

IIC3|I

"C10"
"C17"
"C24"
"C31"
"C38"
"C45"
"C52"
"C59"
"C66"
"C73"
"C80"
"C87"
"C94"

120,

110
106
100

112



Al6 locl 112 102 100

Al7 locl 102 106

A18 locl 102 106

A19 locl 114 102 110 118
A20 locl 106 100 108

> find.missing.gen (simgen)

Locus Sample

1 1loci B54
2 1locl B80
3 1loc2 B48
4 1loc3 A42
5 1loc3 C22

Additional information that isn’t in “GeneMapperExample.txt” can be
added directly to the dataset in R. The commands below add a description
to the dataset, name three populations and assign 100 individuals to each,
and indicate the length of the microsatellite repeats.

> Description(simgen) <- "Dataset for the tutorial"
> PopNames (simgen) <- c("PopA", "PopB", "PopC")

> PopInfo(simgen) <- rep(1:3, each = 100)

> Usatnts(simgen) <- c(2, 3, 2)

If you need help understanding what the PopInfo assignment means, type
the following commands (results are hidden here for the sake of space):

> rep(1:3, each = 100)
> PopInfo(simgen)

Samples can now be retrieved by population. (Results hidden as above.)
> Samples(simgen, populations = "PopA")

The Usatnts assignment function above, indicates that locl and loc3
have dinucleotide repeats, while loc2 has trinucleotide repeats. The alleles
are recorded here in terms of fragment length in nucleotides. If the alleles
were instead recorded in terms of repeat number, the Usatnts values should
be 1. These repeat lengths can be examined by typing:

6



> Usatnts(simgen)

locl loc2 1loc3
2 3 2

To edit genotypes after importing the data:
> simgen <- editGenotypes(simgen, maxalleles = 4)
Edit the alleles, then close the data editor window.

You can also add ploidy information to the dataset. The estimatePloidy
function allows you to add or edit the ploidy information, using a table that
shows you the mean and maximum number of alleles per sample. The samples
in this dataset should be diploid or tetraploid, although many of them may
have fewer alleles. Therefore, in the data editor that is generated by the
command below, you should change new.ploidy values to 2 if the sample
has a maximum of one allele per locus, and to 4 if a sample has a maximum
of three alleles per locus. See ?Ploidies or page [19 for a different way to
edit ploidy values if they are already known.

> simgen <- estimatePloidy(simgen)
Edit the new.ploidy values, then close the data editor window.

Take another look at the summary now that you have added this extra
data.

> summary (simgen)

Dataset with allele copy number ambiguity.
Dataset for the tutorial

Number of missing genotypes: 5

300 samples, 3 loci.

3 populations.

Ploidies: 4 2

Length(s) of microsatellite repeats: 2 3



Now that you have your dataset completed, it is not a bad idea to save
a copy of it. It will be automatically saved in your R workspace for use
in subsequent R sessions. However, the save function creates a separate
file containing a copy of the dataset (or any other R object), which can be
useful as a backup against accidental changes or a copy to open on another
computer. The file containing the dataset can be opened again at a later
date using the load function.

> save(simgen, file = "simgen.RData')

3.2 Data analysis and export
3.2.1 Genetic distances between individuals

The code below calculates a pairwise distance matrix between all samples
(using the default distance measure Bruvo.distance), performs Principal
Coordinate Analysis (PCA) on the matrix, and plots the first two principal
coordinates, with each population represented by a different color.

> testmat <- meandistance.matrix(simgen)
> pca <- cmdscale(testmat)

> plot(pcal, 11, pcal, 2], col = rep(c("red", "green",
+ "blue"), each = 100), main = "PCA with Bruvo distance")



PCA with Bruvo distance
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To conduct a PCA using the Lynch.distance measure, type:
> testmat2 <- meandistance.matrix(simgen, distmetric=Lynch.distance)
> pca2 <- cmdscale(testmat2)

> plot(pca2[, 11, pca2[, 2], col = rep(c("red",
+ "green", "blue"), each = 100), main = "PCA with Lynch distance")



PCA with Lynch distance
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Bruvo.distance takes mutation into account, while Lynch.distance
does not. (See ?Bruvo.distance, ?Lynch.distance, and section[5.3]) Since
mutation was not part of the simulation that generated this dataset, the
latter measure works better here for distinguishing populations.

3.2.2 Working with subsets of the data

It is likely that you will want to perform some analyses on just a subset
of your data. There are several ways to accomplish this in polysat. The
deleteSamples and deleteLoci functions are designed to be fairly intuitive.

> simgen2 <- deleteSamples(simgen, c("B59", "C30"))
> simgen2 <- deleteLoci(simgen2, "loc2")
> summary (simgen2)

Dataset with allele copy number ambiguity.
Dataset for the tutorial
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Number of missing genotypes: 4

298 samples, 2 loci.

3 populations.

Ploidies: 4 2

Length(s) of microsatellite repeats: 2

There are also a couple methods that involve using vectors of samples and
loci that you do want to use. Let’s make a vector of samples in populations
A and B that are tetraploid, and then exclude a few samples that we don’t
want to analyze.

samToUse <- Samples(simgen2, populations = c("PopA",
"PopB"), ploidies = 4)

exclude <- c("A50", "A78", "B25", "B60", "B81")

samToUse <- samToUse[!samToUse 7inj, exclude]

samToUse

vV V.V + V

[1] "A1"  "A2"  "A3"  "A4"  "A6"  "A10" "All"

[8] "A14" "A15" "A16" "A19" "A20" "A24" "A26"
[15] "A28" "A29" "A33" "A34" "A36" "A37" "A38"
[22] "A39" "A41" "A42" "A43" "A46" "A48" "A49"
[29] "A51" "AB7" "A60" "A61" "A62" "A63" "A64"
[36] "A66" "A68" "A69" "A70" "A76" "A79" "A81"
[43] "A82" "A83" "A85" "A86" "A89" "A90" "A92"
[50] "A94" "A97" "A98" "A99" "B2" "B3"  "B5"
[57] "B6" "B10" "B11" "B12" "B1g8" "B19" "B21"
[64] "B22" "B23" "B24" "B26" "B28" "B29" "B31"
[71] "B33" "B37" "B38" "B40" "B42" "B43" "B44"
[78] "BA5" "B46" "BA7" "B48" "B51" "B53" "BB5"
[85] "BS6" "B63" "B66" "B67" "B69" "B70" "B71"
[92] "B75" "B76" "B78" "B79" "B83" "B87T" "B88"
[99] "BYO" "B91" "BY92" "B95" "B10O"

You can subscript the dataset with square brackets, like you can with
many other R objects. Note, however, that in this case you can’t use square
brackets to replace a subset of the dataset, just to access a subset of the
dataset. A vector of samples should be placed first in the brackets, followed
by a vector of loci.
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> summary (simgen2[samToUse, "loc1"])

Dataset with allele copy number ambiguity.
Dataset for the tutorial

Number of missing genotypes: O

103 samples, 1 loci.

2 populations.

Ploidies: 4

Length(s) of microsatellite repeats: 2

The analysis and data export functions all have optional samples and
loci arguments where vectors of sample and locus names can indicate that
only a subset of the data should be used.

> testmat3 <- meandistance.matrix(simgen2, samples = samToUse,

+ distmetric = Lynch.distance, progress = FALSE)

> pca3 <- cmdscale(testmat3)

> plot(pca3[, 11, pca3[, 2], col = c("red", "blue") [PopInfo(simgen2) [samToUse]])

12
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(If you are confused about how I got the color vector, I would encourage
dissecting it: See what PopInfo(simgen2) gives you, what PopInfo(simgen2) [samToUse]
gives you, and lastly what the result of c("red", "blue") [PopInfo(simgen2) [samToUse]]
is.)

3.2.3 Population statistics

Allele frequencies are estimated in the example below. The example then
uses these allele frequencies to calculate pairwise Wright's Fsr [13] values,
first using all loci and then just two of the loci. See Section for important
information about allele frequency estimation.

> simfreq <- deSilvaFreq(simgen, self = 0.1, initNull = 0.01,
+ samples = Samples(simgen, ploidies = 4))

Starting locl
Starting locl PopA

13



64 repetitions for locl PopA
Starting locl PopB

106 repetitions for locl PopB
Starting locl PopC

84 repetitions for locl PopC
Starting loc2

Starting loc2 PopA

54 repetitions for loc2 PopA
Starting loc2 PopB

94 repetitions for loc2 PopB
Starting loc2 PopC

89 repetitions for loc2 PopC
Starting loc3

Starting loc3 PopA

104 repetitions for loc3
Starting loc3 PopB

117 repetitions for loc3
Starting loc3 PopC

105 repetitions for loc3

PopA
PopB
PopC

> simfreq

PopA
PopB
PopC

PopA
PopB
PopC

Genomes

loc1.100

212 0.1202992 0.
208 0.0000000 O.
180 0.1546742 0.

loc1.108

.03591695
.00000000

loc1.118

loc1.102 loc1.104 1locl1.106
12041013 0.00000000 0.2196366
16964161 0.09127732 0.0666518
01733696 0.24074235 0.0000000

loc1.110

0.14287772
0.12865007
.10203928 0.03436444

locl.null

0.
0.
0.

PopA 0.
PopB 0.
PopC 0.

07118362 0.01034496 O.
30132333 0.02440948 0.
02862591 0.01401403 O.

locl1.112 1locl.114

loc2.143

1542292 0.1251016 0.
0000000 0.1251792 0.
1477607 0.0749076 O.

loc2.146

00000000 0.16292064
39112389 0.05846641
09199651 0.12284567

locl.116
00000000
09286717
18553453
loc2.149
0.0000000
0.1964645
0.1100339

PopA
PopB
PopC

loc2.152

loc2.155

0.0000000
0.1475359

loc2.158 1loc2.161 1loc2.164

.01937013 0.2277736 0.2318032 0.2269041 0.1208905
.00000000
.30329792

0.1737714 0.1586404 0.0000000
0.0000000 0.0000000 0.2080345

14



loc2.null 1loc3.210 10c3.212 1o0c3.214 loc3.216
PopA 0.01033780 0.08777834 0.0000000 0.1171561 0.07825934
PopB 0.02153341 0.00000000 0.1566487 0.0000000 0.00000000
PopC 0.01625563 0.21567201 0.0613939 0.0000000 0.13814503
loc3.218 10c3.220 loc3.222 loc3.224 1o0c3.226
PopA 0.27813128 0.0000000 0.15201002 0.00000000 0.0000000
PopB 0.37855398 0.0000000 0.15477761 0.15861852 0.0000000
PopC 0.09445973 0.1538148 0.06183346 0.08256635 0.1684937
loc3.228 10c3.230 1loc3.null
PopA 0.05675610 0.20737987 0.02252894
PopB 0.02972989 0.08606954 0.03560175
PopC 0.00000000 0.00000000 0.02362112

o
o

> simFst <- calcFst(simfreq)
> simFst

PopA PopB PopC
PopA 0.00000000 0.05068795 0.05453103
PopB 0.05068795 0.00000000 0.07098261
PopC 0.05453103 0.07098261 0.00000000

> simFst12 <- calcFst(simfreq, loci = c("locl",
+ ”lOCQ"))
> simFstl12

PopA PopB PopC
PopA 0.00000000 0.06004514 0.05597902
PopB 0.06004514 0.00000000 0.07356898
PopC 0.05597902 0.07356898 0.00000000

3.2.4 Genotype data export

Lastly, you may want to export your data for use in another program. Below
is a simple example of data export for the software Structure. Additional
export functions are described in sections and [6.1 More details on the
options for all of these functions are found in their respective help files.

In this example, both dipliod and tetraploid samples are included in the
file. The ploidy argument indicates how many lines per individual the file
should have.

> write.Structure(simgen, ploidy = 4, file = "simgenStruct.txt")

15



4 How data are stored in polysat

In the tutorial above, you learned some ways of creating, viewing, and editing
a dataset in polysat. This section goes into more details of the underlying
data structure in polysat. This is particularly useful to understand if you
want to extend the functionality of the package, but it may clear up some
confusion for basic polysat users as well.

polysat uses the S4 class system in R. “Class” and “object” are two com-
puter science terms that are introduced in Section 3 of An Introduction to R.
Whenever you create a vector, data frame, matrix, list, etc. you are creating
an object, and the class of the object defines which of these the object is.
Furthermore, a class has certain “methods” defined for it so that the user can
interact with the object in pre-specified ways. For example, if you use mean
on a matrix, you will get the mean of all elements of the matrix, while if you
use mean on a data frame, you will get the mean of each column; mean is a
generic function with different methods for these two classes. S4 classes in R
have “slots”, where each slot can hold an object of a certain class. Methods
define how the user can access, replace, and manipulate the data in these
slots.

4.1 The “genambig” class

The object that you created with the read.GeneMapper function in the tu-
torial is of the class "genambig". This class has the slots Description (a
character string or character vector describing the dataset), Genotypes (a
two-dimensional list of vectors, where each vector contains all unique alleles
for a particular sample at a particular locus), Missing (the symbol for a miss-
ing genotype), Usatnts (a vector containing the repeat length of each locus,
or 1 if alleles for that locus are already in terms of repeat number rather
than nucleotides), Ploidies (a vector containing the ploidy of each sample,
or NA if unknown), PopNames (the name of each population), and PopInfo
(the population identity of each sample, using integers that correspond to
the position of the population name in PopNames). You'll notice that there
aren’t slots to hold sample or locus names, which are stored as the names
and dimnames of the objects in the other slots.

> showClass ("genambig")
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Class

Slots:

Name:

Class:

Name:

Class:

"genambig" [package "polysat"]
Genotypes Description Missing Usatnts
array  character ANY integer
Ploidies PopInfo PopNames
integer integer  character

Extends: "gendata"

To create a "genambig" object from scratch without using one of the

data i

mport functions, first create two character vectors to contain sample

and locus names, respectively. These vectors are then used as arguments to
the new function.

mysamples <- c("indA", "indB", "indC", "indD",

"indE", "indF")

mydataset <- new("genambig", samples = mysamples,

>
+
> myloci <- c("loc1", "loc2", "loc3")
>
+

loci = myloci)

An object has now been created with all of the appropriate slots named
according to sample and locus names.

> mydataset

An ob
Slot

indA
indB
indC
indD
indE
indF

Slot

ject of class '"genambig"
"Genotypes":

locl loc2 loc3

-9 -9 -9

-9 -9 -9

-9 -9 -9

-9 -9 -9

-9 -9 -9

-9 -9 -9
"Description":
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[1] "Insert dataset description here."

Slot "Missing":
(1] -9

Slot "Usatnts":
locl loc2 1loc3
NA NA NA

Slot "Ploidies":
indA indB indC indD indE indF
NA NA NA NA NA NA

Slot "PopInfo":
indA indB indC indD indE indF
NA NA NA NA NA NA

Slot "PopNames":
character(0)

In the tutorial you used some of the accessor and replacement functions
for the "genambig" class. You can see a full list of them by typing:

> 7Samples

(Present and Absent are just for the "genbinary" class. More on that
later.) Let’s use some of these functions to fill in and examine the dataset.

> Loci(mydataset)
[1] "locl" "loc2" "loc3"

> Loci(mydataset) <- c("L1", "L2", "L3")
> Loci(mydataset)

[1] "L]." "L2" "L3"
> Samples(mydataset)

[1] "indA" "indB" "indC" "indD" "indE" "indF"
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> Samples(mydataset) [3] <- "indC1"
> Samples (mydataset)

[1] "indA" "indB" "indC1" "indD" "indE" "indF"

> PopNames (mydataset) <- c("Yosemite", "Sequoia")
> PopInfo(mydataset) <- c(1, 1, 1, 2, 2, 2)
> PopInfo(mydataset)

indA indB indCl1 indD indE indF
1 1 1 2 2 2

> PopNum(mydataset, "Yosemite")
[1] 1

> PopNum(mydataset, "Sequoia") <- 3
> PopNames (mydataset)

[1] "Yosemite" NA "Sequoia"
> PopInfo(mydataset)

indA indB indCl1 indD indE indF
1 1 1 3 3 3

> Ploidies(mydataset) <- c(4, 4, 4, 4, 4, 6)
> Ploidies(mydataset)

indA indB indCl1 indD indE indF
4 4 4 4 4 6
> Ploidies (mydataset) ["indC1"] <- 6

> Ploidies(mydataset)

indA indB indCl1 indD indE indF
4 4 6 4 4 6

> Usatnts(mydataset) <- c(2, 2, 2)
> Usatnts(mydataset)
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L1 L2 L3
2 2 2

> Description(mydataset) <- "Tutorial, part 2."
> Description(mydataset)

[1] "Tutorial, part 2."

> Genotypes (mydataset, loci = "L1") <- list(c(122,

+ 124, 128), c(124, 126), c(120, 126, 128, 130),
+ c(122, 124, 130), c(128, 130, 132), c(126,
+ 130))
> Genotype (mydataset, "indB", "L3") <- c(150, 154,
+ 160)
> Genotypes (mydataset)
L1 L2 L3

indA Numeric,3 -9 -9
indB Numeric,2 -9 Numeric,3
indC1 Numeric,4 -9 -9
indD Numeric,3 -9 -9
indE Numeric,3 -9 -9
indF Numeric,2 -9 -9

> Genotype(mydataset, "indD", "L1")
[1] 122 124 130

> Missing(mydataset)

(1] -9

> Missing(mydataset) <- -1
> Genotypes (mydataset)

L1 L2 L3
indA Numeric,3 -1 -1
indB Numeric,2 -1 Numeric,3
indC1 Numeric,4 -1 -1
indD Numeric,3 -1 -1
indE Numeric,3 -1 -1
indF Numeric,2 -1 -1
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If you know a little bit more about S4 classes, you know that you can
access the slots directly using the @ symbol, for example:

> mydataset@Genotypes

L1 L2 L3
indA Numeric,3 -1 -1
indB Numeric,2 -1 Numeric,3
indC1 Numeric,4 -1 -1
indD Numeric,3 -1 -1
indE Numeric,3 -1 -1
indF Numeric,2 -1 -1

> mydataset@Genotypes[["indB", "L1"]]

[1] 124 126

However, I STRONGLY recommend against accessing the slots in this
way in order to replace (edit) the data. The replacement functions are de-
signed to prevent multiple types of errors that could happen if the user edited
the slots directly.

In section you were introduced to the find.missing.gen function.
There is a related function called isMissing that may be more useful from
a programming standpoint.

> isMissing(mydataset, "indA", "L2")
[1] TRUE

> isMissing(mydataset, "indA", "L1")
[1] FALSE

> isMissing(mydataset)

L1 L2 L3
indA FALSE TRUE TRUE
indB FALSE TRUE FALSE
indC1 FALSE TRUE TRUE
indD FALSE TRUE TRUE
indE FALSE TRUE TRUE
indF FALSE TRUE TRUE
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To add more samples or loci to your dataset, you can create a second
"genambig" object and then use the merge function to join them.

> moredata <- new("genambig", samples = c("indG",
+ "indH"), loci = Loci(mydataset))

> Usatnts(moredata) <- Usatnts(mydataset)

> Description(moredata) <- Description(mydataset)
> PopNames (moredata) <- "Kings Canyon"

> PopInfo(moredata) <- c(1, 1)

> Ploidies(moredata) <- c(4, 4)

> Missing(moredata) <- Missing(mydataset)

> Genotypes (moredata, loci = "L1") <- 1list(c(126,
+ 130, 136, 138), c(124, 126, 128))

> mydataset2 <- merge(mydataset, moredata)

> mydataset2

An object of class "genambig"
Slot "Genotypes":
L1 L2 L3
indA Numeric,3 -1 -1
indB Numeric,2 -1 Numeric,3
indC1 Numeric,4 -1 -1
indD Numeric,3 -1 -1
indE Numeric,3 -1 -1
indF Numeric,2 -1 -1
indG Numeric,4 -1 -1
indH Numeric,3 -1 -1

Slot "Description":
[1] "Tutorial, part 2."

Slot "Missing":
[1] -1

Slot "Usatnts":

L1 L2 L3
2 2 2
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Slot "Ploidies":
indA indB indCl1 indD indE indF indG indH
4 4 6 4 4 6 4 4

Slot "PopInfo":
indA indB indCl1 indD indE indF indG indH
1 1 1 3 3 3 4 4

Slot "PopNames":
[1] "Yosemite" NA "Sequoia"
[4] "Kings Canyon"

4.2 The “gendata” and “genbinary” classes

The "genambig" class is actually a subclass of another class called "gen-
data". The Description, PopInfo, PopNames, Ploidies, Missing, and
Usatnts slots, and their access and replacement methods, are all defined for
"gendata", and are inherited by "genambig". The "genambig" class adds
the Genotypes slot and the methods for interacting with it.

A second subclass of "gendata" is "genbinary". This class also has a
Genotypes slot, but formatted as a matrix indicating the presence and ab-
sence of alleles. (See ?genbinary-class for more details.) It also adds a
slot called Present and one called Absent to indicate the symbols used to
represent the presence or absence of the alleles, the same way the Missing
slot holds the symbol used to indicate missing data. Like "genambig", "gen-
binary" inherits all of the slots from "gendata", as well as the methods for
accessing them.

The code below creates a "genbinary" object using a conversion function,
then demonstrates how the genotypes are stored differently and how the
functions from "gendata" remain the same.

> simgenB <- genambig.to.genbinary(simgen)
> Genotypes (simgenB, samples = paste("A", 1:20,
+ sep = ""), loci = "locl")

loc1.100 loc1.102 1loc1.104 loc1.106 1loc1.108 locl1.110
Al 0 0 0 1 0 1
A2 0 0 0 1 0 1
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A3

Ad
A5

A6

A7

A8

A9

A10
A1l
A12
A13
Al14
A15
Al6
A17
A18
A19
A20

loc1.112 loc1.114 loc1.116 locl1.118

Al

A2

A3

Ad
A5

A6

A7

A8

A9

A10
A1l
A12
A13
Al14
A15
Al6
A17
A18
A19
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A20 0 0 0 0
> PopInfo(simgenB) [Samples (simgenB, ploidies = 2)]

A5 A7 A8 A9 Al12 A13 Al7 A18 A21 A22 A23 A25
1 1 1 1 1 1 1 1 1 1 1 1
A27 A30 A31 A32 A35 A40 A44 A45 A47 ABO Ab2 AB3
1 1 1 1 1 1 1 1 1 1 1 1
AB4 ABS5 AB6 AB8 AB9 A65 A67 ATl A72 A73 A74 A75
1 1 1 1 1 1 1 1 1 1 1 1
A77r A78 A80 A84 A87 A88 A91 A93 A95 A96 A100 Bl
1 1 1 1 1 1 1 1 1 1 1 2
B4 B7 B8 B9 B13 Bi14 B15 B16 B17 B20 B25 B27
2 2 2 2 2 2 2 2 2 2 2 2
B30 B32 B34 B35 B36 B39 B41 B49 B50 B52 B54 B57
2 2 2 2 2 2 2 2 2 2 2 2
B58 B59 B61 B62 B64 B65 B68 B72 B73 B74 B77 B8O
2 2 2 2 2 2 2 2 2 2 2 2
B82 B84 B85 B86 B89 B93 BY94 B96 B97 BO98 B99 C1
2 2 2 2 2 2 2 2 2 2 2 3
c3 C4 C6 Cr C8 C10 Ci11 Ci14 Ci6 Ci7 C20 C21
3 3 3 3 3 3 3 3 3 3 3 3
€23 C26 C27 C28 C31 (€32 C36 C37 (€38 C39 C40 C44
3 3 3 3 3 3 3 3 3 3 3 3
C46 C47 C48 CbBO Cb6 Cb7 CB9 C61 C64 C67 C68 C71
3 3 3 3 3 3 3 3 3 3 3 3
Crd C75 Cre6 Cr7 C79 C80 (C82 (83 (€84 (€85 (86 (€87
3 3 3 3 3 3 3 3 3 3 3 3
Co90 C92 (C93 C(C95 (96 (98
3 3 3 3 3 3

The "genbinary" class exists to facilitate the import and export of geno-
type data formatted in a binary presence/absence format, for example:

> write.table(Genotypes(simgenB), file = "simBinaryData.txt")

The "genbinary" class is also used by polysat to make some of the allele
frequency calculations easier. simpleFreq internally converts a "genambig"
object to a "genbinary" object in order to tally allele counts in populations.
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The class system in polysat is set up so that anyone can extend it to better
suit their needs. There seem to be as many ways of formatting genotype data
as their are population genetic software, and so a new subclass of "gendata"
could be created with genotypes formatted in a different way. A user could
also create a subclass of "genambig", for example to hold GPS or phenotypic
data in addition to the data already stored in a "genambig" object. (See
7setClass, 7setMethod, and [2].)

5 Functions for autopolyploid data

In order to properly utilize polysat (and other software for polyploid data)
it is important to understand the inheritance mode in your system. In an
autopolyploid, all homologous chromosomes are equally capable of pairing
with each other at meiosis, and thus at a given microsatellite locus, gametes
can receive any combination of alleles from the parent. The same is not true
of allopolyploids. This affects the distribution of genotypes in the population,
and as a result affects all aspects of population genetic analysis.

The functions described below are specifically for autopolyploid data.
Their potential (or lack thereof) for use on allopolyploid data is described in
the next section.

5.1 Data import

Four other population genetic programs that I am aware of can handle poly-
ploid microsatellite data with allele copy number ambiguity under polysomic
inheritance (autopolyploidy): Structure [5, 4, [14, 8], SPAGeDi [7], GenoDive
[12] (http://www.bentleydrummer.nl/software/software/GenoDive.html),
and POPDIST [6][15].

In the “doc” directory of the polysat installation there are files called
“structureExample.txt”, “spagediExample.txt”, “genodiveExample.txt”, “POPDIS-
Texamplel.txt” and “POPDISTexample2.txt”. To import these into "genam-
big" objects, first copy them into your working directory, then perform the
assignments:

> GDdata <- read.GenoDive('"genodiveExample.txt")
> Structdata <- read.Structure("structureExample.txt",
+ ploidy = 8)
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> Spagdata <- read.SPAGeDi("spagediExample.txt")
> PDdata <- read.POPDIST(c("POPDISTexamplel.txt",
+ "POPDISTexample2.txt"))

Use summary, viewGenotypes, and the accessor functions (section
to examine the contents of the three "genambig" objects that you have just
created. All four of these functions take population information from the
file and put it into the object. The Structure, SPAGeDi, and POPDIST
files are coded in a way that indicates the ploidy of each individual, so this
information is written to the "genambig" object as well.

The data import functions have some additional options for input and
output, which are described in more detail in the help files. In particular,
any extra columns can optionally be extracted from a Structure file, and the
spatial coordinates can optionally be extracted from a SPAGeDi file.

> 7read.Structure
> 7read.SPAGeDi

polysat also supports two genotype formats that work for either autopoly-
ploids or allopolyploids, but do not contain any population, ploidy, or other
information: GeneMapper, and binary presence/absence. The tutorial in
the beginning of this manual uses read.GeneMapper to import data. The
“GenaMapperExample.txt” file contains the minimum amount of informa-
tion needed in order to be read by the function. Full “Genotypes Table” files
as exported from ABI GeneMapper(®)can also be read by read.GeneMapper,
and further, the function can take a vector of file names rather than a single
file name if the data are spread across multiple files. There are three addi-
tional GeneMapper example files in the “doc” directory, which can be read
into a "genambig" object in this way:

> GMdata <- read.GeneMapper (c("GeneMapperCBA15.txt",
+ "GeneMapperCBA23.txt", "GeneMapperCBA28.txt"))

A binary presence/absence matrix can be read into R using the base
function read.table. Arguments to this function give options about how
the file is delimited and whether it has headers and/or row labels. The
example file in the “doc” directory can be read in the following way:

> domdata <- read.table("dominantExample.txt", header = TRUE,
+ sep = "\t", row.names = 1)
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Examine the data frame produced, and notice in particular that the col-
umn names are formatted as the locus and allele separated by a period.
After this data frame is converted to a matrix, it can be used to create a
"genbinary" object.

> domdata

ABC1.123 ABC1.126 ABC1.129 ABC1.132 ABC1.135 ABC2.201

indl 1 0 0 0 1 0

ind2 0 1 1 0 1 1

ind3 0 0 0 0 0 0
ABC2.203 ABC2.205 ABC2.207 ABC2.209

indl 1 1 0 0

ind2 1 1 1 0

ind3 0 1 0 1

> domdata <- as.matrix(domdata)
> PAdata <- new('"genbinary", samples = c("ind1",
+ "ind2", "ind3"), loci = c("ABC1", "ABC2"))
> Genotypes (PAdata) <- domdata

A few functions in polysat will work directly on a "genbinary" object,
but for most functions you will want to convert to a "genambig" object.
Addition of population and other information can be done either before or
after the conversion.

> PopInfo(PAdata) <- c(1, 1, 2)
> PAdata <- genbinary.to.genambig(PAdata)

5.2 Data export

Autopolyploid data can also be exported in the same six formats that are
available for import.

The write.Structure function requires that an overall ploidy for the
file be specified, to indicate how many rows per individual to write. Indi-
viduals with higher ploidy than the overall ploidy will have alleles randomly
removed, and individuals with lower ploidy will have the missing data symbol
inserted in the extra rows. Additional arguments give the options to specify
extra columns to include, to omit or include population information, and to
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specify the missing data symbol. The row of missing data symbols that is au-
tomatically written underneath marker names is the RECESSIVEALLELES
row in Structure, indicating that allele copy number is ambiguous.

write.Structure was used in the tutorial in section [3.2.4] but below is
another example with some of the options changed (see ?write.Structure
for more information). Here, myexcol is an array of data to be written into
extra columns in the file.

> myexcol <- array(c(rep(0:1, each = 150), seq(0.1,

+ 30, by = 0.1)), dim = c(300, 2), dimnames = list(Samples(simgen),
+ c("PopFlag", "Something")))

> myexcol[1:10, ]

PopFlag Something

Al 0 0.1

A2 0 0.2

A3 0 0.3

Ad 0 0.4

A5 0 0.5

A6 0 0.6

A7 0 0.7

A8 0 0.8

A9 0 0.9

A10 0 1.0

> write.Structure(simgen, ploidy = 4, file = "simgenStruct2.txt",
+ writepopinfo = FALSE, extracols = myexcol,
+ missingout = -1)

The write.GenoDive function is fairly straightforward, with the only
option being whether to code alleles as two or three digits. All alleles are
converted to repeat number, using the information contained in the Usatnts
slot of the "genambig" object.

> write.GenoDive(simgen, file = "simgenGD.txt")

write.SPAGeDi has options for the number of digits used to code alleles
as well as the character (or lack thereof) used to separate alleles. Alleles are
converted to repeat numbers as in write.GenoDive. Additionally, a data
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frame of spatial coordinates can be supplied to the function to be written to
the file. By default, the function will create two dummy columns for spatial
coordinates, which the user can then fill in using a text editor or spreadsheet
software. (See ?write.SPAGeDi)

> write.SPAGeDi(simgen, file = '"simgenSpag.txt")

If you are using SPAGeDi to calculate relationship and kinship coeffi-
cients, also see the function write.freq.SPAGeDi for exporting allele fre-
quencies from polysat to SPAGeDi for use in these calculations.

The write.POPDIST function does not have any options for formatting.
In the example below, the samples argument is used to ensure that each
population has uniform ploidy, which is a requirement of the POPDIST soft-
ware.

> write.POPDIST(simgen, samples = Samples(simgen,
+ ploidies = 4), file = "simgenPOPDIST.txt")

write.GeneMapper is very straightforward, without any special format-
ting options. This function was used to create the “GeneMapperExample.txt”
file that is provided with the package. I do not know of any other software
that will read the GeneMapper format, but it may be a convenient way for
the user to store and edit genotypes.

> write.GeneMapper (simgen, file = "simgenGM.txt")

To export a table of genotypes in binary presence/absence format, first
convert the "genambig" object to a "genbinary" object, then write the
Genotypes slot to a text file, adjusting the options of write.table to suit
your needs. (See ?write.table.)

> simgenPA <- genambig.to.genbinary(simgen)

> write.table(Genotypes (simgenPA), file = "simgenPA.txt",
+ quote = FALSE, sep = ",")
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5.3 Individual-level statistics
5.3.1 Estimating and exporting ploidies

The estimatePloidy function, which was demonstrated in section (3.1} is
equally appropriate for autopolyploid and allopolyploid data. If you want to
export the ploidy data, one method is the following:

> write.table(data.frame(Ploidies(simgen), row.names = Samples(simgen)),
+ file = "simgenPloidies.txt")

5.3.2 Inter-individual distances

A matrix of pairwise distances between individuals can be generated us-
ing the meandistance.matrix function, which was demonstrated in sec-
tion [3.2.1 The most important argument is distmetric, or the distance
measure that is used. The two options that are provided with polysat are
Bruvo.distance, which takes mutational distance between alleles into ac-
count [I], and Lynch.distance, which is a simple band-sharing measure
[10]. (The user can create functions to serve as additional distance measures,
as long as the arguments are the same as those for Bruvo.distance and
Lynch.distance.) The progress argument can be set to TRUE or FALSE to
indicate whether the progress of the computation should be printed to the
screen. The all.distances argument can also be set to TRUE or FALSE to in-
dicate whether, in addition to the mean distance matrix, a three-dimensional
array of distances by locus should be returned. There is also a maxl argument
to indicate the threshold for Bruvo.distance to skip calculations that are
too computationally intensive (see ?Bruvo.distance).

Besides the cmdscale function for performing Principal Coordinate Anal-
ysis on the resulting matrix, you may want to create a histogram to view the
distribution of distances, or you may want to export the distance matrix for
use in other software.

> hist(as.vector(testmat))
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Histogram of as.vector(testmat)
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> hist(as.vector(testmat?2))
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Histogram of as.vector(testmat2)
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as.vector(testmat2)

> write.table(testmat2, file = "simgenDistMat.txt")

meandist.from.array can take a three-dimensional array such as that
produced when all.distances=TRUE and recalculate a mean distance matrix
from it. This could be useful, for example, if you want to try omitting loci
from your analysis. If Bruvo.distance skips some calculations because max1
is exceeded, you may also want to estimate these distances and fill them into
the array manually, then recalculate the mean distance matrix. See the help
file for meandist.from.array for some additional functions that can help to
locate missing values in the three-dimensional distance array.

The following example first creates a vector indicating the subset of sam-
ples to use, both to save on computation time for the example and because
missing data can be a problem for Principal Coordinate Analysis if fewer
than three loci are used. An array of distances is then calculated, followed
by the mean distance matrix for each combination of two loci.
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> subsamples <- Samples(simgen, populations = 1)

> subsamples <- subsamples[!isMissing(simgen, subsamples,
+ "loc1") & !isMissing(simgen, subsamples, "loc2") &
+ lisMissing(simgen, subsamples, "loc3")]

> Larray <- meandistance.matrix(simgen, samples = subsamples,
+ progress = FALSE, distmetric = Lynch.distance,

+ all.distances = TRUE) [[1]]

> mdistl.2 <- meandist.from.array(Larray, loci = c("locl",
+ "loc2"))

> mdist2.3 <- meandist.from.array(Larray, loci = c("loc2",
+ "lOC3”))

> mdistl1.3 <- meandist.from.array(Larray, loci = c("locl",
+ Hlocsll))

As before, you can use cmdscale to perform Principal Coordinate Anal-
ysis and plot to visualize the results. Differences between plots reflect the
effects of excluding loci.

5.4 Population statistics

There are two functions in polysat for estimating allele frequencies. If all
of your individuals are the same, even-numbered ploidy and if you have a
reasonable estimate of the selfing rate in your system, deSilvaFreq will give
the most accurate estimate. For mixed ploidy systems, the simpleFreq func-
tion is available, but will be biased toward underestimating common allele
frequencies and overestimating rare allele frequencies, which will cause an un-
derestimation of Fgp. deSilvaFreq uses an iterative algorithm to estimate
genotype frequencies based on allele frequencies and “allelic phenotype” fre-
quencies, then recalculate allele frequencies from genotype frequencies [3].
simpleFreq simply assumes that in a partially heterozygous genotype, all
alleles have an equal chance of being present in more than one copy.

Both allele frequency estimators take as the first argument a "genambig"
or "genbinary" object, which must have the PopInfo and Ploidies slots
filled in. The self argument for supplying the selfing rate is only applicable
for deSilvaFreq. (See 7deSilvaFreq for some other arguments that can be
adjusted.) Both functions produce a data frame of allele frequencies, with
populations in rows and alleles in columns. deSilvaFreq adds a null allele
for each locus, while simpleFreq does not. In both cases the data frame will
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also have a column indicating the population size in number of genomes (e.g.
four hexaploid individuals = 24 genomes).

The function calcFst takes the data frame produced by either allele
frequency estimation, and produces a matrix containing pairwise Fgp values
according to the original calculation by Wright [13]. Population sizes are
weighted by number of genomes, rather than number of individuals.

Continuing the example from section [3.2.3 and comparing the results of
deSilvaFreq and simpleFreq:

> simFst

PopA PopB PopC
PopA 0.00000000 0.05068795 0.05453103
PopB 0.05068795 0.00000000 0.07098261
PopC 0.05453103 0.07098261 0.00000000

> simfreqSimple <- simpleFreq(simgen, samples = Samples(simgen,
+ ploidies = 4))

> simFstSimple <- calcFst(simfreqSimple)

> simFstSimple

PopA PopB PopC
PopA 0.00000000 0.04738346 5.088305e-02
PopB 0.04738346 0.00000000 6.492718e-02
PopC 0.05088305 0.06492718 -1.323838e-16

Average allele frequencies can also be used by SPAGeDi for the calculation
of relationship and kinship coefficients. SPAGeDi v1.3 can estimate allele
frequencies using the same method as simpleFreq. However, if your data
are appropriate for allele frequency estimation using deSilvaFreq, exporting
the estimated allele frequencies to SPAGeDi should improve the accuracy of
the relationship and kinship calculations. The write.freq.SPAGeDi function
creates a file of allele frequencies in the format that is read by SPAGeDi.

> write.freq.SPAGeDi(simfreq, usatnts = Usatnts(simgen),
+ file = "SPAGfreq.txt")

The R package adegenet can perform a number of calculations from
allele frequencies, including five inter-population distance measures as well as
Correspondance Analysis. The allele frequency tables produced by polysat
can be converted to a format that can be read by adegenet.
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> gpsimfreq <- freq.to.genpop (simfreq)

The object gpsimfreq that you just created can now be passed to the
function genpop as the tab argument. See 7freq.to.genpop for example
code.

6 Functions for allopolyploid data

In order to properly analyze microsatellites as codominant markers in al-
lopolyploids, knowledge is required about which alleles belong to which genome.
In an autopolyploid, all alleles for a given marker will segregate according
to Mendelian laws. In an allopolyploid, a microsatellite marker represents
two or more loci that are behaving in a Mendelian fashion, but if treated as
one locus will not appear to behave according to random segregation. For
example, an autotetraploid with the genotype ABCD that self fertilizes can
produce offspring with the genotype AABB. An allotetraploid with the same
four alleles, but distributed as AB and CD across two genomes, cannot self to
produce an AABB individual as both of these alleles come from one genome.

If you have knowledge from other analyses about which alleles belong to
which genomes, when importing your data you can code each microsatellite
marker as multiple loci. As long as each “locus” in the "genambig" object is
behaving according to random segregation, the analysis and export functions
for autopolyploid data described in the previous section are appropriate.

Otherwise, the following functionality is available for allopolyploids in
polysat:

6.1 Data import and export

Data can be formatted for the software Tetrasat [11], Tetra [9], and ATetra
[16] using polysat. These programs are able to resolve ambiguity about how
alleles are distributed across the two diploid genomes in an allotetraploid.
From there, the programs can calculate allele frequencies and other statistics.
See the help files for write.Tetrasat and write.ATetra.

read.Tetrasat (which produces a format readable by both Tetrasat and
Tetra) and read.ATetra both take, as their only argument, the file name to
be read. To import data from the example files “ATetraExample.txt” and
“tetrasatExample.txt”, use the commands:
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> ATdata <- read.ATetra("ATetraExample.txt")
> Tetdata <- read.Tetrasat("tetrasatExample.txt")

The functions for writing these two file formats only require a "genambig"
object and a file name. Ploidies and PopInfo are required in the object
for both functions. write.Tetrasat additionally requires information in
the Usatnts slot. Since ATetra does not allow missing data, any missing
genotypes that are encountered by write.ATetra are written to the console.

> write.ATetra(simgen, samples = Samples(simgen,
+ ploidies = 4), file = "simgenAT.txt")

Missing data: B48 loc2
Missing data: A42 loc3
Missing data: C22 loc3

> write.Tetrasat (simgen, samples = Samples(simgen,
+ ploidies = 4), file = "simgenTet.txt")

Data for allopolyploids can also be imported and exported in GeneMapper
and binary presence/absence formats, as described in the sections[5.1]and [5.2]

6.2 Individual-level and population statistics

The Bruvo.distance measure of inter-individual distances is best suited
to autopolyploids but may work for allopolyploids under a special case.
Bruvo.distance measures distances between all alleles at a locus for the
two individuals being compared, under the premise that these alleles could
be closely related to each other by mutation. If two alleles belong to two
different allopolyploid genomes, it is not possible for them to be be closely
related to each other even if their sizes are similar, since they are derived
from different ancestral species. In the case where no allele from one al-
lopolyploid genome is within three or four mutation steps of any allele from
the other genome, it is possible for the value produced by Bruvo.distance
to accurately reflect the genetic similarity of two allopolyploid individuals.
Along the same logic, Lynch.distance will only be appropriate if the two
homeologous genomes have no alleles in common at a given locus. If either
of these distance measures are appropriate for your data, see the description
of the meandistance.matrix function in sections 3.2.1] and [5.3.2
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The estimatePloidy function works equally well on autopolyploids and
allopolyploids.

Both simpleFreq and deSilvaFreq work under the assumption of polysomic
inheritance and should therefore not be used on allopolyploid data.

7 Treating microsatellite alleles as dominant
markers

Both autopolyploid and allopolyploid microsatellite data can be converted to
“allelic phenotypes” based on the presence and absence of alleles. Although
much information is lost using this method, it can enable the user to perform
a wider range of analyses, such as parentage analysis or AMOVA.

The Lynch.distance measure, described earlier, essentially treats alleles
in this way. Alleles are assumed to be present in only one copy, and two
alleles from two individuals are either identical or not. However, alleles are
still grouped by locus and distances are averaged across all loci.

The "genbinary" class stores data in a binary presence/absence format,
the same way that dominant data is typically coded. (See earlier description
of the genambig.to.genbinary function in section [5.2]) This is intended to
facilitate further analysis in R or other software that takes such a format.
By default, 1 indicates that an allele is present, 0 indicates that an allele is
absent, and -9 indicates that the data point is missing. There are replacement
functions to change these symbols, for example (continuing from section [4.2):

> Present(simgenB) <- "P"

> Absent (simgenB) <- 2

> Missing(simgenB) <- 0

> Genotypes (simgenB) [1:10, 1:6]

1loc1.100 loc1.102 1loc1.104 loc1.106 1loc1.108 loc1.110

Al l|2ll |l2|l I|2ll llpll ll2l| llPll
A2 l|2ll Il2|l l|2ll llPIl l|2l| llPll
A3 IIPII |IPII l|2l| IIPII I|2l| Il2|l
A4 IIPII |IPII H2l| IIPII I|2H IIPH
A5 l|2ll |l2|l I|2ll llPll l|2l| ll2|l
A6 IIPII |l2|l I|2ll llPIl ll2l| llPll
A7 l|2ll Il2|l l|2ll ll2|l llPlI ll2|l
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A8 l|2ll |IPII l|2ll IIPII
Ag l|2ll |l2|l I|2ll ll2|l
Alo I|2ll |IP|I I|2ll |IPII

I|2H l12|l
l|2l| ll2|l
I|2I| IIPH

If you want to further manipulate the format of the genotype matrix, you
can assign it to a new object name and then make the desired edits.

> genmat <- Genotypes (simgenB)

> dimnames (genmat) [[2]] <- paste("M", 1:dim(genmat) [2],

+ sep = nu)
> genmat[1:10, 1:10]

MI M2 M3 M4 M5 M6 M7 M8
A1 l|2ll |l2|l l|2ll IIPII II2H IIPII IIPH H2ll
A2 l|2ll |l2|l H2ll llPll ||2H IIPII Il2|| HPII
A3 IIPII |IPI| I|2ll IIPH I|2I| "2" Il2|| I|Pll
A4 IIPII |IP|I II2II IIPH ||2II llPll Il2!| I|2ll
A5 II2II |l2|l I|2ll IlPll II2II ll2ll IlPIl l|2ll
A6 IIPII |l2|l II2II IIPII II2II llPll Il2|| l|2ll
A7 l|2ll |l2|l H2ll ll2|l IlPH ll2ll IlPIl H2l|
A8 l|2ll |IPI| I|2ll IIPH ||2I| l12|l Il2|| l|2ll
Ag l|2ll |l2|l I|2ll ll2|l ||2I| ll2ll Ilpll I|2ll
Alo l|2ll |IP|I l|2l| IlPll Il2l| llPll IlPIl l|2ll

As demonstrated previously, the write.
trix to a text file for use in other software.

allow the user to control which character

M9 Mi10
ll2|l l|2l|
|12|l IlPH
|l2|l l|2l|
|l2|l ll2l|
|l2|l l|2l|
Il2|l I|2II
|12|l I|2H
|l2|l ||2l|
|l2|l ll2l|
|l2|l I|2l|

table function can write the ma-
The arguments for write.table
is used to delimit fields, whether

row and column names should be written to the file, and whether quotation
marks should be used for character strings.

8 How to cite polysat

We are revising an article for Molecular Ecology Resources:
Clark, LV and Jasieniuk, M. POLYSAT: an R package for polyploid mi-
crosatellite analysis. Molecular Ecology Resources (accepted, in revision).
Feel free to email me at lvclark@ucdavis.edu with any questions, com-

ments, or bug reports!
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