polysat version 0.1 Tutorial Manual

Lindsay V. Clark <lvclark@Qucdavis.edu>
UC Davis Department of Plant Sciences
http://openwetware.org/wiki/Polysat

June 23, 2010

Contents

(I _Introduction|

[2

Obtaining and installing polysat|

(3

Notes on autopolyploids vs. allopolyploids|

How genotypes are stored 1in polysat|

[4.1 Examples of how to view and index genotype datal.
(4.2 Missing datal.o
4.3 Examples of how to edit genotype datan R|
[4.4 Editing genotype data using spreadsheet software|
4.5 Merging genotype objects| L.
4.6 Creating a genotype object from scratch]

Importing data from files|

(5.1 Arguments universal to the functions|

|5i|2 I !lllg:l lg!ll :i!lllllll;!lingil ------------------------
.3 Examplesof usage]o L

Exporting genotype data to files|

[6.1 Arguments universal to the functions|

6.2 Function summaries|.
6.3 Examples of usagel L.

10
12
12
14

15
15
16
18

http://openwetware.org/wiki/Polysat

Tndviduallevel — 30

[7.1 Create a matrix of pairwise distances| 30
[(.1.1 Examples of creating a mean distance matrix| 31

[7.2 kstimate the ploidy of samples|. 33

[8 Population-level statistics| 34
8.1 Estimating allele frequencies| 34
(8.2 Calculating pairwise Fsr| 36

[9 How to cite polysat)| 36

1 Introduction

The R package polysat is intended to provide useful tools for working
with microsatellite data of any ploidy level, including populations of mixed
ploidy. It can convert genotype data between different formats, including
Applied Biosystems GeneMapper®), binary presence/absence data, ATetra,
Tetra/Tetrasat, GenoDive, SPAGeDi, and Structure. It can also calculate
pairwise genetic distances between samples, assist the user in estimating
ploidy based on allele number, and calculate some simple population statis-
tics. Due to the versatility of the R programming environment and the sim-
plicity of how genotypes are stored by polysat, the user may find many ways
to interface other R functions with this package, such as Principal Coordinate
Analysis or AMOVA.

This manual is written to be accessible to beginning users of R. If you
are a complete novice to R, it is recommended that you read through An
Introduction to R (http://cran.r-project.org/manuals.html) before
reading this manual or at least have both open at the same time. If you have
the console open while reading the manual you can also look at the help files
for base R functions (for example by typing ?dimnames or ?%in%) and also get
more detailed information on polysat functions (e.g. ?read.GeneMapper).

2 Obtaining and installing polysat

The R console and base system can be obtained at http://www.r-project.
org/ . Once installed, polysat and other packages (note that combinat is
required for the Bruvo.distance function) can be installed and loaded from

http://cran.r-project.org/manuals.html
http://www.r-project.org/
http://www.r-project.org/

a drop-down menu while connected to the internet. Alternatively, you can
type

> install.packages("combinat")
> install.packages("polysat")
> library("polysat")

into the R console. If you instead download the package from CRAN using
your web browser, you can then install it at your operating system’s command
prompt using R CMD INSTALL or in R using the function install.packages,
and load it in R using the function 1library. (See http://cran.r-project.
org/doc/manuals/R-intro.html#Packages for more information; the pro-
cedure is the same for any R package.) If you quit and restart R you will not
have to re-install the package but you might need to load it again (using the
library function as shown above).

3 Notes on autopolyploids vs. allopolyploids

Although polysat is equally able to store autopolyploid and allopolyploid
data, it does not distinguish between the two. The user should take assump-
tions of the analysis into consideration depending on the inheritance pattern
of the loci. In an autopolyploid, all alleles for a given microsatellite marker
truly belong to one locus. In an allopolyploid, a microsatellite marker rep-
resents two or more loci (barring mutations that cause the primers to only
amplify in one genome), and there is no simple way to know which alleles
came from which locus without genotyping progeny of every individual. Re-
cent software for allotetraploids [12} 6] 8] use iterative processes to assign
alleles to one disomic genome or the other and calculate population statistics
from there. At this time, no functions in polysat perform this type of parti-
tioning. In particular, the functions Bruvo.distance and estimate.freqgs
make more sense in autopolyploids than allopolyploids. They may still pro-
duce biologically meaningful results when run on allopolyploid data, although
the user should keep in mind that allopolyploid data violate the assumptions
that all alleles for a given marker belong to one interbreeding pool and can
be closely related to each other through mutation.

http://cran.r-project.org/doc/manuals/R-intro.html#Packages
http://cran.r-project.org/doc/manuals/R-intro.html#Packages

4 How genotypes are stored in polysat

The object that is used universally in polysat to store genotypes is a two-
dimensional list of vectors. Samples are the first dimension of the list, and
the names of the first dimension are the names of the samples. Loci are the
second dimension of the list, and likewise the names of the second dimension
are the names of the loci. Each vector contains all unique alleles for a given
sample at a given locus. It is generally assumed that the alleles are integers,
although some polysat functions may still work on numeric and character
vectors. It is also assumed that copy number is never known for partially
heterozygous genotypes, and so a vector of alleles contains each allele only
once and is no longer than needed to contain the alleles in this way. This
allows polysat the flexibility of processing samples of any ploidy, storing sam-
ples of mixed ploidy in the same project, and estimating ploidy when it is
unknown. Missing data are represented by vectors of length 1, containing a
symbol of the user’s choosing, -9 by default. The user may find ways of ma-
nipulating the genotype object that are not provided in the polysat package,
since the object can be created and accessed using the base R package.
If you want to follow along with the examples below, first type

> data(testgenotypes)
> data(FCRinfo)

into your console to load the objects testgenotypes and FCRinfo. All
of the commands in this manual can also be found in a file called “sample-
session.R” in the “demo” directory of the polysat package. This file can be
opened with a text editor, or if you use Emacs Speaks Statistics you can open
the file there and send it to R one line at a time.

Alternatively, skip ahead to the chapter on importing data from files so
that you can work with your own data.

4.1 Examples of how to view and index genotype data

If you type the name of the genotype object (either from the example data
or your own) into the console in order to view it, you will get something like
this (sample names in this example start with FCR and locus names start
with RhCBA):

> testgenotypes

FCR1
FCR2
FCR3
FCR4
FCR5
FCR6
FCR7
FCR8
FCRO
FCR10
FCR11
FCR12
FCR13
FCR14
FCR15
FCR16
FCR17
FCR18
FCR19
FCR20

RhCBA15
207
Integer,2
208
Integer,4
207

208
Integer,4
Integer,4
Integer,4
Integer,3
Integer,4
Integer,4
Integer,4
Integer,4
Integer,4
Integer,4
Integer,4
Integer,4
Integer,4
Integer,4

RhCBA23
Integer,2
Integer,6
Integer,3
Integer,2
Integer,3
Integer,3
Integer,3
Integer,2
Integer,2
98
Integer,2
Integer,2
Integer,2
Integer,2
Integer,3
Integer,2
Integer,2
Integer,2
Integer,2
Integer,2

RhCBA28
Integer,6
Integer,6
Integer,8
Integer,3
Integer,8
Integer,8
Integer,5
Integer,3
Integer,3
Integer,3
Integer,3
Integer,3
Integer,3
Integer,3
182

-9
Integer,3
Integer,3
Integer,3
Integer,3

As you can see, this does not allow you to view the alleles, except for
genotypes that only have one allele. However, you can see the sample names
and locus names that are used to index the genotype data. You can also see
that the alleles are all stored as integers, and you can see how many alleles
each genotype has.

Say you just wanted to view the genotypes for RhCBA23:

> testgenotypes[, "RhCBA23"]

$FCR1
[1] 102 111

$FCR2
[1] 102 104 106 111 123 125

$FCR3

[1] 102

$FCR4
[1] 98

$FCR5
[1] 102

$FCR6
[1] 102

$FCR7
(1] 98

$FCRS
[1] 98

$FCR9
[1] 98

$FCR10
[1] 98

$FCR11
[1] 98

$FCR12
[1] 98

$FCR13
[1] 98

$FCR14
[1] 98

$FCR15
[1] 98

106 115

125

106 115

106 115

106 126

127

127

127

127

127

127

108 117

$FCR16
[1] 98 125

$FCR17
[1] 98 126

$FCR18
[1] 98 126

$FCR19
[1] 98 126

$FCR20
[1] 98 126

At the locus RhRCBA23, FCR1 has the alleles 102 and 111, FCR2 has the
alleles 102, 104, 106, 111, 123, and 125, and so on with the other individuals.
Say you just wanted to view the genotypes for FCR14:

> testgenotypes["FCR14",]

$RhCBA15
[1] 197 207 212 218

$RhCBA23
[1] 98 127

$RhCBA28
[1] 164 174 176

You may just want to analyze a subset of your data:

> myloci <- c("RhCBA23", "RhCBA28")

> mysamples <- c("FCR1", "FCR2", "FCR3", "FCR4", "FCR5", "FCR6",
+ "FCR7", "FCR8", "FCR9", "FCR10")

> subgenotypes <- testgenotypes|[mysamples, myloci]

> subgenotypes

RhCBA23 RhCBA28
FCR1 Integer,2 Integer,6
FCR2 Integer,6 Integer,6
FCR3 1Integer,3 Integer,8
FCR4 Integer,2 Integer,3
FCR6 1Integer,3 Integer,8
FCR6 Integer,3 Integer,8
FCR7 Integer,3 Integer,5
FCR8 Integer,2 Integer,3
FCRY9 Integer,2 Integer,3
FCR10 98 Integer,3

When providing your genotype data as an argument for any of the func-
tions in polysat, you may choose to just index a subset of the data in the
argument rather than making a separate object to contain the subset before-
hand. For example,

> testdist <- meandistance.matrix(testgenotypes[mysamples, mylocil])

Many of the functions also have optional samples and loci arguments,
which work exactly the same way for choosing a subset of the data. For
example,

> testdist <- meandistance.matrix(testgenotypes, samples =
+ loci = myloci)

mysamples,

would give exactly the same results as the similar assignment above.
You might just want to exclude a few samples without having to type the
full names of all other samples:

> to.exclude <- c("FCR11", "FCR12")
> all.samples <- dimnames (testgenotypes)[[1]]
> to.analyze <- all.samples['all.samples 7in}, to.exclude]
> to.analyze
(1] "FCR1" "FCR2" "FCR3" "FCR4" "FCR5" "FCR6" "FCR7" "FCR8" "FCR9"
[(10] "FCR10" "FCR13" "FCR14" "FCR15" "FCR16" "FCR17" "FCR18" "FCR19" "FCR20"

> testgenotypes([to.analyze,]

FCR1
FCR2
FCR3
FCR4
FCR5
FCR6
FCR7
FCR8
FCRO
FCR10
FCR13
FCR14
FCR15
FCR16
FCR17
FCR18
FCR19
FCR20

RhCBA15
207
Integer,2
208
Integer,4
207

208
Integer,4
Integer,4
Integer,4
Integer,3
Integer,4
Integer,4
Integer,4
Integer,4
Integer,4
Integer,4
Integer,4
Integer,4

RhCBA23
Integer,2
Integer,6
Integer,3
Integer,2
Integer,3
Integer,3
Integer,3
Integer,2
Integer,2
98
Integer,2
Integer,2
Integer,3
Integer,2
Integer,2
Integer,2
Integer,2
Integer,2

RhCBA28
Integer,6
Integer,6
Integer,8
Integer,3
Integer,8
Integer,8
Integer,5
Integer,3
Integer,3
Integer,3
Integer,3
Integer,3
182

-9
Integer,3
Integer,3
Integer,3
Integer,3

Note: a common error to get when indexing is a subscript out of
bounds error. This means that you used a character string that is not actually
found in the dimnames of the object, like FRC15 or FCR21 in this example.

4.2 Missing data

If a genotype is missing at a particular sample and locus, its vector will be
of length one, containing a missing data symbol of the user’s choice. This
symbol is -9 by default. Any polysat function that deals with missing data
has an argument called missing (or sometimes missingin and missingout
if there are options for both input and output) that can be used to indicate
that the genotype object uses a different symbol for missing data, or that a
different symbol should be used in the object to be created.

The function find.missing.gen can be used to search a genotype object
and list the locus and sample name of any genotype that is missing. For
example:

> find.missing.gen(testgenotypes)

Locus Sample
1 RhCBA28 FCR16

4.3 Examples of how to edit genotype data in R

Since all of the loci in the above example have similar names, you may want
to shorten their names.

> dimnames (testgenotypes) [[2]] <- c("C15", "C23", "C28")
There may be errors in the genotypes that you want to fix:

> testgenotypes[["FCR5", "C15"]] <- 208
> testgenotypes[["FCR19", "C23"]]

[1] 98 126

> testgenotypes[["FCR19", "C23"]] <- c(98, 125)
> testgenotypes[["FCR2", "C23"]]

[1] 102 104 106 111 123 125

> testgenotypes[["FCR2", "C23"]][4] <- 112
> testgenotypes["FCR5",]

$C15
[1] 208

$C23
[1] 102 106 115

$c28
[1] 146 148 157 159 166 170 172 174

> testgenotypes["FCR19",]

$C15
[1] 197 207 211 218

$c23

10

[1] 98 125

$c28
[1] 163 174 176

> testgenotypes["FCR2",]

$C15
[1] 206 207

$c23
[1] 102 104 106 112 123 125

$c28
[1] 146 155 157 159 168 175

Why am I using double brackets to index single genotypes, while I use
single brackets to index larger subsets of the data? Compare the output of
the two methods when used to access a single genotype:

> testgenotypes["FCR7", "C28"]

[[1]]
[1] 164 174 176 179 181

> testgenotypes[["FCR7", "C28"]]
[1] 164 174 176 179 181

The first is a list of length one containing the vector. The second is the
vector itself. In most cases you want the latter. Note that you cannot use
double brackets to index multiple elements of the list:

> testgenotypes[["FCR7",]]

Error in testgenotypes[["FCR7",]] : invalid subscript type 'symbol'

11

4.4 Editing genotype data using spreadsheet software

If you have a lot of edits to make or simply don’t like the command-line
approach to genotype editing, you may prefer to export the data to a tab-
delimited text file, edit it in spreadsheet software or a text editor, then import
it back into R. polysat can export and import data in a variety of formats (see
chapters on exporting and importing). Personally, I think that the easiest for
viewing and editing data is the Applied Biosystems GeneMapper®/format,
which is a simple table that stores each allele in its own cell.

> write.GeneMapper (testgenotypes, "genotypestoedit.txt")

Now open the file “genotypestoedit.txt” in your favorite spreadsheet pro-
gram. If you don’t know where your home directory is and can’t find the
file, try again but type in the full file path that you want to write to, e.g.
"C:\\Users\\1lvclark\\Documents\\genotypestoedit.txt".

Save the file once you've finished editing it, then import it back:

> testgenotypes <- read.GeneMapper ("genotypestoedit.txt")
or

> testgenotypes <-read.GeneMapper (
+ "C:\\Users\\1lvclark\\Documents\\genotypestoedit.txt")

4.5 Merging genotype objects

If you have multiple genotype objects that you would like to combine into
one, there are a couple methods that you could use.

If both genotype objects have the same set of samples, but different loci,
the cbind function can combine them. If you are concerned that the samples
might be in a different order or that one object has a few samples (that you
want to get rid of) that the other object doesn’t have, you can subscript both
objects with the same vector of sample names.

> mygenotypesl <- array(list(1,2,3,4), dim=c(2,2),

+ dimnames=1ist(c("ind1", "ind2"), c("locl", "loc2")))
> mygenotypes2 <- array(list(5,6,7,8), dim=c(2,2),
+ dimnames=1ist (c("ind1", "ind2"), c("loc3", "loc4")))

12

> mygenotypesl

locl loc2
indl 1 3
ind2 2 4

> mygenotypesZ2

loc3 loc4d
indl 5 7
ind2 6 8

> mysamples <- c("ind1", "ind2")

> mygenotypes <- cbind(mygenotypesl[mysamples,], mygenotypes2[mysamples,
+ 1)

> mygenotypes

locl loc2 1loc3 loc4d
indl 1 3 5 7
ind2 2 4 6 8

Likewise, if the two objects have the same set of loci, but different samples,
they can be combined using rbind.

> mygenotypes2 <- array(list(9,10,11,12), dim=c(2,2),
+ dimnames=1ist(c("ind3", "ind4"), c("locl", "loc2")))

> mygenotypes2

locl loc?2
ind3 9 11
ind4 10 12

> myloci <- c("locl", "loc2")
> mygenotypes <- rbind(mygenotypesl[, myloci], mygenotypes2[, myloci])
> mygenotypes

locl loc2
indl 1 3
ind2 2 4
ind3 9 11
ind4 10 12

13

If the situation is more complicated (e.g. you would use cbind but one
object has a few samples that the other doesn’t, and you want to preserve
these samples in the final object), you can export the objects to separate
GeneMapper files, then import them together into one object.

> write.GeneMapper (mygenotypesl, "mygenotypesl.txt")
> write.GeneMapper (mygenotypes2, "mygenotypes2.txt")
> mygenotypes <- read.GeneMapper (c("mygenotypesl.txt", "mygenotypes2.txt"))

4.6 Creating a genotype object from scratch

If you are storing your genotype data in a format that is not already read
by one of the functions in polysat (see next chapter), you may want to write
your own function to read your genotype data, or you may want to make
a genotype object manually. All of the functions in polysat that produce a
genotype object first establish the structure of the list and fill it with missing
data symbols:

> missing <- -9

> samples <- c("ind1", "ind2", "ind3")

> loci <- c("locl", "loc2")

> gendata <- array(list(missing), dim = c(length(samples), length(loci)),
+ dimnames = list(samples, loci))

>

gendata
locl loc2
indl -9 -9
ind2 -9 -9
ind3 -9 -9

Then the list is filled with genotype data. You can do this one genotype
at a time, although it would take awhile for any reasonably sized dataset:

> gendata[["ind1", "loc1"]] <- c(100, 102, 104)

Or you can write a loop structure to fill the whole list at once:

14

> for(L in loci){

> for(s in samples){

> # Insert code here that would find the genotype of sample
> # s at locus L in your data structure and convert it to a
> # vector called thesealleles.

> gendata[[s,L]] <- thesealleles

> }

>}

If you are going to do this, some useful functions to look into are read.table,
readLines, substring, and strsplit. However, hopefully you will be able
to import your data using one of the functions below!

5 Importing data from files

Each of these functions creates a genotype object as described in the previous
chapter. If the file format also contains information about which samples be-
long to which populations (read.ATetra, read.Tetrasat, read.GenoDive),
the function also produces a vector, as long as the number of samples and
with the sample names as the vector names, containing the population num-
ber for each sample. read.Structure and read.SPAGeDi can optionally
produce data frames of population and other information contained in their
respective file types.

Before you try any of these functions, you should make sure that you know
in general how to read files into R in your operating system. You should be
able to get read.table to work on a simple spreadsheet-like text file (tab-
delimited or CSV). The file path is always a character string in quotes. Note
that because backslash is an escape character in R, and is used in Windows
file paths, you will have to write the backslash twice each time if you are using
Windows. For example, "C:\\Users\\1lvclark\\Documents\\mygenotypedata.txt".

All of the data import functions are summarized below, but more infor-
mation on each can be found in their respective help files.

5.1 Arguments universal to the functions

The file path to be read is a character string as in other R functions for
reading files. This is the first argument, and the only required argument, for

15

all of the functions below except for dominant.to.codominant (see below for
more details on this function). read.GeneMapper allows a character vector
of any length, because it can read multiple files and combine them into one
genotype object.

Most of the functions allow the user to specify which symbol is used
to represent missing data in the genotype object produced. This is -9 by
default. Since the ATetra format does not allow for missing data, there
is no such argument for read.ATetra. The argument is called missing for
read.GeneMapper, dominant.to.codominant, read.Tetrasat, read.SPAGeD1i,
and read.Genodive, and missingout for read.Structure.

5.2 Function summaries
read.GeneMapper

This function reads one or multiple files in the Applied Biosystems Gen-
eMapper@®)Genotypes Table format. dimnames for the genotype object are
derived from the “Sample Name” and “Marker” columns. There can be as
many “Allele” columns as needed to contain the data. Missing data should
be indicated by deleting the row (if the function does not find a row for a
particular sample-locus combination, it fills in the missing data symbol) or by
filling in the missing data symbol in the first allele position. Alleles are kept
in whatever format they are found in the file (fragment length in nucleotides
if using the default naming scheme of GeneMapper). It is recommended that
all alleles be converted to integers before reading the file.

Usage: read.GeneMapper (infiles, missing = -9)

read.ATetra

This function reads a file formatted for the software ATetra [12]. The data
should be tetraploid, and no missing data are allowed. The function returns
a list containing two elements: PopData and Genotypes. The first is a vector,
with names equal to the sample names, containing the population number
of each sample. The second is the genotype object. Alleles are converted to
integers but otherwise stay the same as they are found in the file.

Usage: read.ATetra(infile)

16

read.Tetrasat

This function reads a file formatted for the software Tetrasat [§] or Tetra
[6]. The data should be tetraploid, and missing data are recognized as a
column completely made up of white space. A list is returned in the same
format as that returned by read.ATetra. The two-digit alleles from the file
are converted to integers in the genotype object. Completely homozygous
genotypes are written as the same allele four times in the file, but the allele
is only stored once in the genotype object.
Usage: read.Tetrasat(infile, missing = -9)

read.GenoDive

This function reads a file formatted for the software GenoDive [9] (or more
recently http://www.bentleydrummer.nl/software/software/GenoDive.
html). The format is similar to that for GenePop, but any ploidy is allowed.
Missing data are recognized as genotypes consisting only of zeros. Alleles are
converted to integers but otherwise kept the same. A list is returned in the
same format as that returned by read.ATetra and read.Tetrasat.

Usage: read.GenoDive(infile, missing = -9)

read.Structure

This function reads a file formatted for the software Structure [3| 2, 1], [5].
At this time the ONEROWPERIND option is not supported by polysat, so
each microsatellite locus must have only one column in the file, and each
individual must have n rows, where n is the ploidy of the file. Otherwise, the
function is flexible as to whether or not sample names and marker names are
present in the file, how many rows and columns are used in addition to those
containing genotype data, the character used to delimit fields, the symbol
used to indicate missing data, and the ploidy of the file. If marker names are
used, they must be aligned with their corresponding columns (so that the
data would look right if opened in a spreadsheet program). If there are extra
columns present, there is the option to return the data in these as a data
frame. For each sample and locus, repeated alleles are ignored, and missing
data symbols are ignored unless the entire genotype is missing.

Usage: read.Structure(infile, missingin = -9, missingout = -9,
sep = " 'r, markernames = TRUE, labels = TRUE, extrarows = 1, extra-
cols = 0, ploidy = 4, getexcols = FALSE)

17

http://www.bentleydrummer.nl/software/software/GenoDive.html
http://www.bentleydrummer.nl/software/software/GenoDive.html

read.SPAGeDi

This function reads files formatted for the software SPAGeDi [4]. The user
can specify whether a character is used to delimit alleles and which character
it is, although this must be the same across all genotypes in the file. The
function otherwise interprets codominant genotypes the same way that the
software does. By default the function will only return a genotype object,
but there are also options to return a vector containing the ploidy of each
sample, or a data frame containing the categories and spatial coordinates of
all samples.

Usage: read.SPAGeDi(infile, allelesep = "/", returncatspatco-
ord = FALSE, returnploidies = FALSE, missing = -9)

dominant.to.codominant

This function does not read a file directly, but instead takes data in the form
of an array or matrix of binary allele presence/absence data. A file containing
this type of data in a table-like format can be read by read.table and con-
verted to a matrix by as.matrix, then processed by dominant.to.codominant.
The function also requires information about which columns represent which
alleles and which loci. This information can be contained in the column
names themselves, with the locus name and allele number separated by a pe-
riod (or other character as specified by the user). The user can alternatively
provide the function with a data frame listing loci and alleles in the same
order that they are found in the columns of the genotype array. The symbol
that indicates the presence of an allele is 1 by default but can be changed
by the user. If the function does not find any alleles present for a particular
sample and locus, it inserts the missing data symbol into that position in the
genotype object.
Usage: dominant.to.codominant (domdata, colinfo = NULL, samples

= dimnames(domdata) [[1]], missing = -9, allelepresent = 1, split=

Il.l|)

5.3 Examples of usage

In the polysat package there is a folder called “extdata” which contains sample
input files in all of the above formats. Open the files with formats of interest
to you to see what they look like. To run these examples, you should figure

18

out the file path to this folder and edit the examples below accordingly. (Note
that I use paste to simplify the creation of multiple similar file paths, but
this is not a necessary part of using these functions. Try paste by itself or
look at its help file if you are confused about what it does.)

> folderpath <- "C:\\Users\\lvclark\\R\\win-library\\2.11\\polysat\\extdata\\"
> ATdata <- read.ATetra(paste(folderpath, "ATetraExample.txt",sep=""))
> ATdata

$PopData
CMW2 CMW3 CMw4 CMW5 FCR4 FCR7 FCR14 FCR15 FCR16 FCR17

CMW1
1

1

$Genotypes

CMW1
CMW2
CMW3
CMw4
CMW5
FCR4
FCR7
FCR14
FCR15
FCR16
FCR17

CBA15

Integer,4
Integer,4
Integer,4
Integer,4
Integer,4
Integer,4
Integer,4
Integer,4
Integer,4
Integer,4
Integer,4

1 1

CBA23

Integer,4
Integer,?2
Integer,2
Integer,4
Integer,3
Integer,2
Integer,3
Integer,2
Integer,3
Integer,2
Integer,2

1 2 2 2 2 2 2

> Tetdata <- read.Tetrasat (paste(folderpath, "tetrasatExample.txt",sep=""))

> Tetdata
$PopData
BCRHE1 BCRHE10 BCRHE2 BCRHE3 BCRHE4 BCRHE5 BCRHE6 BCRHE7 BCRHE8 BCRHE9
1 1 1 1 1 1 1 1 1 1
BR1 BR10 BR2 BR3 BR4 BR5 BR6 BR7 BR8 BR9
2 2 2 2 2 2 2 2 2 2
$Genotypes
Al_Gtype A10_Gtype Bl_Gtype D7_Gtype D9_Gtype D12_Gtype

19

BCRHE1 Integer,2
BCRHE10 Integer,2
BCRHE2 4

BCRHE3 4

BCRHE4 4

BCRHES 4

BCRHE6 Integer,2
BCRHE7 Integer,2
BCRHE8 Integer,2
BCRHE9 Integer,2
BR1 Integer,2
BR10 Integer,3
BR2 Integer,3
BR3 Integer,3
BR4 Integer,3
BR5 Integer,3
BR6 Integer,2
BR7 Integer,2
BR8 Integer,3
BR9 Integer,2

O N NG O N O N Y S N N SO N O N O O N NN

> GDdata <- read.GenoDive(paste(folderpath, "genodiveExample.txt",sep=""))

> GDdata
$PopData

John Paul George Ringo

1 1 2 2
$Genotypes
loc1l loc2

John Integer,2 Integer,2
Paul 2 -9
George 1 Integer,?2
Ringo Integer,3 Integer,2

Yoko Integer,2 Integer,?2

Integer,?2
7
Integer,2
2
Integer,2
Integer,?2
Integer,2
Integer,2
Integer,2
Integer,2
5
Integer,2
7
7
7
7
Integer,2
Integer,2
7
7

Yoko
1

2

2

2
Integer,?2
Integer,2
2

2

-9
Integer,?2

2
2
2
2
2

Integer,2
2
Integer,2
2
2
2

3
Integer,2
Integer,3

W WWWwWwwWwwwwwowwwwwwow

Integer,?2
Integer,2
Integer,2
Integer,2
Integer,3
Integer,3
7

7
Integer,?2
Integer,2
Integer,?2
Integer,2
9

9

10

10

10
Integer,3
Integer,3
7

> GMdata <- read.GeneMapper (paste(folderpath, "GeneMapperCBA",
+ c("15.txt","23.txt","28.txt"), sep=""))

> GMdata

20

FCR1
FCR2
FCR3
FCR4
FCR5
FCR6
FCR7
FCR8
FCRO
FCR10
FCR11
FCR12
FCR13
FCR14
FCR15
FCR16
FCR17
FCR18
FCR19
FCR20

RhCBA15
207
Integer,2
208
Integer,4
207

208
Integer,4
Integer,4
Integer,4
Integer,3
Integer,4
Integer,4
Integer,4
Integer,4
Integer,4
Integer,4
Integer,4
Integer,4
Integer,4
Integer,4

RhCBA23
Integer,2
Integer,6
Integer,3
Integer,2
Integer,3
Integer,3
Integer,3
Integer,2
Integer,2
98
Integer,2
Integer,2
Integer,2
Integer,2
Integer,3
Integer,2
Integer,2
Integer,2
Integer,2
Integer,2

RhCBA28
Integer,6
Integer,6
Integer,8
Integer,3
Integer,8
Integer,8
Integer,5
Integer,3
Integer,3
Integer,3
Integer,3
Integer,3
Integer,3
Integer,3
182
Integer,3
Integer,3
Integer,3
Integer,3
Integer,3

> Structdata <- read.Structure(paste(folderpath, "structureExample.txt",
+ sep=""), extracols = 1, ploidy = 8, getexcols = TRUE)
> Structdata

$ExtraCol

Vi
WIN1B 1
MCD1 2
MCD2 2
MCD3 2
$Genotypes

RhCBA15 RhCBA23 RhCBA28 RhCBA14 RUB126 RUB262 RhCBA6
WIN1B Integer,4 Integer,2 Integer,4 Integer,3 Integer,4 208 Integer,3

MCD1 208 Integer,6 Integer,6 Integer,4 Integer,3 Integer,6 151
MCD2 208 Integer,4 Integer,7 Integer,4 Integer,2 Integer,4 150

21

MCD3 197 Integer,2 Integer,2 Integer,2 Integer,2 213 Integer,2
RUB26

WIN1B 99

MCD1 Integer,3

MCD2 Integer,3

MCD3 Integer,2

> Spagdata <- read.SPAGeDi(paste(folderpath, "spagediExample.txt", sep=""),
+ returnploidies = TRUE)
> Spagdata

$Indploidies
il 12 i3 i4 ib5 i6 i7 1i8
4 4 2 4 2 4 4 4

$Genotypes
locA locB

il Integer,3 Integer,2
i2 Integer,4 Integer,3
i3 8 Integer,2
i4 Integer,3 22

i5 Integer,2 Integer,2
i6 Integer,4 Integer,2
i7 -9 Integer,4
i8 Integer,4 Integer,2

> Spagdata$Genotypes|[,"locA"]
$i1
(1] 4 16 17

$i2
[1] 10 13 18 19

$i3
[1] 8

$i4
[1] 6 12 14

22

$i5

[1] 12 15

$i6

[1] 10 16 17 19
$i7

[1] -9

$i8
[1] 9 12 14 17

> Domdata <- as.matrix(read.table(paste(folderpath, "dominantExample.txt",

+ sep=""), header=TRUE,sep="\t",row.names=1))
> Domdata

ABC1.123 ABC1.126 ABC1.129 ABC1.132 ABC1.135 ABC2.201 ABC2.203 ABC2.205

ind1 1 0 0 0 1 0

ind2 0 1 1 0 1 1

ind3 0 0 0 0 0 0
ABC2.207 ABC2.209

ind1 0 0

ind2 1 0

ind3 0 1

> ConvDomdata <- dominant.to.codominant (Domdata)
> ConvDomdata

ABC1 ABC2
ind1l Numeric,2 Numeric,?2
ind2 Numeric,3 Numeric,4
ind3 -9 Numeric,2

6 Exporting genotype data to files

If you just want to save a copy of the genotype object to be opened again in
R later, it is probably simplest to use the save function to make an .RData

23

1
1
0

1
1
1

file, then use load when you want to restore the object. Under normal cir-
cumstances the object should be saved in your R workspace anyway, but you
may want a backup copy or a copy that you can open on another computer.
Use the functions below if you want to be able to open the genotype data in
a text editor, spreadsheet program, or other population genetic software.

Polysat has functions to write data files formatted for GenoDive, Struc-
ture, SPAGeDi, ATetra, and Tetrasat/Tetra. It can also write files in a
similar format to GeneMapper genotypes tables, as well as create matrices of
binary allele presence/absence data that can either be further manipulated
in R or written to files using write.table.

For more information and examples of the use of these functions beyond
what is provided in this chapter, see their respective help files.

6.1 Arguments universal to the functions

All of the functions below take as the first argument (and the only required
argument) a genotype object as described earlier in this manual (“How geno-
types are stored in polysat”). This argument is referred to in the help files
as gendata. If only a subset of gendata is to be used, the samples and loci
to use can either be specified by subscripting or by the arguments samples
and loci. All functions except for codominant.to.dominant have a file
argument for specifying the path to which to write the file. The file will
be written to the console if no file path is specified (although see sink for
writing all output from the console to a file).

All of the functions allow the user to specify the symbol that is used
in gendata to represent missing data, which is -9 by default. This is the
argument missing in write.ATetra, write.Tetrasat, write.GenoDive,
write.SPAGeDi, and write.Structure, and missingin in codominant.to.dominant.
The Tetrasat/Tetra, SPAGeDi, and GenoDive programs have specific ways
of representing missing data, which are followed by their corresponding func-
tions. ATetra does not allow missing data, although write.ATetra will sim-
ply leave the corresponding allele slots blank and print a warning if there
is missing data in gendata. In write.Structure and write.GeneMapper,
the same missing data symbol is used in the output as input. In codomi-
nant.to.dominant, the missing data symbol to be used in the binary matrix
that is produced can be specified by missingout.

Some file formats contain information about which samples belong to
which populations. write.ATetra, write.Tetrasat, write.SPAGeDi, and

24

write.GenoDive have an argument called popinfo, which should be an in-
teger vector (or in some cases a character vector is acceptable) containing a
population number for each sample. If popinfo is unnamed it is assumed
to be in the same order as samples (or dimnames(gendata) [[1]] by de-
fault), or it can be named with sample names. In the latter case it is okay
for samples to be a subset of names(popinfo), but not vice versa. ATe-
tra and GenoDive also use population names, and so write.ATetra and
write.GenoDive have an argument called popnames that takes a character
vector of names for the populations, ordered by the numbers used to represent
them in popinfo. Because Structure will take other optional information for
each sample in addition to population identity, the argument extracols for
write.Structure is a two dimensional array, where the first dimension is
indexed by sample name and the second dimension represents the columns
to be placed before the locus columns. Similarly, write.SPAGeDi has an ar-
gument called spatcoord that takes a data frame of spatial coordinates to
include in the file.

Both write.Structure and write.SPAGeDi require information about
the ploidy of each sample, which is specified by the integer vector indploi-
dies. Like popinfo, this can either be named using sample names or should
be in the same order as samples.

A first line containing comments about the data is allowed in ATetra,
Tetrasat/Tetra, and GenoDive formats, and so the argument commentline
is used in the corresponding functions to specify the character string to use
in this line.

polysat allows alleles to be stored as fragment lengths rather than repeat
numbers, and so alleles must be converted to repeat numbers for Tetrasat/Tetra,
SPAGeDi, and GenoDive formats. The argument usatnts is an integer vec-
tor containing the length of the repeat for each locus (2 for dinucleotide re-
peats, 3 for trinucleotide repeats, etc.) Note that if the alleles in the genotype
object are already stored as repeat numbers rather than length in nucleotides,
the value of usatnts for that locus should be 1. This vector should also be
named using the locus names.

25

6.2 Function summaries
write.Structure

This function creates a file to be read by the program Structure [3]. The user
may specify the ploidy of each sample as well as the overall ploidy (number
of rows per sample) of the file. Locus names and sample names are taken
from the dimnames of the genotype object. A RECESSIVEALLELES row
is automatically inserted under the row of marker names and contains the
missing data symbol, which signifies to the program that allele copy number
is unknown. An array containing PopData or any other columns to be used in
the file can also be supplied to the function. An especially useful aspect of the
function is that it duplicates or randomly removes alleles as necessary to get
to the right ploidy. Sample names and other sample info are also duplicated
for each row as required by Structure. Because write.table is used by the
function to create the file, the user must manually delete a few fields in the
upper left corner of the file before importing the data into Structure.
Usage: write.Structure(gendata, ploidy, file="", samples=dimnames(gendata) [[1]].
loci=dimnames (gendata) [[2]], indploidies=rep(ploidy,times=length(samples)),
extracols=NULL, missing=-9)

write.ATetra

This function writes a file to be read by the software ATetra [12]. If missing
data is found in the genotype object, a warning is printed and all allele fields
for that particular sample and locus are left blank. If genotypes with more
than four alleles are found, a warning is printed and four alleles are chosen
at random to be included in the file.

Usage: write.ATetra(gendata, samples = dimnames(gendata) [[1]],
loci = dimnames(gendata) [[2]], popinfo = rep(l, length(samples)),
popnames = "onebigpop", commentline = "insert data info here", miss-
ing = -9, file = "")

write.Tetrasat

This function writes a file to be read by the software Tetrasat [§] or Tetra
[6]. If missing data is encountered, the genotype field for that particular
sample and locus is left blank. If a genotype has more than four alleles, a
warning is printed and four alleles are chosen at random to be included in the

26

file. Alleles are also converted to repeat numbers by dividing by the number
supplied in usatnts, and if necessary a multiple of 10 is subtracted from all
alleles at a locus so that all alleles can be represented by two digits. If a
genotype has only one allele, the allele is repeated four times to represent a
fully homozygous genotype. If the missing data symbol is encountered in the
genotype object, that particular genotype is represented in the file by white
space.

Usage: write.Tetrasat(gendata, commentline = "insert data de-
scription here", samples = dimnames(gendata) [[1]], loci = dimnames(gendata) [[2]],
popinfo = rep(l, length(samples)), usatnts = rep(2, length(loci)),
file = "", missing = -9)

write.GenoDive

This function writes a file to be read by the software GenoDive [9] (or more
recently http://www.bentleydrummer.nl/software/software/GenoDive.
html). Alleles can be represented by either two or three digits as specified by
the user. Alleles are converted to repeat numbers by dividing by the numbers
supplied in usatnts, and if necessary a multiple of 10 is subtracted from all
alleles at a locus so that all alleles can be represented by the specified number
of digits. If a missing data symbol is found in the genotype object, zeros are
written in the corresponding position in the file.

Usage: write.GenoDive(gendata, popnames = "onebigpop", comment-
line = "file description goes here", digits = 2, file = "", sam-
ples = dimnames(gendata) [[1]], loci = dimnames(gendata) [[2]], popinfo
= rep(1l, times = length(samples)), usatnts = rep(2, times = length(loci)),
missing=-9)

write.GeneMapper

This function writes a file in a similar format to the Genotypes Tables ex-
ported from Applied Biosystems GeneMapper@®). This format is not read
by any other population genetic software (to the best of my knowledge) but
may be convenient for viewing and editing the data. The same missing data
symbol is used in the file as is encountered in the genotype object. The
file produced is a tab-delimited table containing columns for Sample Name,
Marker, and Alleles.

27

http://www.bentleydrummer.nl/software/software/GenoDive.html
http://www.bentleydrummer.nl/software/software/GenoDive.html

Usage: write.GeneMapper (gendata, file = "", samples = dimnames(gendata) [[1]],
loci = dimnames(gendata) [[2]])

write.SPAGeDi

This function writes a file readable by the software SPAGeDi [4]. Population
identities as specified in popinfo will be put into a column labeled “Cat” for
categories to be used by the program. Any number of spatial coordinates can
be used, and are given to the function as a data frame with sample names
as row names. (As with popinfo and indploidies, the data frame will be
assumed to be in the same order as samples if unnamed, or if named the
data frame will be automatically subscripted by samples before being used
by the function.) By default, a category column and two spatial coordinate
columns are written to the file, to later be edited by the user with spreadsheet
software. Alleles are converted from fragment length to repeat number simi-
larly to the conversion in write.GenoDive. Since ploidy is reflected in how
the genotypes are written for SPAGeDi, there is an indploidies argument
similar to that for write.Structure. The first line of the file is generated
automatically from the data provided. If latitude and longitude are used for
spatial coordinates, the user will have to manually change the third number
in the first line from 2 to -2. There is currently not an option to write dis-
tance classes to the second line of the file using this function, but the user
can easily make this modification after the file is written.

Usage: write.SPAGeDi(gendata, samples = dimnames(gendata) [[1]],
loci = dimnames(gendata) [[2]], indploidies = rep(4, length(samples)),
popinfo = rep(1l, length(samples)), allelesep = "/", digits = 2, file
= "" spatcoord = data.frame(X = rep(1l, length(samples)), Y = rep(1,
length(samples)), row.names = samples), usatnts = rep(2, length(loci)),
missing = -9)

codominant.to.dominant

This function creates a matrix of binary data indicating the presence or
absence of each allele in each sample. The matrix can then be saved to a
text file using the write.table or write function. The matrix may also be of
use directly in R, for example in an AMOVA analysis using the ade4 package.
The user has control over which symbols are used to represent missing data
(both in the input and the output) and the presence or absence of alleles

28

(in the output). In addition to the matrix of genotype data, a data frame
can optionally be returned containing locus names and allele numbers in the
same order as the columns of the matrix.

Usage: codominant.to.dominant (gendata, makecolinfo = FALSE, al-
lelepresent = 1, alleleabsent = 0, missingin = -9, missingout = -
9, loci = dimnames(gendata) [[2]], samples = dimnames(gendata) [[1]])

6.3 Examples of usage

> mypopinfo <- FCRinfo$Species
> names (mypopinfo) <- row.names (FCRinfo)
> mypopinfo

FCR1 FCR2 FCR3 FCR4 FCR5 FCR6 FCR7 FCR8 FCR9 FCR10 FCR11 FCR12 FCR13

1 1 1 2 1 1 2 2 2 2 2 2 2
FCR14 FCR15 FCR16 FCR17 FCR18 FCR19 FCR20
2 3 2 2 2 2 2

mypopnames <- c("A", "B", "C")
write.GeneMapper (testgenotypes, file = "GMout.txt")
write.Structure (testgenotypes, ploidy = 8, file = "Structout.txt",
indploidies = c(8, 8, 8, 4, 8, 8, rep(4, 14)), extracols = array(mypopinfo
dim = ¢(20, 1), dimnames = list(names (mypopinfo), "PopData")))
write.GenoDive (testgenotypes, mypopnames, file = "GDout.txt",
popinfo = mypopinfo)
tetrasamples <- names (mypopinfo) [mypopinfo != 1]
tetrasamples

VV+ V + + VvV VYV

(1] "FCR4" "FCR7" "FCR8" "FCR9" "FCR10" "FCR11" "FCR12" "FCR13" "FCR14"
[10] "FCR15" "FCR16" "FCR17" "FCR18" "FCR19" "FCR20"

> write.ATetra(testgenotypes, popinfo = mypopinfo, popnames = mypopnames,
+ file = "ATout.txt", samples = tetrasamples)

More than 4 alleles: FCR7 C28
Missing data: FCR16 C28

> write.Tetrasat (testgenotypes, popinfo = mypopinfo[tetrasamples],
+ file = "TSout.txt", samples = tetrasamples)

29

Alleles randomly removed: FCR7 C28

> write.SPAGeDi(testgenotypes, file = "SpagOut.txt", popinfo = mypopinfo,
+ spatcoord = data.frame(Lat = c(rep(43.943, 6), rep(43.957,

+ 14)), Long = c(rep(-122.768, 6), rep(-122.755, 14))),

+ indploidies = c(8, 8, 8, 4, 8, 8, rep(4, 14)))

Alleles randomly removed to get to ploidy: C28 FCR7

> Domdata <- codominant.to.dominant (testgenotypes)
> write.table(Domdata, file = "Domout.txt")

7 Individual-level statistics

7.1 Create a matrix of pairwise distances

Typically, this will be done using the function meandistance.matrix, which
calls distance.matrix.1locus, which in turn calls a function to calculate
a distance given two genotypes (Bruvo.distance by default). meandis-
tance.matrix has its own arguments and can also pass arguments on to the
functions that it calls. These arguments are:

gendata The only required argument. A genotype object in the standard
two-dimensional list of vectors format.

samples A character vector of samples to analyze. This must be a subset of
dimnames (gendata) [[1]].

loci A character vector of loci to analyze. This must be a subset of dim-
names (gendata) [[2]].

all.distances Boolean. If TRUE, a three-dimensional array of pairwise dis-
tances by locus will be produced in addition to the mean distance ma-
trix.

distmetric The function to be used to calculate genetic distance. This is
Bruvo.distance by default, which incorporates a stepwise mutation
model [I]. A distance metric included in polysat that uses an infinite
allele model [7] is Lynch.distance.

30

usatnts An integer vector containing the repeat length of each locus, if
this information is used by distmetric. For example, 2 would indi-
cate dinucleotide repeats, 3 would indicate trinucleotide repeats, and
1 would indicate mononucleotide repeats. Note that if the alleles are
already stored in terms of repeat number rather than nucleotide length,
1 should be used! The names of the vector are the same as the names
of loci and the second dimension of gendata.

missing The symbol that is used to indicate missing data in the genotype
object (-9 by default). In the array of pairwise distances by locus, NA
will be inserted into positions where either sample has missing data.
When these distances are averaged to create the mean distance matrix,
any NA values will be ignored.

progress Boolean. If TRUE, print sample names after each pairwise distance
calculation is performed. If evaluation is expected to take a long time,
this can be useful for monitoring the progress.

maxl If distmetric is Bruvo.distance, and two genotypes both contain more
than this number of alleles, the calculation will be skipped and NA will
be written to that position in the array instead (similarly to when
there is missing data). This is 9 by default, and is intended to save
processing time by skipping a few rare distance calculations that would
be too computationally intensive.

7.1.1 Examples of creating a mean distance matrix

To create two matrices based on the two measures of distance supplied with
polysat:

> Bmatrix <- meandistance.matrix(testgenotypes, progress = FALSE)
> Lmatrix <- meandistance.matrix(testgenotypes, distmetric = Lynch.distance,
+ progress = FALSE)

The symmetrical distance matrix that is produced by meandistance.matrix
can be immediately used by other R functions. For example, to view a his-
togram of all distances,

> hist(as.vector (Bmatrix))
> hist(as.vector(Lmatrix))

31

should produce plots that could be useful for determining distance thresh-
olds between clones, populations, and species.
To do a principal coordinate analysis:

> Bprcomp <- cmdscale(Bmatrix)

> Lprcomp <- cmdscale(Lmatrix)

> plot (Bprcomp[,1],Bprcomp[,2], col=FCRinfo$Plot.color,
pch=FCRinfo$Plot.symbol)

> plot(Lprcomp[,1],Lprcomp[,2], col=FCRinfo$Plot.color,
pch=FCRinfo$Plot.symbol)

write.table and write can be used to export the distance matrix for
use in other software.

> write.table(Bmatrix, file = "Bmatrix.txt")

meandist.from.array can take a three-dimensional array such as that
produced when all.distances=TRUE and recalculate a mean distance matrix
from it. This could be useful, for example, if you want to try omitting loci
from your analysis. If Bruvo.distance skips some calculations because max1
is exceeded, you may also want to estimate these distances and fill them into
the array manually, then recalculate the mean distance matrix. See the help
file for meandist.from.array for some additional functions that can help to
locate missing values in the three-dimensional distance array.

To experiment with excluding loci:

> Larray <- meandistance.matrix(testgenotypes, progress = FALSE,

+ distmetric = Lynch.distance, all.distances = TRUE) [[1]]

> mdist15.23 <- meandist.from.array(Larray, loci c("Ccis", "Cc23"))
> mdist23.28 <- meandist.from.array(Larray, loci c("c23", "Cc28"))
> mdist15.28 <- meandist.from.array(Larray, loci c("Ccis5", "c28"))

And from there you might want to do principal coordinate analyses on
these three matrices as before, in order to visualize the effects of excluding
loci.

32

7.2 Estimate the ploidy of samples

The function estimate.ploidy calculates the maximum number of alleles
and mean number of alleles for each sample across all loci. Its only required
argument is a genotype object in the standard two-dimensional list of vectors
format. Optional arguments include samples and loci for specifying a subset
of the data to be used.

Using the sample data provided in the package, we would write:

> myploidies <- as.data.frame(estimate.ploidy(testgenotypes))
> myploidies

max.alleles mean.alleles

FCR1 6 3.000000
FCR2 6 4.666667
FCR3 8 4.000000
FCR4 4 3.000000
FCR5 8 4.000000
FCR6 8 4.000000
FCR7 5 4.000000
FCR8 4 3.000000
FCR9 4 3.000000
FCR10 3 2.333333
FCR11 4 3.000000
FCR12 4 3.000000
FCR13 4 3.000000
FCR14 4 3.000000
FCR15 4 2.666667
FCR16 4 2.333333
FCR17 4 3.000000
FCR18 4 3.000000
FCR19 4 3.000000
FCR20 4 3.000000

> myploidies[[3]] <- myploidies$max.alleles
> names (myploidies) [3] <- "ploidy"

> myploidies <- edit(myploidies)

33

This opens up a Data Editor. In the ploidy column, you can now edit the
ploidy based on what you know about the organism, for example if you were
expecting tetraploid, hexaploid, and octoploid individuals. You might also
want to make a character vector containing species or phenotypic information
for the samples, and make this another column of the data frame to assist
with ploidy editing.

8 Population-level statistics

The population statistics in polysat allow for mixed ploidy populations. Be-
cause of this, population sizes are measured in number of genomes rather than
number of individuals. For example, a tetraploid individual makes twice as
much of a contribution to allele frequency as a diploid individual does, if both
have the same two alleles at a locus. When allele frequencies are averaged
for the calculation of Hr, or an average Hg value is calculated between two
populations, the averages are weighted by the number of genomes in each
population.

8.1 Estimating allele frequencies

In partially heterozygous polyploid genotypes, allele copy number is assumed
to be unknown (as in all polysat functions), so allele frequencies can only
be estimated and not truly calculated from the data. The function esti-
mate.freq assumes that in a partially heterozygous genotype, all alleles have
an equal probability of being present in more than one copy. This is of course
not true, because some alleles are more common in the population. The result
is that this function should underestimate the frequencies of common alleles
and overestimate the frequencies of rare alleles. If these allele frequencies
are used to calculate Fsr, then, Fsp will be underestimated. However, this
should still be useful for looking at relative amounts of population structure
within one study system.

The first and only required argument for estimate.freqis a genotype ob-
ject. The default is that all individuals are in one population and tetraploid,
although it is likely that the user will want to adjust this using the popinfo
and indploidies arguments. These arguments are named vectors similar to
their counterparts in some of the functions for exporting data. The names of
both are sample names. Each element of popinfo is the population number

34

or population name for that particular sample. The indploidies argument
should contain an integer for each sample indicating the ploidy of the sample.
missing, samples, and loci arguments are also provided and are used in
the same way as in other polysat functions to specify the symbol used to
represent missing data, a subset of samples to be used, and a subset of loci
to be used, respectively.

estimate.freq produces a data frame with one row per population. The
first column is called Genomes and contains the number of genomes in each
population. All remaining columns represent alleles (one column per allele)
and contain allele frequencies. The column names are the locus name and
allele name separated by a period. Within one population and locus, all allele
frequencies will total to 1. The frequencies are the estimated number of copies
of the allele in the population divided by the total number of genomes in the
population. If a sample has missing data at a locus, the number of genomes
in that population is reduced accordingly for that locus in the calculation.

Using the data provided in the package:

mypopinfo <- FCRinfo$Species

names (mypopinfo) <- row.names (FCRinfo)

myploidies <- c(8, 8, 8, 4, 8, 8, rep(4, 14))

names (myploidies) <- row.names(FCRinfo)

freqtable <- estimate.freq(testgenotypes, popinfo = mypopinfo,
indploidies = myploidies)

freqtable[, 1:10]

vV + VvV VvV VvV VvV

Genomes C15.197 C15.199 C15.206 C15.207 C15.208 C15.209

1 40 0.0000000 0.00000000 0.1 0.3000000 0.60000000 0.00000000

2 56 0.2321429 0.02380952 0.0 0.1785714 0.05357143 0.02380952

3 4 0.2500000 0.00000000 0.0 0.0000000 0.25000000 0.00000000
C15.211 C15.212 (C15.218

1 0.0000000 0.0000000 0.0000000

2 0.1071429 0.1607143 0.2202381

3 0.2500000 0.2500000 0.0000000

In addition to calculating Fsr (see below), see the stats function dist for
other measures of distance that can be calculated from this type of numerical
data. The software SPAGeDi [4] can also calculate a variety of distances
between populations.

35

8.2 Calculating pairwise Fp

The function calcFst will calculate pairwise Fgr [10] values between popula-
tions based on a data frame of genomes per population and allele frequencies
per population. The data frame produced by estimate.freq can be passed
directly to calcFst. If only a subset of populations or loci from the data
frame should be used, these can be specified by vectors with the arguments
pops and loci.

Continuing the above example:

> testfsts <- calcFst(freqtable)
> testfsts

1 2 3
1 0.00000000 1.215551e-01 0.07300686
2 0.12155509 -1.481901e-16 0.04495806
3 0.07300686 4.495806e-02 0.00000000

9 How to cite polysat

We are submitting an article to Molecular Ecology Resources:
Clark, L and Jasieniuk, M. POLYSAT: an R package for polyploid mi-
crosatellite analysis. Molecular Ecology Resources (in review).

References

[1] BRUVO, R., MICHIELS, N. K., D’SOUZA, T. G. and SCHULEN-
BURG, H. 2004. A simple method for the calculation of microsatellite
genotype distances irrespective of ploidy level. Molecular Ecology, 13,
2101-2106.

[2] FALUSH, D., STEPHENS, M. and PRITCHARD, J. K. 2003. Inference
of population structure using multilocus genotype data: Linked loci and
correlated allele frequencies. Genetics, 164, 1567-1587.

[3] FALUSH, D., STEPHENS, M. and PRITCHARD, J. K. 2007. Infer-
ence of population structure using multilocus genotype data: dominant
markers and null alleles. Molecular Ecology Notes, 7, 574-578.

36

[4]

[10]

[11]

[12]

HARDY, O. J. and VEKEMANS, X. 2002. SPAGED:i: a versatile com-
puter program to analyse spatial genetic structure at the individual or
population levels. Molecular Ecology Notes, 2, 618-620.

HUBISZ, M. J., FALUSH, D., STEPHENS, M. and PRITCHARD, J. K.
2009. Inferring weak population structure with the assistance of sample
group information. Molecular Ecology Resources, 9, 1322-1332.

LTAO, W. J., ZHU, B. R., ZENG, Y. F. and ZHANG, D. Y. 2008.
TETRA: an improved program for population genetic analysis of allote-
traploid microsatellite data. Molecular Ecology Resources, 8, 1260-1262.

LYNCH, M. 1990. THE SIMILARITY INDEX AND DNA FINGER-
PRINTING. Molecular Biology and FEvolution, 7, 478-484.

MARKWITH, S. H., STEWART, D. J. and DYER, J. L. 2006.
TETRASAT: a program for the population analysis of allotetraploid
microsatellite data. Molecular Ecology Notes, 6, 586-589.

MEIRMANS, P. G. and VAN TIENDEREN, P. H. 2004. GENOTYPE
and GENODIVE: two programs for the analysis of genetic diversity of
asexual organisms. Molecular Ecology Notes, 4, 792-794.

NEI, M. 1973. Analysis of gene diversity in subdivided populations. Pro-
ceedings of the National Academy of Sciences of the United States of
America 70, 3321-3323.

PRITCHARD, J. K., STEPHENS, M. and DONNELLY, P. 2000. Infer-
ence of population structure using multilocus genotype data. Genetics,
155, 945-959.

VAN PUYVELDE, K., VAN GEERT, A. and TRIEST, L. 2010. ATE-
TRA, a new software program to analyse tetraploid microsatellite data:
comparison with TETRA and TETRASAT. Molecular Ecology Re-
sources, 10, 331-334.

37

	Introduction
	Obtaining and installing polysat
	Notes on autopolyploids vs. allopolyploids
	How genotypes are stored in polysat
	Examples of how to view and index genotype data
	Missing data
	Examples of how to edit genotype data in R
	Editing genotype data using spreadsheet software
	Merging genotype objects
	Creating a genotype object from scratch

	Importing data from files
	Arguments universal to the functions
	Function summaries
	Examples of usage

	Exporting genotype data to files
	Arguments universal to the functions
	Function summaries
	Examples of usage

	Individual-level statistics
	Create a matrix of pairwise distances
	Examples of creating a mean distance matrix

	Estimate the ploidy of samples

	Population-level statistics
	Estimating allele frequencies
	Calculating pairwise FST

	How to cite polysat

